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Ultimate precision of joint quadrature parameter estimation with a Gaussian probe
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The Holevo Cramér-Rao bound is a lower bound on the sum of the mean-square error of estimates for parameters
of a state. We provide a method for calculating the Holevo Cramér-Rao bound for estimation of quadrature mean
parameters of a Gaussian state by formulating the problem as a semidefinite program. In this case, the bound
is tight; it is attained by purely Gaussian measurements. We consider the example of a symmetric two-mode
squeezed thermal state undergoing an unknown displacement on one mode. We calculate the Holevo Cramér-Rao
bound for joint estimation of the conjugate parameters for this displacement. The optimal measurement is different
depending on whether the state is entangled or separable.
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I. INTRODUCTION

Quantum mechanics sets a limit on how accurately one can
measure two noncommuting observables. This is exemplified
by the Heisenberg uncertainty relation for position and momen-
tum, which can be generalized to arbitrary observables [1]. This
relation sets a precision limit to state estimation problem of the
noncommuting observables. For example, if we were to simul-
taneously measure two quadrature operators Q and P with the
canonical commutation relation [Q,P] = i [2,3] of a quantum
state ρ, then the precision is limited by �Q�P � 1

2 . However,
if we are interested in estimating channel parameters instead,
this restriction does not apply. In this case, entanglement can be
used to enhance the precision of channel parameter estimates
[4–10], for example, estimating the squeezing applied to a
probe [11]. Light-matter interferometry can be used to improve
the estimate of a Gaussian process applied to a matter system
[12]. The precision can also be improved with a cleverly chosen
single-mode state, for the estimation of a small displacement,
for example [13].

We will consider in detail the example of estimation of the
parameters θ1 and θ2 of the displacement operation

D(θ1,θ2) = exp(iθ2Q − iθ1P), (1)

acting on a probe state. It was shown in Refs. [5,14] that by
using a two-mode entangled probe, one can estimate the dis-
placement to arbitrary high accuracy. The probe is a symmetric
two-mode squeezed thermal state. If the state is pure, it is
known as a two-mode squeezed vacuum state or an Einstein-
Podolski-Rosen (EPR) state [2]. By symmetric we mean that
the state has equal squeezing and noise in all quadratures.

A measurement was proposed that can give an arbitrarily
precise estimate of both θ1 and θ2 simultaneously. This mea-
surement, which resembles continuous variable superdense
coding [15], involves passing one mode on an entangled
probe to sense the displacement operation and then jointly
measuring it with an entangled ancilla. We call this measure-
ment the double-homodyne joint measurement [see Fig. 1(b)].
This extremely precise estimation scheme was experimentally
demonstrated in an optical system [16].

Genoni et al. [14] showed that for a symmetric two-mode
squeezed state probe, in the limit of large entanglement, the
double-homodyne joint measurement approaches the ultimate
precision bounds calculated using the symmetric logarithmic
derivative (SLD) quantum Fisher information. However, for
a general finite squeezing level, there is a gap between the
precision of the estimation from dual homodyne measurement
and the limit set by the right logarithmic derivative (RLD) and
SLD quantum Fisher information. This is not surprising since
in general we know that the RLD and SLD bounds are not tight
[17]. This raises two questions: (i) Can we derive tight bounds
for the precision? and (ii) Is there a better measurement that will
give a higher precision than the dual homodyne measurement?

We address these questions for a general two-mode Gaus-
sian probe. In this work, we calculate the Holevo Cramér-Rao
(CR) bound [18,19], which is an asymptotically achievable
bound under some conditions [20–23]. However, unlike the
RLD and SLD bounds, computing the Holevo bound is in
general a hard problem because it involves an optimization
of a nonlinear function over a space of Hermitian matrices. To
date, it has been solved in only a few simple cases. Providing
the states satisfy certain conditions, an explicit formula can be
found for Gaussian states [18,24] or pure states [25,26]. Suzuki
found a formula in terms of the RLD and SLD CR bounds, for
a qubit state parameterized by two parameters [27].

Previously, we performed this optimization for the special
case when the probe was a pure two-mode entangled state and
one mode experiences an unknown displacement [28]. When
the probe is mixed or if the channel is dissipative, then the
space of the optimization problem is over infinite dimensional
Hermitian matrices. However, for Gaussian states, the probe
and measurement can be completely characterized by its first
and second moment [18,19]. This reduces the optimization
space to four-dimensional positive semidefinite matrices which
can be solved efficiently using semidefinite programming
(SDP) [29]. Furthermore, the SDP and its dual program provide
a necessary and sufficient condition for optimality of the
solution, which can be verified analytically. Holevo solved the
problem for mean estimation of Gaussian states 40 years ago
[18,19]. Our contribution is to recognize this as an SDP that
can be solved efficiently.
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FIG. 1. The probe state ρ0, a two-mode squeezed state, undergoes
an unknown displacement D(θ1,θ2). This figure shows the optimal
measurement for estimating the displacement. (a) The optimal mea-
surement to perform when r < r0 is a double-unbalanced-heterodyne
joint measurement. The two modes a mixed with a 50:50 beam splitter.
Each output of the beam splitter then passes through another beam
splitter with transmission t given by (52). Homodyne measurements
of the P and Q quadratures are performed on the outputs of the beam
splitters. (b) The optimal measurement to perform when r � r0 is a
double-homodyne joint measurement. The two modes are mixed with
a 50:50 beam splitter. A homodyne measurement of the P quadrature
is performed on one output of the beam splitter, and a homodyne
measurement of the Q quadrature is performed on the other.

