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Pulse growth dynamics in laser mode locking
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We analyze theoretically and numerically the nonlinear process of pulse formation in mode-locked lasers,
starting from a perturbation of a continuous wave. Focusing on weak-to-moderate dispersion systems, we show
that pulse growth is initially slow, dominated by a cascade of energy from low to high axial modes, followed by
fast strongly nonlinear growth, and finally relaxation to the stable pulse wave form. The pulse grows initially by
condensing a fixed amount of energy into a decreasing time interval, with peak power growing toward a finite-time
singularity that is checked when the gain bandwidth is saturated by the pulse.
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Introduction. Passive mode locking is essential for the
creation of ultrashort pulses, and as such has long been the
subject of intense study [1,2]. The complex evolution of
the optical wave form in passive mode-locked lasers (PMLs) is
an extended nonlinear dynamical system. While the stationary
pulse states of PMLs are well understood [3,4], a systematic
theory of the rich variety of transient and unsteady states of
PMLs is still lacking.

Here, we focus on a transient process of particular
importance—the buildup of an ultrashort pulse from an initial
weak narrow-band quasicontinuous wave. The pulse growth
dynamics has been studied in several papers, starting in the
1990’s [5–13], where the main goal was to study the question
of self-starting; this question was later answered by a statistical
mechanics analysis of the laser, where mode locking is a
thermodynamic phase transition [14–18].

The early studies focused on the initial stages of the growth
process, and experimental data on the later evolution of the
wave form have been limited. More recently, there has been
a resurgence of interest in the subject with the advent of
experimental techniques allowing for real-time tracking of the
evolving optical wave form [19–22].

On the other hand, the theoretical understanding of the pulse
growth process is rudimentary: From a dynamical systems
perspective [23], the wave-form trajectory is a heteroclinic
orbit connecting an unstable fixed point, continuous wave
(cw), and a stable pulse fixed point. The fixed points, that
are stationary solutions of the governing equations, are well
studied, and so is the linearized dynamics very close to them.
However, the bulk of the evolution dynamics is nonlinear, and
exhibits considerable complexity [19–22].

We tackle this problem numerically and theoretically, in
an approach based on the Haus mode-locking model with
slow gain and fast saturable absorption; systems that fall into
this category include the common cases of fiber lasers mode
locked with nonlinear polarization rotation, and Kerr-lens
mode-locked Ti:sapphire lasers [1]. The first key conclusion
is that the nature of pulse growth depends critically on the
strength of the dispersive effects—group-velocity dispersion
and Kerr nonlinearity—relative to the gain and loss. When
the dispersive effects are weak or comparable to the gain and

loss terms, the peak power of the pulse grows monotonically,
and the pulse width decreases monotonically, as the wave
form evolves from cw to pulse, and the growth dynamics is
reproducible; when dispersive effects are strong, on the other
hand, the wave form evolves in an oscillatory and chaotic
manner, and the pulse generation is a stochastic event. The
strong dispersion regime is typical for ultrashort pulse lasers
[21].

Here, we study the simpler weak-to-moderate dispersion
regime, which is relevant to picosecond pulse lasers. We show
that although the final stages of pulse formation occur on a
fast nonlinear time scale of order μs, it is preceded by a slow
growth process that is one to two orders of magnitudes slower.
Moreover, whereas the final fast growth is strongly nonlinear,
the initial slow dynamics is governed by a small parameter, the
ratio of the spectral width to the final bandwidth.

We develop a weakly nonlinear theory for the slow growth
process, showing that pulse buildup progresses through a
cascade of power from lower to higher axial modes, driven
by the absorptive and Kerr nonlinearities. We derive explicit
recursive expressions for the mode amplitudes as series of
growing exponentials, whose radius of convergence marks the
transition to strongly nonlinear growth.

A principal result is that the slow process itself takes place
in two stages. In the early stage, the bandwidth of the pulse is so
small that gain filtering and dispersion are negligible; it leads to
a constant-power, form-invariant pulse growth and narrowing
toward a finite-time singularity. The singularity is averted by
the gain response profile and dispersion, whose importance
increases with the growing pulse bandwidth, causing the pulse
shape to deform. The evolution of the pulse shape is fully
described by the weakly nonlinear theory, and cannot be
captured by reduced dynamical models of a small number of
pulse parameters [24–26]. These theoretical predictions are
compared with direct numerical simulations of the model, and
shown to agree for several choices of model parameters in
Figs. 1–3.

