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Quantum weak and modular values in enlarged Hilbert spaces
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We introduce an enlarged state, which combines both pre- and postselection states at a given time t in between
the pre- and postselection. Based on this form, quantum weak and modular values can be completely interpreted
as expectation values of a linear combination of given operators in the enlarged Hilbert space. This formalism
thus enables us to describe and measure the weak and modular values at any time dynamically. A protocol for
implementing an enlarged Hamiltonian has also been proposed and applied to a simple example of a single
spin under an external magnetic field. In addition, the time-dependent weak and modular values for pre- and
postselection density matrices mapping onto an enlarged density matrix are also discussed.
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I. INTRODUCTION

Traditionally, it is believed that the state of a system at
time t (>ti: the initial time) is solely determined by the initial
condition at time ti, both for classical mechanics and quantum
mechanics. In this context, the final condition is not relevant
as it is merely the result of the natural evolution of the system.
Recently, however, people started to consider such cases where
the final state at time tf (>t) is postselected via a projection
measurement. In this case, the final state plays a role of the
posterior condition and affects, together with the initial state,
the statistics of the observed values. Thus the initial and final
states are equally important to give a complete description
of the quantum system [1]. Such kind of theory is known as
the two-state vector formalism (see pp. 1–8 of Ref. [2] and
Chap. 13 of Ref. [3]).

The concepts of quantum weak values [4] and, very recently,
quantum modular values [5] are given in the two-state vector
formalism,

〈A〉w = 〈φ|A|ψ〉
〈φ|ψ〉 and (A)m = 〈φ|e−ig A|ψ〉

〈φ|ψ〉 , (1)

where 〈A〉w ((A)m) is the weak (modular) value of an ob-
servable A with the pre- and postselected states |ψ〉 and
|φ〉, corresponding to the initial and the final conditions,
respectively. Here, the constant g can take any real value.
Weak and modular values are related to each other through
g [5,6]. Both of them are found to be useful in explaining
many phenomena such as quantum paradoxes [7–14], quantum
ergodicity [15], and many applications in amplification and
precision metrology [16–20].

A weak value can be obtained by weak measurements
[4,21,22], whereas a modular value can be obtained by arbitrar-
ily strong measurements [5]. In any case, the time t when the
measurement is done does not matter if the system stays in the
same state during ti � t � tf . If the state evolves, however, we
should use |ψ(t)〉 and |φ(t)〉 in Eq. (1) instead of |ψ〉 and |φ〉,
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where |ψ(t)〉 is the evolution of |ψ〉 from ti to t and |φ(t)〉 is the
backward evolution of |φ〉 from tf to t . This new expression,
however, does not mean that the weak value (or the modular
value) is expressed as a dynamical evolution. To obtain a weak
(or modular) value at time t , we need to prepare |ψ〉 at time ti,
wait until tf , and postselect |φ〉 at time tf , for each choice of t .

It is, however, desirable if we can construct a different set of
a large system that can simulate the original set of the system in
such a way that the new system is not postselected at time tf . In
this case, the time-dependent (but not dynamically evolving)
weak value is simulated by an expectation value of the new
system that simply evolves in one direction from its initial
condition at ti.

One possible method to do so might be the use of a “generic
two state,” which is a direct product of a ket vector and a bra
vector [1,23,24]. This generic-two-state description, however,
simply gives a convenient form for a weak value rather than
describes it as the initial-condition problem. Recently, a two-
time state or a process matrix was introduced, wherein the
preselection state is entangled with the postselection state [25].
The process matrix formalism also has connected with the
“indefinite causal order” and can be simulated in quantum
mechanics by using postselections [26].

In this paper, we propose a type of an enlarged Hilbert
space, which enables us to construct a quantum simulator
that simulates the original system set in such a way that a
time-dependent weak (or modular) value in the original scheme
is expressed as a one-way evolving expectation value in the
enlarged scheme. This means that by causally running this
simulator, we can simulate the time dependence of the weak
value, which does not evolve causally but merely is a function
of time t that will be known only after the postselection at the
final time tf .