For the specific case of a symmetric two-mode squeezed
state, we find that the double-homodyne joint measurement
is an optimal measurement when the squeezing level is
high enough such that the probe is entangled. When the
probe is separable, we find that the double-homodyne
joint measurement is suboptimal. We propose a different
measurement scheme which is optimal.

In this paper, we provide a recipe for calculating the ultimate
precision of an unbiased estimate of displacement using a two-
mode Gaussian probe. We start with an introduction to multipa-
rameter local quantum estimation in Sec. II. In Sec. III we for-
mulate the problem of displacement estimation for two-mode
Gaussian states in terms of an SDP. Section IV gives an appli-
cation of this formalism to the symmetric two-mode squeezed
state. Finally, we end with some concluding remarks in Sec. V.

II. MULTIPARAMETER LOCAL ESTIMATION

In classical parameter estimation theory, one starts with a
random variable X that depends on some unknown parameter
vector θ = (θ1,θ2, . . . ,θN ) through a conditional probability
density function f (x; θ ). The random variable X arises from
the measurement of some state ρ(θ ). From X, one can form a
vector function θ̂ = θ̂(X) that gives an unbiased estimate of θ .
The goal is to find a precise estimate of theta. The bound on
how precise these unbiased estimator can be is determined by
the CR bound [30,31],

Vθ [θ̂] � 1

I
, (2)

which relates the mean-square error (MSE) matrix

Vθ [θ̂]jk := E[(θ̂j − θj )(θ̂k − θk)] (3)

to the classical Fisher information matrix

Ijk := −E

[
∂2

∂θj ∂θk

ln f

]
. (4)

Under certain conditions, this bound can be asymptotically
achieved by the maximum likelihood estimator. We are inter-
ested in the sum of the MSE, obtained by taking the trace of
the MSE matrix � := Tr{Vθ [θ̂]}.

Quantum parameter estimation theory [32–35] aims to
determine the ultimate precision with which certain parameters
θ can be determined from a quantum state ρθ that depends on
those parameters. This was developed by Helstrom [33,36,37],
Holevo [18,19], and others [38,39] in the 1970s. There exists
a whole family of quantum Fisher information matrices, each
of which gives rise to its own CR bounds to the mean-square
error matrix [40]. However, none of these bounds are generally
tight. Two commonly used CR bounds are based on the SLD
[33,36] and RLD [38,39] Fisher information matrix.

The SLD operators L
(S)
j and RLD operators L

(R)
j are ob-

tained as solutions to the implicit operator equations

∂ρ

∂θj

= 1

2

(
ρL

(S)
j + L

(S)
j ρ

)
(SLD), (5)

∂ρ

∂θj

= ρL
(R)
j (RLD). (6)

The SLD operators are Hermitian, but the RLD operators might
not be Hermitian. From the log-derivative operators, the SLD
and RLD Fisher information matrices are defined by

G
(S)
jk := tr

[
ρ 1

2

(
L

(S)
j L

(S)
k + L

(S)
k L

(S)
j

)]
(SLD), (7)

G
(R)
jk := tr

(
ρL

(R)
j L

(R)†
k

)
(RLD), (8)

from which we get the two CR bounds

� � Tr{(G(S))−1} =: C(S), (9)

� � Tr{Re(G(R))−1} + Tr Abs{Im(G(R))−1} =: C(R), (10)

where Tr Abs{X} is the sum of the absolute values of the
eigenvalues of a matrix X. The SLD CR bound, C(S) gives
the optimal precision in estimating each parameter sepa-
rately. However, for multiparameter estimation, if optimal
measurements for measuring each parameter separately do not
commute (which is usually the case), then the SLD bound is
not attainable. The RLD bound, C(R) is also in general not
attainable. However, when L(R) is Hermitian, C(R) provides an
achievable bound for the joint estimates [41–43]. In general,
there is no hierarchy between C(S) and C(R).