When the pulse peak power reaches 90% of its final value,
the pulse shape is close enough to its final form that its
dynamics is well approximated by relaxation of the normal
modes of perturbation of the mode-locked state. In the cases
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FIG. 1. Simulation results (solid curves) and corresponding theoretical calculation (dashed curves), reported in terms of natural units defined
in the main text, for the pulse formation process with normalized dispersion β = −1.5, Kerr γ = 0.6, gain parameter k = 2.7, and chirp exponent
c = 1.58 . (a) The numerically calculated peak amplitude |ψ(0,τ )| as a function of the slow time τ . The growth stages marked on the graph are
early weakly nonlinear (e), late weakly nonlinear (l), strongly nonlinear (s), and relaxation (r). The origin of τ is defined as the time where the
pulse amplitude reaches one half of its final value. (b) The eight leading Fourier amplitudes |yn|, n = 0,1, . . . ,7 ordered from top to bottom on
the left, as a function of slow time τ (y0 includes cw term.) Solid colored (grey) curves show simulation results, with higher modes in cooler
colors, and dashed black curves show results of weakly nonlinear theory. The thin vertical dashed line marks the end of the validity domain of
the weakly nonlinear expansion. (c), (d) Snapshots of Re ψ(t,τ ), the real part of the wave form in simulation [solid colored (grey) curves] and
theory (dashed black curves) as a function of fast time t for several values of τ in the (c) early and (d) late weakly nonlinear growth stage; later
τ values correspond to stronger and narrower pulse wave forms. Note different scales between the two panels.

studied here, the dominant, least stable mode is a discrete mode,
associated with amplitude perturbations [23,27,28]. It leads to
exponential convergence toward the final pulse shape.

Laser model, steady states, and linear stability. We model
the laser wave-form dynamics with the Haus master mode-
locking equation,

∂ψ

∂τ
=

[
gu

1 + P [ψ]/Ps

(
1 − 1

ω2
g

∂2

∂t2

)

− l − iβ2
∂2

∂t2
+ (γs + iγk)|ψ |2

]
ψ, (1)

in which ψ is the slowly varying electric field envelope
depending on the fast and slow time coordinates t and τ

(respectively), and gu, l, Ps , ωg , β2, γs , and γk are the small
signal gain and loss coefficients, gain saturation power, gain
bandwidth, group-velocity dispersion, fast absorber saturabil-
ity, and Kerr coefficient, respectively. The gain recovery time
is assumed to be much longer than the round-trip time τR ,
so that the saturated gain depends only on the total power
P [ψ] = (1/τR)

∫ τR

0 |ψ |2dt .
The simplest steady state of Eq. (1) is the dark state ψ ≡ 0,

which is subject to the lasing instability, where the amplitude
of an axial mode with frequency ω grows with rate gu(1 −
ω2/ω2

g) − l (when this rate is positive) with a random phase.
The growth of the lasing instability eventually leads to the cw

state. In the Haus model (1) the cw state is a wave form with a
uniform amplitude ac.

We now make the simplifying assumption, which usually
holds in experiments, that the gain is deeply saturated, P � Ps ,
and then choose 1/ωg , 1/l, and (l/γs)1/2 as units of t , τ ,
and ψ , respectively, so that the equation depends on four
dimensionless combinations, β = −β2ω

2
g/ l, γ = γk/γs , k =

guPsγsτRωg/l2, and r = τRωg , becoming

∂ψ

∂τ
=

[
k

‖ψ‖2

(
1 + ∂2

∂t2

)
− 1 + iβ

∂2

∂t2
+ (1 + iγ )|ψ |2

]
ψ,

(2)

where ‖ψ‖2 = ∫ r

0 |ψ |2dt (note that β > 0 corresponds to
anomalous dispersion). r is the cavity round-trip time in the
natural choice of units, and as such does not appear explicitly
in (2); it effectively measures the number of active modes, so
we let r � 1, leaving three order-1 parameters.