The rest of this paper is organized as follows. In Sec. II,
we introduce a mapping process of a given quantum state and
an arbitrary state onto an enlarged state, and the dynamical
evolution process of the enlarged system. Section III describes
our main results. We apply the enlarged state of pre- and post-
selection states to the quantum weak and modular values and
show that quantum weak and modular values can be expressed
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as expectation values in the enlarged space. An example of
a single spin under an external magnetic field is also given
in this section. We also consider the case where the pre- and
postselection states are mixed states. An experimental scheme
for implementing the enlarged Hamiltonian is proposed in
Sec. IV. We finally discuss and summarize our paper in Sec. V.

II. ENLARGED HILBERT SPACE METHOD

An enlarged Hilbert space formalism that can be imple-
mented in a quantum simulator is a concept that has been
proposed by Solano and his colleagues and has been exten-
sively studied recently both theoretically and experimentally
[27–36]. In this method, a given quantum state in a Hilbert
space (usually named the simulated space) is embedded onto
an enlarged state in an enlarged Hilbert space. Several manners
of mapping have been suggested for different purposes. For
example, a mapping that maps a pair of conjugate wave
functions (ψ,ψ∗) onto an enlarged real wave function ψ̃ allows
us to implement some unphysical operators, such as charge
conjugation C, parity inversionP , and time reversalT [27–30].
It is also applicable to Majorana particles [27–29]. It is also
successfully applied to measurements of the entanglement
monotone [31–34]. Using another way of mapping, correlation
functions in different reference frames, which are not directly
measured, become observables that are directly measured [35].
A noncausal kinematic transformation and time or spatial
parity transformations can also be discussed by an expectation
value of the enlarged state [35,36].

In this section, we introduce a different way of mapping,
where a given quantum state ψ(t) is mapped together with an
arbitrary state ψ ′(t), which we name as a partner state, onto an
enlarged state �(t). We will choose, in the following section,
the state that evolves from the initially prepared state as ψ

and the state that backwardly evolves from the finally selected
state as ψ ′. For now, however, we stay in a general theory
with arbitrary ψ and ψ ′. Considering a given quantum state
|ψ(t)〉 and its partner state |ψ ′(t)〉 in an n-dimensional Hilbert
space Hn, these two states are mapped onto an enlarged state
|�(t)〉 in an enlarged Hilbert space C2 ⊗ Hn. The mapping
M : Hn → C2 ⊗ Hn, following [35], is

ψ(t)
M−→ �(t)= 1

2 {[ψ(t) + ψ ′(t)],[ψ(t)−ψ ′(t)]}T , (2)

where T represents the transpose operation. Here we omit ket
| 〉 vectors for short. It is worthwhile to note that the mapping
can be done by adding an extra qubit to the given system that
contains the given state and its partner state. This mapping
can always be implemented because any wave function can be
expressed as

ψ(t) = 1
2 {[ψ(t) + ψ ′(t)] + [ψ(t) − ψ ′(t)]}, (3)

and therefore the quantum state can be decoded by the
inverse ψ(t) = M�(t), and the partner state is decoded by
ψ ′(t) = M(σ z ⊗ In)�(t), where M ≡ (1,1) ⊗ In, with In the
n-dimensional identity matrix.

We now treat the dynamics of the Schrödinger equation in
the enlarged Hilbert space. It should be noted that the quantum
state satisfies the Schrödinger equation,

(i∂t − H)ψ(t) = 0, (4)

with the initial condition ψ(t = 0), and H is the system
Hamiltonian in the original Hilbert space Hn. We want to map
this equation onto the one in the enlarged Hilbert space that
satisfies

(i∂t − H̃)�(t) = 0, (5)

as proposed in Ref. [31]. Here, H̃ is the enlarged Hamiltonian
in the enlarged Hilbert space C2 ⊗ Hn. Following [31], if
the state �(t) is the solution of Eq. (5) with the initial
condition �(t = 0), then the state M�(t) is the solution of the
Schrödinger equation (4) with the initial condition M�(t =
0). Here, in our mapping (2), they are both satisfied, i.e.,
ψ(t = 0) = M�(t = 0) and ψ(t) = M�(t). Therefore, if the
condition M H̃ = H M is satisfied, Eq. (4) will be reproduced
by operating M from the left of both sides of Eq. (5). With this
condition, we obtain