Holevo unified these two bounds through the Holevo CR
bound [18,19]. This bound is achieved in the asymptotic
limit of a joint measurement over infinite copies of the state
[20]. The Holevo CR bound is always greater or equal to
C(S) and C(R). The bound involves a minimization over X =
(X1,X2, . . . ,XN ) whereXj are Hermitian operators that satisfy
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the unbiased conditions

tr(ρXj ) = 0, (11)

tr

(
∂ρθ

∂θj

Xk

)
= δjk. (12)

The Holevo CR bound is

V � min
X

Tr{Zθ [X]} + TrAbs{ImZθ [X]} := C(H), (13)

where

Zθ [X]jk := tr(ρXjXk). (14)

Holevo derived this bound in his original work [18,19], but the
bound in this form was introduced by Nagaoka [44]. A major
obstacle preventing the more widespread use of the Holevo
CR bound is that unlike the RLD and SLD bounds, which can
be calculated directly, the Holevo bound involves a nontrivial
optimization problem.

III. HOLEVO BOUND FOR MEAN VALUE ESTIMATION
WITH GAUSSIAN PROBES

When the probe is Gaussian, Holevo’s bound can be
simplified. It can be formulated in terms of the first and second
moments of the probe state only. In this section, we summarize
Holevo’s result on mean value estimation of Gaussian probes.
For the proofs and technicalities of these results, we recom-
mend the interested reader to consult Holevo’s original work
[18,19].

A. Holevo’s bound

We want to estimate two parameters θ1 and θ2 that are
imprinted on the displacement of a two-mode Gaussian state.
Extension to more parameters or mode are straightforward (see
Appendix C). To arrive at Holevo’s result we need to introduce
some notations.

For any z = [y1 x1 y2 x2]ᵀ in a four-dimensional real
vector space Z, let

R(z) = x1P1 + y1Q1 + x2P2 + y2Q2, (15)

where Pj and Qj are the usual quadrature operators for
the j th mode in quantum optics. R(z) are called canonical
observables, and the canonical commutation relation becomes

[R(z),R(z′)] = i�(z,z′), (16)

where

�(z,z′) = x ′
1y1 − x1y

′
1 + x ′

2y2 − x2y
′
2 (17)

is a skew-symmetric bilinear form. By the Baker-Campbell-
Hausdorff formula, we have an equivalent representation of
the canonical commutation relation as

V(z)V(z′) = exp

[
i

2
�(z,z′)

]
V(z + z′), (18)

where V(z) = ei R(z) is the Weyl operator. The characteris-
tic function of a state S is then defined through V(z) as
χz[S] = tr{SV(z)}. This is the inverse-Weyl or Wigner trans-
form that maps an operator in the Hilbert space to some

square-integrable function in Z. We say S is Gaussian if
the state is completely characterized by its first and second
moments [2]:

χz[S] = exp
[
i m(z) − 1

2α(z,z)
]
, (19)

where

m(z) = tr[SR(z)], (20)

α(z,z′) = 1
2 tr[S{R(z) − m(z),R(z′) − m(z′)}], (21)

and {A,B} = AB + BA. The mean value function m is a
function of the unknown parameters through

m(z) = θ1m1(z) + θ2m2(z). (22)

The correlation function α is an inner product on Z, which
defines a Euclidean space (Z,α). Now let D be the associated
operator of the form � in (Z,α),

�(z,z′) = α(z,Dz′) ∀ z,z′ ∈ Z. (23)

Define mj ∈ Z by mj (z) = α(mj,z).
Holevo’s CR bound is

� � inf
F

TrF−1 =: �∗, (24)

where F is a 2×2 matrix with components

Fjk = α(mj,Fmk), (25)

and the infimum is taken over all real symmetric operators F
in Z, such that the complex extension of F satisfies

0 �
(
1 + 1

2 iD
)
F

(
1 + 1

2 iD
)

�
(
1 + 1

2 iD
)

(26)

in the complexification of the Euclidean space (Z,α). A � B
denotes α(z,Az) � α(z,Bz) for all z ∈ Z. Since 1 + 1

2 iD is
positive definite, constraint (26) is equivalent to

0 � F �
(
1 + 1

2 iD
)−1

. (27)

B. Optimal measurement

For estimating the mean of Gaussian probes, Holevo showed
that the bound can be attained by a Gaussian measurement. Let
F∗ be the operator in Z that furnishes the minimum in (24) and
F∗ be the corresponding matrix in (25). The optimal estimator
are given by the observables R(z∗

j ) where[
z∗

1
z∗

2

]
= F−1

∗

[
F∗m1

F∗m2

]
. (28)

R(z∗
1) and R(z∗

2) can be measured simultaneously to attain
precision �∗.