In this parametrization the cw solution is

ψc(t,τ ) = ace
i�cτ ,

k

a2
c r

= 1 − a2
c , �c = γ a2

c , (3)

which implies that ac ∼ √
k/r � 1; here, �c is the cw non-

linear frequency shift.
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FIG. 2. Simulations and theory for pulse growth with β = 1.0, γ = 0.2, k = 1.72, c = −0.53. See Fig. 1 for panel descriptions.

To study perturbations to cw we write

ψ(t,τ ) = ei�cτ
∑

n

[yn(τ ) + δn,0ac]eiωnt , ωn = 2πn/r,

(4)

where δ is the usual Kronecker delta; an infinitesimal pertur-
bation to the cw evolves according to

y ′
0(τ ) = [ − 1 + (1 + iγ )a2

c

]
(y0 + y∗

0 ), (5)

y ′
n(τ ) = [

(1 + iγ )a2
c − (1 + iβ)ω2

n

]
yn

+ (1 + iγ )a2
c y

∗
n, n 
= 0. (6)

It follows that y0 decays, while the growth rate of yn, n 
= 0,

λn = a2
c − ω2

n +
√

a4
c (1 + γ 2) − (

γ a2
c − βω2

n

)2
, (7)

is positive for sufficiently low modes since ωn � r−1/2 ∼ ac,
making the cw modulationally unstable. We will assume that
βγ < 1 and then λ1 = λ−1 are the largest growth rates.

We are interested in parameter values for which Eq. (2) has
stable pulse steady-state solutions; these pulses are chirped-
soliton shaped,

ψp(t,τ ) = ap sech(bt)1+icei�pτ . (8)

The pulse amplitude ap, width 1/b, chirp c, and nonlinear fre-
quency shift �p are determined by the physical parameters [1].
For fixed values of β, γ , and small enough k, there are two pulse
solutions, of which the one with lower energy is stable [23].

Numerical calculations. We studied the formation of pulses
by numerically solving Eq. (2) for several values of the
(normalized) dispersion β and Kerr coefficient γ , yielding
pulses with negative, zero, and positive chirp. For each choice
of β and γ there is a maximal value of the gain parameter k

that admits stable pulses, and the results shown here are for

k close to this maximum. We checked that the dynamics is
weakly sensitive to changes in k.

In each of the simulations, the round-trip time was r = 104

natural units, which corresponds to a physical repetition rate of
around 100 MHz, and the initial wave form was the cw solution
perturbed along the most unstable mode with an amplitude of
10−8 natural units, corresponding to fluctuations of the order
10−7 W in the mode. The wave equation was solved with two
methods, fourth-/fifth-order Runge-Kutta with a variable grid,
and pseudospectral split step, with compatible results. Results
reported here were obtained with the first method.

The simulations results are presented in Figs. 1–3, with
Figs. 1(a), 2(a) and 3(a) showing the growth of the peak
amplitude of the pulse, Figs. 1(b), 2(b) and 3(b) the evolution
of the amplitudes of the first few axial modes, and Figs. 1(c),
2(c), 3(c) and 1(d), 2(d), and 3(d) the evolution of the real
part of the waveform. Panels (b), (c), and (d) compare the
simulation results with weakly nonlinear theory, showing very
good agreement.

Mode energy cascade in weakly nonlinear pulse growth. For
the weakly nonlinear analysis we assume that the yn’s are small
but not infinitesimal, write Eq. (2) in terms of mode amplitudes,

y ′
n(τ ) + i�cyn(τ ) = [

g
(
1 − ω2

n

) − 1 − iβω2
n

]
yn

+ (1 + iγ )
∑

k−l+m=n

yky
∗
l ym, (9)

and Taylor expand the gain,

g = a2
c

(
1 − a2

c

)
|ac + y0|2 + ∑

k 
=0 |yk|2 = (
1 − a2

c

)

×
⎡
⎣1 +

∑
j

(
−2 Re y0

ac

− |y0|2 + ∑
k 
=0 |yk|2

a2
c

)j
⎤
⎦.