H̃ =
(

C B
B C

)
= I2 ⊗ C + σ x ⊗ B, (6)

where B is an arbitrary n × n matrix and C ≡ H − B, and I2

is the two-dimensional identity matrix.
Now, what will be the initial state of the enlarged expres-

sion? In fact, any�(0) that givesψ(0) = M�(0) is not enough.
This is different from the case of [35] because here we can
freely choose the partner state independent from the initial
state of the system. Therefore, a proper choice would take
into account the partner state at the initial time. The proper
choice depends on each problem, and later we will show that
we choose the initial partner state ψ ′(t = 0) as the backwardly
propagated state from the postselected state ψ ′(tf ) ≡ |φ〉.

III. QUANTUM WEAK AND MODULAR VALUES

Quantum weak value is a concept that was proposed by
Aharonov et al. [4], where an expectation value of a given
system observable is both depicted by the initial and final
conditions. Most of the studies on weak values have focused on
the interaction Hamiltonian between a quantum system and a
measuring device for the case without the time evolution of the
system. There were, however, a few studies on time-dependent
weak values [37–40]. These studies, however, mainly focused
on the time evolutions of the pre- and postselection states.
There was a lack of discussion on how to measure (or obtain)
time-dependent weak values (at least in principle). They
instead mathematically consider the related effects caused
by time-dependent weak values. Here, we also consider the
evolution of the quantum system in describing the weak values
and modular values. The main scope is to express them
as expectation values evolving only by an enlarged initial
condition in the enlarged system. Therefore, the enlarged
weak values and modular values could be measured directly
(measurements of expectation values) at the given time t .

A. Time-dependent weak values in a normal Hilbert space

We first consider a time-dependent weak value in a normal
(i.e., not enlarged) Hilbert space. The process can be described
as follows. A quantum system was prepared at time ti in the
identical quantum states |ψi(ti)〉, and a subensemble that is
postselected in state |ψf (tf )〉 at time tf with a given Hamiltonian
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H takes place in the Hilbert space Hn. In general, the postse-
lected state does not need to be the freely evolved preselected
state, i.e., |ψf (tf )〉 	= |ψi(tf )〉. The initial state propagates from
time ti by the unitary propagator U(t,ti) = exp(− i

h̄

∫ t

ti
Hdτ )

to time t (> ti) when the weak measurement is performed.
Here, H is the free Hamiltonian of the system. The state
just before the measurement is thus U(t,ti)|ψi(ti)〉. After
weak interaction at time t , the system again evolves freely
towards the final time tf (> t) under the same propagator.
The connection between the forward and backward evolutions
is given by U(tf ,t) = U−1(t,tf ) = U†(t,tf ) [41]. Therefore,
the final state of the system propagates toward the past with
〈ψf (t)| = 〈ψf (tf )|U†(t,tf ). Then, the quantum weak value of a
Hermitian operator A at time t (ti < t < tf ), is expressed as

〈A(t)〉w = 〈ψf (tf )|U†(t,tf )|AU(t,ti)|ψi(ti)〉
〈ψf (tf )|U†(t,tf )U(t,ti)|ψi(ti)〉

. (7)

We next introduce “forward-evolving” and “backward-
evolving” states at any time t , with ti < t < tf , that satisfy
[23]

|ψ+(t)〉 = U(t,ti)|ψi(ti)〉, (8a)

|ψ−(t)〉 = U(t,tf )|ψf (tf )〉, (8b)

respectively. These expressions describe the forward evolution
of the preselection state from ti to t and the backward evolution
of the postselection state from tf to t , respectively. By using
Eqs. (8), the weak value can be rewritten as follows:

〈A(t)〉w = 〈ψ−(t)|A|ψ+(t)〉
〈ψ−(t)|ψ+(t)〉 . (9)

It is notable that in the context of time-dependent weak
values (and modular values), the choices of the pre- and
postselected states are not relevant and even can be orthogonal,
such as 〈ψf (tf )|ψi(ti)〉 = 0. However, as can be seen from
Eq. (9), the evolution states (the forward- and backward-
evolving states) at any time t must be nonorthogonal. Also, for
the enlarged state, it must be nonorthogonal to its “evolving
state,” i.e., (σ z + iσ y) ⊗ In|�(t)〉 [see Eq. (12) below].