C. Matrix representation

The optimization problem for computing Holevo’s bound
can be expressed as a semidefinite program. This can be clearly
seen if we introduce four vectors {e1,e2,e3,e4} that forms an
orthonormal basis in the Euclidean space (Z,α) such that
α(ej ,ek) = δjk and introduce

Djk := α(ej ,Dek) (29)
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and

Mjk := α(mj,ek), (30)

Fjk := α(ej ,F ek), (31)

so that

Fjk = α(mj,Fmk) (32)

=
∑
mn

α(mj,em) α(em,F en) α(en,mk) (33)

= (MFMᵀ)jk. (34)

LetSn be the set of all n × n real symmetric matrices. Holevo’s
bound is obtained as a solution to the following program:

Program 1. Holevo’s bound:

�∗ = min
F∈S4

TrF−1 (35)

subject to 0 � F � C, (36)

where F = MFMᵀ andC := (1 + 1
2 iD)−1. This is recognized

as an SDP (see Appendix A) that can be solved efficiently using
standard numerical techniques.

IV. WORKED EXAMPLE: SYMMETRIC TWO-MODE
SQUEEZED STATE

We illustrate the computation of Holevo’s bound through a
specific example. We start with a mixed two-mode squeezed
state ρ0 = S2(r)[ρth(v) ⊗ ρth(v)]S†

2(r) as our probe where

ρth(v) = 2

(1 + 2v)

∑
n

(
2v − 1

2v + 1

)n

|n〉〈n| (37)

is a thermal state with mean photon number v − 1
2 and

quadrature variance α(z,z) = v. The vacuum state corresponds
to v = 1

2 . The ket |n〉 is the Fock state with n photons, and

S2(r) := exp(ra1a2 − ra
†
1a

†
2) (38)

is the two-mode squeezing operator where aj and a
†
j are the j th

mode annihilation and creation operators with commutation
relation [a,a†] = 1. Having prepared the probe ρ0, we send
one mode through a displacement

D(θ1,θ2) := exp (iθ2Q1 − iθ1P1) (39)

to get ρθ , where θ1 and θ2 are the two unknown parameters that
we wish to determine. In what follows, we shall compute the
Holevo bound and present a measurement that achieves this
bound. We then compare this bound with the RLD and SLD
bounds.

A. Problem formulation

Having the state ρθ , we can already write its characteristic
function and find Holevo’s bound directly. But, instead, we
choose to perform a unitary transformation to decouple the
two modes of the probe. The transformation we perform is

U = exp

[
π

4
(a†

1a2 − a1a
†
2)

]
, (40)

which corresponds to interfering the two modes on a 50:50
beam splitter. This extra step is not necessary but is done for
convenience so that the intermediate expressions in computing
the bound become less cumbersome. This of course will not
change the final result since the unitary operation can be
considered part of the measurement. The correlation function is

α(z,z′) = v

⎡
⎢⎣

y1

x1

y2

x2

⎤
⎥⎦

ᵀ⎡
⎢⎢⎣

e−2r 0 0 0
0 e2r 0 0
0 0 e2r 0
0 0 0 e−2r

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y ′
1

x ′
1

y ′
2

x ′
2

⎤
⎥⎥⎦ (41)

and mean

m(z) = 1√
2

⎡
⎢⎣

θ1

θ2

−θ1

−θ2

⎤
⎥⎦

ᵀ⎡
⎢⎣

y1

x1

y2

x2

⎤
⎥⎦. (42)

From this, the two vectors m1 and m2 in Z are

m1 = 1

v
√

2
[e2r0 −e−2r 0]

ᵀ
, (43)

m2 = 1

v
√

2
[0 e−2r 0 −e2r ]

ᵀ
. (44)

We now pick four orthonormal bases in (α,Z). Holevo’s bound
does not depend on our choice of basis, any basis would do,
and one such basis is

[e1 e2 e3 e4] = 1√
v

⎡
⎢⎣

er 0 0 0
0 e−r 0 0
0 0 e−r 0
0 0 0 er

⎤
⎥⎦. (45)

In this basis,

M = 1√
2v

[
er 0 −e−r 0
0 e−r 0 −er

]
(46)

and

D = 1

v

⎡
⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎦. (47)

We show in Appendix B that the solution to the SDP
program (35) is

�∗ =
{

4v2−1
2v cosh 2r−1 if r < r0

4ve−2r if r � r0

, (48)

where r0 = 1
2 ln(2v) and an optimal F∗ attaining this is

F∗ = 2v

4v2 − 1

⎡
⎢⎢⎣

2v−e−2r 0 0 0
0 2v−e2r 0 0
0 0 2v−e2r 0
0 0 0 2v−e−2r

⎤
⎥⎥⎦

for r < r0 and

F∗ =

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ (49)

for r � r0.
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B. Optimal measurements that attains the bound

To find the optimal measurement achieving �∗, we substi-
tute the solution for F∗ into (28) to obtain z∗

j . For r < r0

z∗
1 =

√
2[t 0 t − 1 0]ᵀ, (50)

z∗
2 =

√
2[0 1 − t 0 −t]ᵀ, (51)

where

t = 2ve2r − 1

4v cosh 2r − 2
. (52)