(10)
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FIG. 3. Simulations and theory for pulse growth with β = 0.5, γ = 2.0, k = 1.08, c = 0.34. See Fig. 1 for panel descriptions.

As the pulse wave form is an even function, we will assume
for simplicity that ψ is an even function of t initially, and
therefore for all τ , so that y−n(τ ) = yn(τ ).

Since y1 is the fastest growing mode, there is a time interval
where it dominates all higher modes, while still being a small
perturbation of the cw amplitude,

ac � |y1(τ )| � |yn(τ )|, n � 2. (11)

For such τ values y1 grows according to the linearized
dynamics Eq. (6), so that

y1(τ ) = α1(1 + iγ )eλτ , λ = 2a2
c , α1 real (12)

(neglecting ω2
1 with respect to a2

c ).
Consider now (9) with n = 2. When (11) holds, the largest

terms are those proportional to y2, and the terms in the triple
sum with 0 � k, − l,m � 1. Neglecting all other nonlineari-
ties, and using ω2 � ac, the equation for y2 becomes

y ′
2(τ ) = (1 + iγ )a2

c (y2 + y∗
2 )

+ (1 + iγ )[2(1 + γ 2) + (1 + iγ )2]acα
2
1e

2λτ , (13)

using (12). Since the nonlinear growth rate in this equation,
2λ, is faster than λ2, the linear growth rate of y2, it eventually
dominates the dynamics, so that for large τ ,

y2(τ ) = α2
1

2ac

(1 + iγ )(3 + iγ )e2λτ ≡ α2(1 + iγ )e2λτ . (14)

Proceeding in the same fashion for higher n, we find

yn(τ ) ∼ αn(1 + iγ )enλτ − δn,0ac, (15)

αn = (3 + iγ ) · · · (2n − 1 + iγ )

n!

αn
1

an−1
c

, n � 0, (16)

with the convention α0 = ac.
Our next goal is to calculate the wave form ψ(t,τ ). It is

not sufficient for this purpose to sum the leading term for each

mode, since subleading terms in yn can be as large or larger than
the leading term in ym, m > n. We therefore look for solutions
of the form

yn(τ ) =
∞∑

ν=0

αn,ν(1 + iγ )e(n+2ν)λτ − δn,0ac, (17)

where αn,0 = αn of Eq. (15). Plugging this expansion in (9)
yields a system of equations for the coefficients where αn,ν

is determined by αn+1,ν−1, . . . ,αn+ν,0, which can be solved
recursively. The results of this calculation are in excellent
agreement with direct simulations, as shown in Figs. 1(b), 2(b)
and 3(b).

In the early stage of pulse growth, the bandwidth is small,
and terms proportional to ω2

n are negligible in (9). Although
we could not find a closed-form expression for the coefficients
αn,ν , we verified order by order that, when gain bandwidth and
dispersion are neglected, the coefficients αn,ν are such that (15)
still holds, up to an overall multiplicative factor, and moreover,
the overall scale is such that the mean power remains constant,

1

r

∫
dt |ψ(t,τ )|2dt =

∑
n

|yn(τ )|2 = a2
c . (18)

Summing the Fourier series defined by Eq. (17) then gives the
early-stage wave form explicitly,

ψe(t,τ ) = aw(t)

[(
1 − 2α1(1 + iγ )

ac

eiωt+λτ

)−(1+iγ )/2

+
(

1 − 2α1(1 + iγ )

ac

e−iωt+λτ

)−(1+iγ )/2

− 1

]
,

(19)
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where

|aw| = ac

[
2F

(
1

2
(1 − iγ ),

1

2
(1 + iγ ); 1; 4

α1

ac

e2λτ

)
− 1

]
(20)

is fixed by (18) (here F is the standard Gauss hypergeometric
function.) This result is verified by comparison with simula-
tions, in Figs. 1(c), 2(c) and 3(c).