B. Time-dependent weak values in an enlarged Hilbert space:
Expectation-value forms

Our primary purpose is to express weak values and modular
values, which are defined with so-called two-state vector
formalism, with single-state formalism such as expectation
values. This can be done by embedding the forward-evolving
and backward-evolving states onto an enlarged state by using
our mapping method described in Sec. II. Indeed, the mapping
(2) would give

�(t) = 1
2 {[ψ+(t) + ψ−(t)],[ψ+(t) − ψ−(t)]}T , (10)

where we have chosen ψ(t) = ψ+(t) and ψ ′(t) = ψ−(t) in
(2). Once again, we omit ket | 〉 vectors for short. The
forward-evolving and backward-evolving states, of course, can
be decoded by

ψ+(t) = M�(t) and ψ−(t) = M(σ z ⊗ In)�(t). (11)

Then, the weak value in the enlarged Hilbert space is given,
using Eqs. (9) and (11), as

〈A(t)〉w = 〈�(t)|(σ z + iσ y) ⊗ A|�(t)〉
〈�(t)|(σ z + iσ y) ⊗ In|�(t)〉 , (12)

which completes the description of the weak value (of the
system observable A) by the time dependence of the enlarged
state |�(t)〉. Furthermore, the weak value now has the form of
the expectation value, i.e., the ordinary single-state formalism
for an enlarged system operator, σ z ⊗ A + iσ y ⊗ A. Note that
although this operator is not a Hermitian operator, its expec-
tation value is experimentally obtainable since it is a linear
combination of two Hermitian operators. As a consequent, the
time-dependent weak value can be dynamically obtained via
the measurement of this expectation value.

This single-state formalism enables us to describe 〈A(t)〉w,
which originally requires the posterior condition ψf (tf ) to
calculate, as a causal dynamics of the expectation value of the
corresponding enlarged operator. The process is as follows.
If an appropriate initial enlarged state is prepared at time
ti as |�(ti)〉, then it evolves to |�(t)〉 under an appropriate
enlarged evolution operator Ũ(t,ti) ≡ exp(− i

h̄

∫ t

ti
H̃dτ ). The

weak value at time t then is given by the expectation value
of the linear combination of Hermitian operators as above in
Eq. (12). Of course, the enlarged evolution operator Ũ(t,ti)
should give the state evolution,

�(ψi(ti),ψf (ti),ti)
Ũ(t,ti)−−−→ �(ψi(t),ψf (t),t). (13)

For this ψf (t), the relation

|ψf (t)〉 = U(t,tf )|ψf (tf )〉 (14)

must also hold.
One possible way to satisfy both Eqs. (13) and (14) is to

choose B = 0 and C = H in Eq. (6). Then the backward
evolution U(ti,tf )|ψf (tf )〉 satisfies the requirement and thus

|ψf (ti)〉 = U(ti,tf )|ψf (tf )〉. (15)

Considering the case that we know both the system free evo-
lution U(ti,tf ) and the postselected state |ψf (tf )〉 beforehand,
then |ψf (ti)〉 also becomes well defined at the initial time ti.

Note that other than B = 0 and C = H , we can also freely
choose B and C in Eq. (6). In this case, however, the backward
evolution U(ti,tf )|ψf (tf )〉 cannot satisfy the requirement, and
we need more complicated calculations with the prior knowl-
edge of postselected wave function at time t to determine the
enlarged state |�(ti)〉.