The observable corresponding to this is

R(z∗
1) =

√
2tQ1 −

√
2(1 − t)Q2,

R(z∗
2) =

√
2(1 − t)P1 −

√
2tP2, (53)

whose physical realization is shown in Fig. 1(a).
For r � r0, we have

z∗
1 =

√
2[1 0 0 0]ᵀ, (54)

z∗
2 =

√
2[0 0 0 −1]ᵀ, (55)

which is a special case of Eq. (53) with t = 1. The observables
corresponding to these vectors are then

R(z∗
1) =

√
2Q1, (56)

R(z∗
2) = −

√
2P2, (57)

which is realized by the setup in Fig. 1(b). The two vectors
z∗

1 and z∗
2 provide an unbiased estimator as can be checked by

noticing that m(z∗
j ) = tr[ρR(z∗

j )] = θj .

C. Discussions

Figure 2 shows the SLD and RLD CR bounds from
Refs. [14,45], our Holevo CR bound Eq. (48), and the sum of
MSE for a double-homodyne joint measurement. The Holevo
CR bound is greater than or equal to the RLD and SLD
CR bounds. When r � r0, the sum of MSE for the double-
homodyne joint measurement is equal to the Holevo CR bound.
When r � r0, the Holevo CR bound is equal to the RLD CR
bound. The double-unbalanced-heterodyne joint measurement
outperforms the double-homodyne joint measurement in this
case, giving a sum of MSE equal to the RLD and Holevo
CR bounds. When r > r0, the double-unbalanced-heterodyne
joint measurement is impossible, requiring a beam splitter
transmission greater than 1 [from Eq. (52)].

Interestingly, we note that r0 is the threshold beyond which
the probe becomes entangled as can be checked using Duan’s
inseparability criterion [46]. At r = r0, the sum of MSE is
exactly 2, which turns out to be the same as one get by doing
a heterodyne measurement on a single-mode coherent state
probe. This is the best one can do when restricted to single-
mode Gaussian probes. Regardless of whether the probe is
entangled or not, the optimal measurement scheme requires
mixing the two modes on a 50:50 beam splitter, after which
we end up with two uncorrelated states. If the probe state was

su
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Holevo CR Bound
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two mode squeezing parameter, r

FIG. 2. Plot of symmetric logarithmic derivative (SLD), right
logarithmic derivative (RLD), and Holevo Cramér-Rao (CR) bounds,
and double-homodyne joint measurement sum of mean-square error
(MSE) for v = 0.75. The vertical line corresponds to r0. For r � r0, the
Holevo CR bound is equal to the sum of MSE of the double-homodyne
joint measurement. For r � r0, the Holevo CR bound is equal to
the RLD bound and the sum of MSE for the double-unbalanced-
heterodyne joint measurement. The horizontal line corresponds to
the best sum of MSE when using a single-mode Gaussian probe.

originally entangled, the states after the 50:50 beam splitter
will have a quadrature variance below the vacuum noise, while
if the original state is separable, all quadrature variances will
always be greater than the vacuum noise.

The double-unbalanced-heterodyne measurement can be
seen as obtaining two independent estimates for each displace-
ment parameter and then making an optimal estimate from
these. As t varies, the precision of one estimate decreases
at the expense of a better precision for the second estimate.
Suppose the system is entirely classical, and we have a
classical state with covariances of P and Q the same as the
quantum state. Because the system is classical,P andQ can be
measured simultaneously without an additional noise penalty
imposed by quantum mechanics. In this case, the double-
unbalanced-heterodyne would outperform the dual-homodyne
measurement as we get two independent estimates for θ1 and
two independent estimates for θ2. However, for the quantum
system, the double-unbalanced-heterodyne measurement in-
curs a noise penalty due to the vacuum noise coupling through
the unused ports of the beam splitters. There is a trade-off
between a decreased precision due to the vacuum noise, and
an increased precision obtained from the availability of an
independent second estimate. When the measurement noise
is greater than the vacuum noise, the increase in precision we
get from the second estimate outweighs the loss of precision
due to the vacuum noise contaminating the first estimate. This
is no longer true when the measurement noise is smaller than
the vacuum noise.

Even when the probe is separable, the optimal measurement
still requires a joint measurement of the two modes. Hence,
perhaps counterintuitively, the optimal measurement is not
separable despite the probe being separable. Nevertheless, this
is consistent with previous work [47], where a joint mea-
surement was found to provide a higher mutual information
than a separable measurement. The performance advantage
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is attributed to the state having a nonzero quantum discord,
despite having no entanglement.