The early growth wave form, where a fixed amount energy
is squeezed in a decreasing time interval, becomes singular
at τsing, defined by 2α1|1 + iγ |eλτsing = ac. As the wave form
approaches singularity, however, the bandwidth diverges, and
effects of gain bandwidth and dispersion inevitably smoothen
the pulse shape. Beyond this point, the full expansion (17) is
needed for an accurate description of the waveform, as shown
in Figs. 1(d), 2(d) and 3(d), and the pulse no longer has a
simple invariant form. Interestingly, although gain filtering and
dispersion check the growth of the pulse peak power, they cause
the pulse energy to grow by an order-1 factor toward the final
pulse energy.

Strongly nonlinear growth and relaxation. The expansion
(17) has a finite radius of convergence, whose boundary
is evident in the right edges of Figs. 1(b), 2(b) and 3(b).
Beyond this point there is no small parameter, and the pulse
dynamics becomes independent of the initial condition. This
strongly nonlinear growth is much faster than the preceding
dynamics, with the amplitude growing close to its final value
in approximately 50 natural time units. Further study of the
strongly nonlinear growth process and the relaxation to the
final pulse wave form that follows it is beyond the scope of
this work.

Conclusions. Saturable absorbers are a very effective means
to produce strongly nonlinear ultrashort pulses, but the initial
pulse growth they produce by modulational instability is very
weak because the initial intensity contrasts are small. The weak
initial growth can be inhibited by noise or by chaos, and it is
what makes self-starting of passive mode locking hard.

Here, we study the growth of perturbations where the effects
of noise and chaos are negligible. Although this assumption is
strictly valid only for picosecond lasers, we conjecture that the
mode cascade buildup mechanism discovered here also works
in ultrashort lasers, once the initial barrier to self-starting has
been crossed.

Since the linear growth rate is inversely proportional to the
number of active modes, the duration of the growth process
is mainly set by the time taken for the initial perturbation to
grow to intensities that saturate the absorber. Nevertheless, the
growth is not a linear process, except in its very early stage,
when all mode amplitudes are comparable. Once the fastest

growing mode dominates, it starts driving harmonics by four-
wave mixing, making them grow much faster than the linear
growth rate, so that the higher harmonics eventually catch up
with the fundamental toward the creation of a short pulse.

Moreover, during most of the weakly nonlinear growth,
each axial mode grows with a constant rate, except for an
overall scale factor. As a consequence, the pulse maintains
a fixed functional form and total energy, while narrowing
and growing in amplitude. When the pulse amplitude reaches
about 10% of the final amplitude, the dispersion and gain
response break the form invariance; at this stage the full weakly
nonlinear asymptotic series is necessary and sufficient for a
good approximation of the wave form.

When the pulse amplitude further grows to about 30%
of its final value, the weakly nonlinear perturbation series
ceases to converge altogether, and the growth transitions to the
much faster strongly nonlinear stage. The last stage of pulse
dynamics consists of relaxation toward the final stable shape
and amplitude, and is characterized by a third time scale.

Numerical simulations confirm the theoretical analysis of
the pulse growth for several values of weak-to-moderate Kerr
and dispersion coefficients, that include both normal and
anomalous dispersion. As expected, the weakly nonlinear
analysis breaks down earlier when Kerr and dispersion are
increased. The mode amplitude oscillations in Fig. 3(b) are an
early sign of the complexity that is observed in ultrashort pulse
lasers [21].

The mode cascade process has been demonstrated here
for the most common case of a slow gain and fast absorber
laser. Nevertheless, it likely explains the physical mechanism
of absorptive instability growth in any passive mode-locked
laser, including those with fast gain [29–31] and slow absorbers
[32,33]. However, the details of the pulse evolution in the latter
cases are different from those studied here, and are beyond the
scope of the present work. More generally, four-wave mixing
is a common source of modulational instabilities that lead to
pulse formation, and although the mode cascade growth relies
on some properties specific to lasers, it may be relevant for the
growth of other types of dissipative solitons [34].

This work sheds light on the complex and sparsely studied
process of pulse growth in nonlinear systems, with important
implications to the starting of mode-locked lasers. It is likely
that weakly nonlinear methods would facilitate a theory of the
relaxation process. While the strongly nonlinear growth is by
definition beyond the reach of perturbative analysis, it might
be amenable to a resummation of the weakly nonlinear series
developed here.
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