C. Example

In this example, we illustrate a simple case where a spin
operator of a spin-1/2 particle evolves under an external
magnetic field applied along the z axis. The Hamiltonian and
the evolution operator are given by

H = μB

2
σ z and U(t) = e− iωt

2 σ z , (16)

where μ and B are the amplitudes of the magnetic moment
and the magnetic field, respectively, and ω = μB

h̄
.
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Suppose that we prepare an initial state, |↑x〉, which is a
normalized eigenstate of Pauli matrix σ x ,

|ψi(ti)〉 = 1√
2

(
1
1

)
, (17)

with the bases |↑z〉 = (1
0) and |↓z〉 = (0

1). For the postselection
at time tf , we consider three examples as the postselected states:

|ψf (tf )〉 = 1√
2

(
1
1

)
,

1√
2

(
1

−1

)
, and

1√
2

(
1
i

)
, (18)

which correspond to |↑x〉, |↓x〉, and |↑y〉, respectively. Let
us choose ti = 0 and tf = T for simplicity. Then the time-
dependent weak values of σ x calculated in the normal Hilbert
space from Eq. (9) are

↑x
〈σ x〉w

↑x
= cos(ωt) + sin(ωt) tan

(
ωT

2

)
, (19a)

↓x
〈σ x〉w

↑x
= cos(ωt) − sin(ωt) cot

(
ωT

2

)
, (19b)

↑y
〈σ x〉w

↑x
= cos

(
ωt − ωT

2 + π
4

)
cos

(
ωT
2 − π

4

) . (19c)

We next go through the same calculations in the enlarged
Hilbert space. For simplicity, let us choose B = 0 and C =
H in the decomposition H = B + C . The corresponding
Hamiltonian and the evolution operator in the enlarged space
are

H̃ = μB

2
I e ⊗ σ s

z and Ũ(t) = e− iωt
2 I e⊗σ s

z , (20)

where we have added superscripts e and s for the extra spin
(ancilla qubit) and the system spin.

We also need to calculate the state |ψf (ti)〉 from the given
|ψf (tf )〉, which can be done using Eq. (15) for each postselected
state of Eq. (18). The initial enlarged state is then given as

|�(ti)〉 = 1

2

(|ψi(ti)〉 + |ψf (ti)〉
|ψi(ti)〉 − |ψf (ti)〉

)
. (21)

Under the enlarged evolution Ũ(t,ti), this enlarged state
evolves to |�(t)〉 = Ũ(t,ti)|�(ti)〉. Then the weak values
obtained from Eq. (12) are the same as Eqs. (19). The detailed
calculation is shown in Appendix A.

As an example case, when we choose ωT = π/2, then
the results of weak values are shown in Fig. 1. In general,
the weak values depend on the measurement time. At t = 0,
for all postselection cases, we get the results of weak values
equal to 1, which means σ x will be measured up regardless of
postselection since the initial preparation state is |↑x〉, which
is an eigenstate of σ x . As time t increases, the results will
depend on both the pre- and postselection states at that time.
For example, at t = T/2, the postselection onto |↑x〉 will give
the maximum result of weak value (the red solid curve), which
lies outside the range of σ x eigenvalues [−1, + 1], while the
postselected onto |↓x〉 will give the zero result (the green
dashed curve), which means σ x will be measured up or down
with equal probability. Finally, for t = T , similar to the t = 0
case, the weak values depend on postselection states, for those

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

1.5

FIG. 1. Weak values of σ x for the preselection state in (17) and
various postselection states as in (18), which are the same in both
cases of normal Hilbert space and enlarged Hilbert space.

are eigenstates of σ x as we can see from the red and green
curves for up and down orientations, respectively.