V. CONCLUSION

In conclusion, we provided a method to calculate the Holevo
CR bound for the estimation of the mean quadrature parameters
of a two-mode Gaussian state, by converting a problem to an
SDP. An SDP can be efficiently solved numerically. Addition-
ally, conditions proving optimality of an SDP solution exist,
allowing for an analytical solution to be verified. Our method
can be easily extended to Gaussian states with any number of
modes.

Using this method we were able to find an analytical
solution for the Holevo CR bound of the displacement on
one mode of a symmetric two-mode squeezed thermal state.
A double-homodyne joint measurement is optimal if the
state is entangled, and a double-unbalanced-heterodyne joint
measurement is optimal if the state is separable.

ACKNOWLEDGMENTS

This research is supported by the Australian Research Coun-
cil (ARC) under the Centre of Excellence for Quantum Com-
putation and Communication Technology (CE110001027). We
would like to thank Nelly Ng for discussions and Jing Yan Haw
for comments on the paper.

APPENDIX A: CONVERSION OF PROBLEM
TO SEMIDEFINITE PROGRAM (SDP)

We show that the problem of computing Holevo’s bound
for mean value estimation of Gaussian states is a semidefinite
program. We formulate the original problem of finding �∗ into
a dual form SDP. Holevo’s bound is the following:

Program 2. Holevo’s bound:

�∗ = min
F∈S4

TrF−1 (A1)

subject to 0 � F � C, (A2)

where Sn is the set of n × n real symmetric matrices, F =
MFM†, and M is a fixed real two-by-four matrix. Also
C := (1 + 1

2 iD)−1 is a fixed Hermitian four-by-four matrix.

To cast this nonlinear optimization problem to an SDP, we use
the standard trick of introducing an auxiliary two-by-two real
matrix H that serves as an upper bound to F−1. So Holevo’s
bound becomes

Program 3.

�∗ = min
F∈S4,H∈S2

TrH (A3)

subject to 0 � F � C (A4)

H � F−1. (A5)

Consider

W (F,H ) =
[
H I2

I2 F

]
� 0 (A6)

⇔ W/F = H − F−1 � 0 (A7)

⇔ H � F−1, (A8)

where W/F is the Schur’s complement of F in W , and In is
the n × n identity matrix. We can formulate the SDP for �∗ as

�∗ = min
F∈S4,H∈S2

Tr{H } (A9)

subject to[
H I2

I2 MFM†

]
⊕ F ⊕ −F � 04 ⊕ 04 ⊕ −C (A10)

⇔
[
H 02

02 MFM†

]
⊕ F ⊕ −F︸ ︷︷ ︸∑

j yj Bj

�
[

02 −I2

−I2 02

]
⊕ 04 ⊕ −C︸ ︷︷ ︸

C

,

(A11)

where 0n is the n × n zero matrix. We can decompose the LHS
into a sum

∑
j yjBj where y = [y1 . . . y13]ᵀ is a vector

of real numbers and Bj are the 13 matrices given by

Bj =
[
Bj 02

02 MAjM†

]
⊕ Aj ⊕ −Aj for j = 1, . . . ,13.

(A12)

{Aj } are 10 real symmetric matrices that form a basis for the
set of 4×4 real symmetric matrices. Similarly, {Bj } are three
real symmetric matrices that form a basis for the set of 2×2
real symmetric matrices. They are given by the following:

A1 =

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ A2 =

⎡
⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ A3 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦ A4 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ A5 =

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

A6 =

⎡
⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎦ A7 =

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎦ A8 =

⎡
⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎦ A9 =

⎡
⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤
⎥⎦ A10 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

and Aj = 0 for j = 11,12,13;

B11 =
[

1 0
0 0

]
B12 =

[
0 0
0 1

]
B13 =

[
0 1
1 0

]
Bj = 0 for j = 1, . . . ,10. (A13)
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The objective function can be written as tr{H } = yᵀ b where
b = [0 0 0 0 0 0 0 0 0 0 1 1 0]ᵀ. Finally, we
have the problem statement as the following:

Program 4. Standard SDP dual problem formulation of
Holevo’s bound:

�∗ = min
y

yᵀ b (A14)

subject to
∑

j

yjBj � C. (A15)

This is traditionally called the dual problem.
The primal problem statement is:
Program 5. Standard SDP primal problem formulation of

Holevo’s bound:

�∗ = max
X

TrCX (A16)

subject to TrBjX = bj for j = 1, . . . ,13, (A17)

where X is a positive Hermitian matrix. This problem is
bounded above and strictly feasible, which means that it
satisfies strong duality: �∗ = �∗.

APPENDIX B: SOLUTION TO THE WORKED EXAMPLE

In this appendix we provide the solution to the worked
example. We present X∗ and y∗ that we claim is optimal. We
first verify that X∗ and y∗ satisfy the primal and dual constraint.
Next we show that the primal and dual value they provide are
the same, indicating that the solution is optimal.

We consider the solutions for r � r0 and r < r0 separately.

1. Solution for r < r0

For r < r0, we claim that a solution is achieved by y∗ and X∗ having the form

y∗ =
[
c1 c2 c2 c1 0 −c0 0 0 −c0 0 4v2−1

4v cosh 2r−2
4v2−1

4v cosh 2r−2 0
]ᵀ

, (B1)

X∗ = X∗
1 ⊕ 04 ⊕ X∗

3, (B2)

where we are free to choose c0 : 0 � c0 � 2v
1−4v2 + v

2v cosh 2r−1 and

c1 = 2v(2v − e−2r )

4v2 − 1
− e−2rc0, (B3)

c2 = 2v(2v − e2r )

4v2 − 1
− e2rc0, (B4)

X∗
1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 − 4v2−1
4v cosh 2r−2 0

0 1 0 − 4v2−1
4v cosh 2r−2

− 4v2−1
4v cosh 2r−2 0 (4v2−1)2

(4v cosh 2r−2)2 0

0 − 4v2−1
4v cosh 2r−2 0 (4v2−1)2

(4v cosh 2r−2)2

⎤
⎥⎥⎥⎥⎥⎦, (B5)

X∗
3 = (4v2 − 1)2

2v(4v cosh 2r − 2)2

⎡
⎢⎢⎢⎣

e2r i −1 −i e2r

−i e−2r i e−2r −1

−1 −i e−2r e−2r i

i e2r −1 −i e2r

⎤
⎥⎥⎥⎦. (B6)

Simple algebra confirms that X∗ satisfies TrBjX
∗ = bj , and the nonzero eigenvalues of X∗ are(

(4v2 − 1)2 cosh 2r

2v(2v cosh 2r − 1)2
,1 + (4v2 − 1)2

4(2v cosh 2r − 1)2
(deg 2)

)
, (B7)

where (deg 2) indicates that the eigenvalue has degeneracy 2. The eigenvalues are nonnegative, so X∗ is a valid solution to the
primal problem.

Now let us verify that y∗ satisfies the dual problem constraint (A15):

∑
j

y∗
j Bj =

⎡
⎢⎢⎢⎢⎣

4v2−1
4v cosh 2r−2 0 0 0

0 4v2−1
4v cosh 2r−2 0 0

0 0 4v cosh 2r−2
4v2−1 0

0 0 0 4v cosh 2r−2
4v2−1

⎤
⎥⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎣

c1 0 −c0 0

0 c2 0 −c0

−c0 0 c2 0

0 −c0 0 c1

⎤
⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎣
−c1 0 c0 0

0 −c2 0 c0

c0 0 −c2 0

0 c0 0 −c1

⎤
⎥⎥⎥⎦, (B8)
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where

C =

⎡
⎢⎢⎢⎣

0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

⎤
⎥⎥⎥⎦ ⊕ 04 ⊕ 2v

4v2 − 1

⎡
⎢⎢⎢⎣

−2v i 0 0

−i −2v 0 0

0 0 −2v i

0 0 −i −2v

⎤
⎥⎥⎥⎦. (B9)

The nonzero eigenvalues of
∑

j y∗
jBj − C are then

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4v2−1
4v cosh 2r−2 + 4v cosh 2r−2

4v2−1 (deg 2)

2
(
c0 + 2v

4v2−1

)
cosh 2r

cosh 2r
4v2−1

{
2v + (4v2 − 1)c0 +

√
[2v + (4v2 − 1)c0]2 − 8v(4v2−1)c0

cosh2 2r

}
cosh 2r
4v2−1

{
2v + (4v2 − 1)c0 −

√
[2v + (4v2 − 1)c0]2 − 8v(4v2−1)c0

cosh2 2r

}
1

4v2−1 {4v2 − [2v + (4v2 − 1)c0] cosh 2r +
√

[2v + (4v2 − 1)c0]2 cosh2 2r − 4v2 − 4v(4v2 − 1)c0} (deg 2)

1
4v2−1 {4v2 − [2v + (4v2 − 1)c0] cosh 2r −

√
[2v + (4v2 − 1)c0]2 cosh2 2r − 4v2 − 4v(4v2 − 1)c0} (deg 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B10)

The first five eigenvalues are positive when v � 1
2 and c0 � 0, while the last is positive when c0 � 2v

1−4v2 + v
2v cosh 2r−1 .

The value of the dual is yᵀb = 4v2−1
2v cosh 2r−1 . It can be verified using simple algebra that the primal value TrCX∗ is also equal to

4v2−1
2v cosh 2r−1 . Since the primal is equal to the dual, we know that the solution is optimal.