D. Time-dependent modular values in an enlarged Hilbert space

Another concept associated with the pre- and postselections
is the modular value, which was first proposed by Kedem
and Vaidman [5] and was recently studied by us [6,42,43].
For example, we have shown that by using the spectral
decomposition, a modular value can be expressed regarding
weak values [42] as

[A(t)]m =
∑

i

e−igλi
〈
�ai

(t)
〉
w, (22)

where we have used �ai
= |ai〉〈ai |, and λi is one of the

eigenvalues of the observable A, i.e., A = ∑
i λi�ai

. This
means that the modular value at time t is obtained by scanning
and collecting all the weak values of the projection operators at
this time. Fortunately, these weak values can be simultaneously
measured at a given time by using such “scan-free method” that
was introduced by Shi et al. [44]. As a result, time-dependent
modular values in the enlarged Hilbert space can be determined
via the time-dependent weak values.

E. Quantum weak and modular values with pre- and
postselection density matrices

We consider that a “preselection” density matrix ρ prop-
agates forward in time and a “postselection” density matrix
E evolves backward in time. Let us assume that they are
both represented by n × n complex density matrices. We
introduce a mapping process from the original Hilbert space
(n-dimensional) to an enlarged Hilbert space (2n-dimensional)
that maps both ρ and E onto an enlarged density matrix. We
define this enlarged density matrix at time t as follows:

�t = 1

2

(
ρt 0n

0n Et

)
, (23)

where 0n is the n × n zero matrix. The factor 1/2 is used for
normalization. Such a mapping can be implemented by adding
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( (0

0
FIG. 2. A graphical illustration of the enlarged density matrix on

the Bloch spheres. This representation is equivalent to the Majorana
geometric representation in a sphere.

an ancillary qubit to the original system such that

�t = 1
2 [|0〉〈0| ⊗ ρt + |1〉〈1| ⊗ Et ], (24)

where |0〉 ≡ (1
0) and |1〉 ≡ (1

0) are the chosen basis of the
ancillary qubit. The original system density matrices can be
decoded by the inversion,

ρt = 2M�t N and Et = 2M�t (σ x ⊗ In)N, (25)

where again M = (1,1) ⊗ In while N = (
1
0) ⊗ In, and In is the

n × n identity matrix. For illustration, we show a graphical
matrix that contains the Bloch spheres that represent the pre-
and postselection density matrices in Fig. 2.

Using this proposal, the weak value of a given observable A
at any time t can be obtained from the enlarged density matrix
�t as

〈A(t)〉w ≡ Tr[Et Aρt ]

Tr[Etρt ]

= Tr[M�t (σ x ⊗ In)N A M�t N]

Tr[M�t (σ x ⊗ In)N M�t M]
, (26)

where we have submitted ρt and Et from Eq. (25). A similar
result can be drawn for the case of modular values.

IV. IMPLEMENTATION OF ENLARGED HILBERT SPACES

In this section, we discuss how to implement the evolution
associated with the enlarged Hamiltonian by a real quantum
simulator. In many cases, a Hamiltonian to be simulated is
expressed by a many-body-system Hamiltonian, which is the
summation of the subsystems Hamiltonians. So, we assume
that the enlarged Hamiltonian is expressed as H̃ = ∑

j H̃j ,
where H̃j are in general nonlocal and noncommuting opera-
tors. Using the Trotter technique [45,46], the evolution operator
is expressed as

Ũ = e− i
h̄

∑
j H̃j t 


⎛⎝∏
j

e− i
h̄

H̃j t/k

⎞⎠k

, (27)

where k is the number of Trotter steps. If H̃j are local
Hamiltonians, the evolution process can be implemented

FIG. 3. A scheme of gates on both the extra spin (e) and the system
single-particle spin (s).

by using a “genetic algorithm” for digital quantum simula-
tions [47]. Here, however, we assume that H̃j are nonlo-
cal, so the genetic algorithm is not applicable. Fortunately,
however, each H̃j is decomposed into tensor products of
Pauli matrices [32,48]. In this case, e− i

h̄
H̃j t/k can be im-

plemented by using nonlocal entangling Mølmer-Sørensen
gates UMS(θ,φ) = exp[−i θ

4 (cos φSx + sin φSy)2], and local
single-qubit rotations (see Refs. [32,48]), where the operators
Sx,y = ∑N

i=1 σ i
x,y, θ and φ are two angle parameters, and N

is the number of local qubits [49,50].
We now apply the above method to our enlarged Hamil-

tonian (6). Here we adopt a situation that an n-dimensional
Hamiltonian H is realized by a (nonlocal) N -qubit system,
where n = 2N . In most cases, as was discussed in Sec. II and
will be discussed in this section, an N -body system in the
original Hilbert space can be expressed by an (N + 1)-body
interaction in the enlarged Hilbert space. This means that the
quantum simulation in the enlarged space is realized by adding
one extra qubit to the original system [31,35]. Then we have