One might wonder why the optimal measurement does not depend on c0. Any c0 would give rise to an F∗ that is
optimal,

F∗ =

⎡
⎢⎢⎢⎣

c1 0 −c0 0

0 c2 0 −c0

−c0 0 c2 0

0 −c0 0 c1

⎤
⎥⎥⎥⎦, (B11)

and hence different F∗; however, the vectors F∗mj does not depend on c0. By direct computation

F∗m1 =
√

2

4v2 − 1

⎡
⎢⎢⎢⎣

2ve2r − 1

0

1 − 2ve−2r

0

⎤
⎥⎥⎥⎦, (B12)

F∗m2 =
√

2

4v2 − 1

⎡
⎢⎢⎢⎣

2ve−2r − 1

0

1 − 2ve2r

0

⎤
⎥⎥⎥⎦ (B13)

is independent of c0.

2. Solution for r � r0

When r � r0, we claim that the optimal values of X and y that attains h∗ and g∗ in the SDP program (4) and (5) are
given by

y∗ = [1 0 0 1 0 0 0 0 0 0 2ve−2r 2ve−2r 0]ᵀ, (B14)

X∗ = X∗
1 ⊕ X∗

2 ⊕ X∗
3, (B15)
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where

X∗
1 =

⎡
⎢⎢⎢⎣

1 0 −2ve−2r 0

0 1 0 −2ve−2r

−2ve−2r 0 4v2e−4r 0

0 −2ve−2r 0 4v2e−4r

⎤
⎥⎥⎥⎦, (B16)

X∗
2 = e−2r (1 − 4v2e−4r )

2v

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦, (B17)

X∗
3 = e−2r

⎡
⎢⎢⎢⎣

2v i −2ve−2r −4v2e−2r i

−i 1
2v

e−2r i −2ve−2r

−2ve−2r −e−2r i 1
2v

i

4v2e−2r i −2ve−2r −i 2v

⎤
⎥⎥⎥⎦. (B18)

To justify this claim, we need to show that X∗ and y∗ satisfies constraints (A15) and (A17) and that the value of the dual solution
is equal to the primal solution, �∗ = �∗.

To check the constraint for the dual (A15), we compute the eigenvalues of
∑

j y∗
j Bj − C where

∑
j

y∗
j Bj =

⎡
⎢⎢⎢⎢⎣

2ve−2r 0 0 0

0 2ve−2r 0 0

0 0 e2r

2v
0

0 0 0 e2r

2v

⎤
⎥⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ ⊕

⎡
⎢⎢⎢⎣

−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎤
⎥⎥⎥⎦, (B19)

and C is given in (B9). The nonzero eigenvalues of
∑

j y∗
j Bj − C are(

1,
1 + 4v2e−4r

2ve−2r
,
4v2 + 1

4v2 − 1

)
, (B20)

each occurring with degeneracy two. Since v > 1
2 , so all of the eigenvalues are nonnegative. Hence y∗ is a valid solution.

Simple algebra confirms that the primal constraint Tr{BjX
∗} = bj is also satisfied. The nonzero eigenvalues of X∗ are(

1 + 4v2e−4r (deg 2) ,
(1 − 4v2e−4r )e−2r

2v
(deg 2) ,

(1 + 4v2)(1 − 2ve−2r )e−2r

2v
,
(1 + 4v2)(1 + 2ve−2r )e−2r

2v

)
. (B21)

All of these eigenvalues are nonnegative provided e2r − 2v � 0, which is just the condition for r � r0. Therefore X∗ is positive
definite when r � r0, and the constraints for the primal problem are satisfied. Therefore we have shown that y∗ and X∗ specified
above are a valid solution.

Next, by direct computation, y
ᵀ
∗ b = 4ve−2r and also Tr{CX∗} = 4ve−2r . Since the primal is equal to the dual, the solution is

optimal.

APPENDIX C: GENERALIZATION TO n-MODE STATES

To generalize the results in Sec. III to an n-mode
Gaussian state, we extend the definition of z to z =
[y1 x1 y2 x2 ... yn xn]ᵀ in a 2n-dimensional real vector
space Z and the canonical observables

R(z) =
∑

j

xjPj + yjQj , (C1)

wherePj andQj are the quadrature operators for the j th mode.
The skew-symmetric bilinear form generalizes to

�(z,z′) =
∑

j

x ′
j yj − xjy

′
j (C2)

such that the commutation relation Eq. (16) still holds.
Equation (20) defining the mean value function and Eq. (21)
defining the correlation function of the Gaussian state remain
unchanged. To estimate l displacement parameters θj for
j = 1, . . . ,l, we introduce mj (z) for j = 1, . . . ,l such that

m(z) =
∑

j

θjmj (z). (C3)

The results of Sec. III A then follow with only minor modifi-
cation to the size of the matrix F , which is now l-by-l. The
definitions and results of Secs. III B, III C, and Appendix A are
still valid after appropriately extending the matrix and vector
dimensions.
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