H̃ = I e
2 ⊗ Cs + σ e

x ⊗ Bs =
2∑

j=1

H̃j , (28)

where H̃1 ≡ I e
2 ⊗ Cs and H̃2 ≡ σ e

x ⊗ Bs . We assume that
both Bs and Cs can be decomposed into tensor products of N

Pauli matrices. We then use the Trotter technique to decompose
the total evolution operator as

Ũ = e−igt
∑

j H̃j =
⎛⎝ 2∏

j=1

e−igt H̃j /k

⎞⎠k

, (29)

where g is the coupling constant of the simulated system. The
evolution corresponding to j = 1 can be implemented easily
by using single-qubit rotations. For j = 2, the evolution can
be implemented (see Fig. 3) as follows:

(i) Operate a Mølmer-Sørensen entangling gate, UMS(θ,φ),
to all (N + 1) qubits.

(ii) Apply a local single-qubit gate, exp (−i
ϕ

2 σ e
γ ⊗ I s

2N ), to
the extra qubit. Here, the phase ϕ is designed by controlling
2gt and γ is chosen from x,y, or z, depending on the parity
(odd or even) of N [48].

(iii) The total system is reversed by the inverse entangling
gate U†

MS.
This sequence (i)–(iii) can be summarized as

UMSe
−igtσ e

γ ⊗I s

2N U†
MS, (30)
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and can implement the desired enlarged evolution Ũ in
Eq. (29).

As an example, let us apply this method to the case
of the example in Sec. III C, where we consider the case
H̃ = μB

2 σ e
x ⊗ σ z [i.e., j = 2 in Eq. (28)]. The evolution Ũ =

exp(− iωt
2 σ e

x ⊗ σ s
z) can be calculated (see Appendix B) as

Ũ = UMS

(
π

2
,0

)
e− iωt

2 I e
2⊗σ s

y UMS

(
− π

2
,0

)
, (31)

where the Mølmer-Sørensen gates UMS(π/2,0) and
U†

MS(π/2,0) act on both the extra spin and the system
single-particle spin. Here, there is a slight difference from
Eq. (30): we apply the single-spin rotation onto the system
spin, where it is simpler for this particular example. The
process can be seen from Fig. 3. We also emphasize that such
gates can be simulated by a physical system, such as ion traps
[27,51–53], quantum photonics, superconducting circuits, and
others (see [54]).

V. DISCUSSION AND CONCLUSION

It is also worthwhile to note that recently, Vaidman et al.
have claimed that weak values are eigenvalues, rather than
expectation values [55]. In their work, the authors mainly
consider the Bures angle of the two measuring-device states as
the distance between them [55],

DA(�e,�w) ≡ arccos |〈�e|�w〉|, (32)

where �e is the final measuring-device state corresponding to
the “eigenvalues” case, and the final measuring-device state�w

corresponds to the “weak values” case. The authors show that
DA(�e,�w) can be neglected, which typically means weak
values are very close to eigenvalues, rather than expectation
values. Their conclusion seems to conflict with our results
here. However, if we note that their work was done in the
same Hilbert space, then we can claim that there is no conflict
at all because, in our work, we show that weak values in
the normal Hilbert space become expectation values in the
enlarged Hilbert space. Moreover, of course, if we reduce
from the enlarged Hilbert space to normal Hilbert space, then
the expectation values will come back to the standard weak
values, which are described by both pre- and postselection
states.

In conclusion, we showed that the time dependence of a
quantum weak value and that of a modular value, which are
expressed by the two-state vector formalism, can be interpreted
as the expectation values of a linear combination of operators in
the enlarged Hilbert space. Therefore, if such enlarged Hilbert
space is realized by a new experimental setup, the weak and
modular values in the original problem are obtained merely
by direct measurements of the (enlarged) observables and
calculating its expectation value. This formalism enables us
to trace the causal evolution of the enlarged observable instead
of considering the weak or modular values by the original
initial-final-state problem. Some examples are also given in
this paper.
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APPENDIX A: WEAK VALUES IN THE ENLARGED
HILBERT SPACE

In this Appendix, we will show how to calculate the weak
value of σ x in the enlarged Hilbert space. For example, we
assume that the pre- and postselection states are both |↑x〉,
but other cases can be treated similarly. We first calculate the
postselection state at time ti = 0 (we also choose tf = T ),

|ψf (0)〉 = U(0,T )|ψf (T )〉

= e
iωT

2 σ z
1√
2

(
1
1

)

= 1√
2

(
e

iωT
2

e− iωT
2

)
. (A1)

The enlarged state at time ti = 0 is given by

|�(0)〉 = 1

2
√

2

⎛⎜⎜⎜⎜⎜⎝
1 + e

iωT
2

1 + e− iωT
2

1 − e
iωT

2

1 − e− iωT
2

⎞⎟⎟⎟⎟⎟⎠. (A2)

Under the evolution given by Eq. (20), the enlarged state
evolves according to

|�(t)〉 = Ũ(t,0)|�(0)〉

= 1

2
√

2

⎛⎜⎜⎜⎜⎜⎝
e− iωt

2
(
1 + e

iωT
2

)
e

iωt
2
(
1 + e− iωT

2
)

e− iωt
2
(
1 − e

iωT
2

)
e

iωt
2
(
1 − e− iωT

2
)

⎞⎟⎟⎟⎟⎟⎠. (A3)

Then the weak value of σ x , which is given by Eq. (12), yields

↑x
〈σ x〉w

↑x
= 〈�(t)|(σ z + iσ y) ⊗ σ x |�(t)〉

〈�(t)|(σ z + iσ y) ⊗ I2|�(t)〉

= cos(ωt) + sin(ωt) tan

(
ωT

2

)
, (A4)

which is the same result as Eq. (19a) in the main text.

APPENDIX B: AN IMPLEMENTATION OF THE EXAMPLE
OF SINGLE SPIN

In this part, we will show how to implement the evolution

Ũ(t) = e− iωt
2 σ e

x⊗σ s
z , (B1)

by using two Mølmer-Sørensen gates and a local rotation gate.
We start from two Mølmer-Sørensen gates applied onto both
the extra spin and the system spin and one local rotation gate

012112-6
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applied on the system spin only (see Fig. 3),

UMS(θ,φ)e− iωt
2 σ s

y U†
MS(θ,φ) = e− iωt

2 UMS(θ,φ)σ s
y U†

MS(θ,φ). (B2)

Here, we have used the useful formula UeH U† = eU HU†
[56],

UMS(θ,φ) = e− iθ
4 (cos φSx+sin φSy )2

, Sx,y = ∑K
k=1 σ k

x,y , and K is
the number of qubits that the Mølmer-Sørensen gate is acting
on. In our case, K = 2 and φ = 0, which lead to

UMS(θ,0) = e− iθ
4 (σ e

x+σ s
z)2

. (B3)

Then the term UMS(θ,φ)σ s
yU†

SM(θ,φ) in Eq. (B2) is calculated
to be

UMS(θ,φ)σ s
yU †

MS(θ,φ) = e− iθ
4 (σ e

x+σ s
z)2

σ s
ye

iθ
4 (σ e

x+σ s
z)2

= cos θσ s
y + sin θσ e

xσ
s
z, (B4)

where we have used the Baker-Campbell-Hausdorff relation
eA Be−A = B + [A,B] + 1

2! [A,[A,B]] + · · · . Then with the
choice of θ = π/2, Eq. (B2) reduces to Eq. (B1), which is the
result in Eq. (31).
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