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Understanding the nonequilibrium behavior of quantum systems is a major goal of contemporary physics.
Much research is currently focused on the dynamics of many-body systems in low-dimensional lattices following
a quench, i.e., a sudden change of parameters. Already such a simple setting poses substantial theoretical
challenges for the investigation of the real-time postquench quantum dynamics. In classical many-body systems,
the Kolmogorov-Mehl-Johnson-Avrami model describes the phase transformation kinetics of a system that is
quenched across a first-order phase transition. Here, we show that a similar approach can be applied for shedding
light on the quench dynamics of an interacting gas of Rydberg atoms, which has become an important experimental
platform for the investigation of quantum nonequilibrium effects. We are able to gain an analytical understanding
of the time evolution following a sudden quench from an initial state devoid of Rydberg atoms and identify
strikingly different behaviors of the excitation growth in the classical and quantum regimes. Our approach allows
us to describe quenches near a nonequilibrium phase transition and provides an approximate analytical solution
deep in the quantum domain.
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When a liquid is cooled below the melting point, crystalline
nuclei will appear, grow, and eventually span the whole system.
The volume fraction that has transformed into the crystalline
solid at a given time f (t) is the natural macroscopic observable
for the study of the kinetics of first-order phase transitions.
The standard stochastic model of nucleation and growth, the
Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory [1–5], is
of widespread use in metallurgy and material science [6]. This
model predicts a compressed exponential form f (t) = 1 −
exp [−(t/τ )n], the so-called Avrami equation, where n = d +
1 in a d-dimensional system with a constant (homogeneous)
nucleation rate and ballistic growth. The processes considered
in this formulation are the nucleation of solid domains, their
growth, and the coalescence of expanding domains [7]. Re-
cently, the KJMA model has found applications in the study
of DNA replication [8], epidemic spreading in networks [9],
and the melting of stable glasses [10,11], to name but a few
examples.

In this Rapid Communication, we show that the KJMA
picture of phase transformation kinetics allows one to quanti-
tatively understand the nonequilibrium dynamics of an open
many-body quantum system that is subjected to a sudden
quench. While most studies on quenches focus on closed
systems (see, e.g., the theoretical work in Refs. [12–17] as
well as experiments realized with ultracold atomic gases or
trapped ions [18–25]), the considered scenario complements
a growing number of recent contributions to the study of
quenches in dissipative dynamics [26–31]. A natural platform
for exploring open system quenches are gases of highly
excited Rydberg atoms [32,33], which allow one to tune
the relative strength of coherent and classical processes and
thereby the degree to which the many-body system is open.

Atoms in Rydberg states are strongly interacting and the
interplay between this interaction and their laser excitation is
the source of collective effects. Of particular current interest
is so-called facilitated excitation, where the laser frequency is
chosen such that the excitation of an atom in the vicinity of
an already excited one is enhanced [34–39]. Upon a sudden
quench from an initial state devoid of Rydberg excitations,
mechanisms analogous to the two basic processes of the
nucleation-and-growth KJMA model govern the subsequent
relaxation dynamics: Isolated spontaneous excitations (seeds)
act as nuclei, from which transformed domains grow due to
facilitation. In the effective classical limit—where the Rydberg
excitation is an incoherent process [40–44]—the evolution of
the density of excitations is captured by an Avrami equation
with diffusive growth. In the opposite quantum coherent
limit, relaxation proceeds through coherently evolving pairs
of domain walls that propagate ballistically. Remarkably, the
Avrami approach enables an approximate analytical solution
of the nonequilibrium many-body dynamics in this quantum
regime.

Elementary processes and quench protocol. We consider
a lattice gas where each site contains a single atom, and
focus on one-dimensional (1D) chains. In this setting a deeper
understanding of the KJMA model exists [7,45–48], and the
quench dynamics can be most conveniently explored in optical
lattice quantum simulators [49–53]. Atoms can either be in
their ground state |↓〉 or in a high-lying (Rydberg) excited state
|↑〉. The interaction Vkl between excited atoms k and l depends
on the distance, typically with a power-law form |rk − rl|−α .
The transition between the two atomic states is driven by a laser
field with Rabi frequency �, and detuning � with respect to the
atomic resonance frequency. The coherent part of the dynamics
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is thus generated by the Hamiltonian

H = �
∑

k

σ x
k + �

∑

k

nk +
∑

k<l

Vklnknl, (1)

where nk = |↑〉k〈↑| and σx
k = σ+

k + σ−
k for σ+

k = |↑〉k〈↓| and
σ−

k = |↓〉k〈↑|. Throughout, we consider that the system is
excited under facilitation conditions, i.e., the excitation process
is resonant next to an already excited atom. This is achieved
by setting the detuning such that it cancels the interaction
energy of adjacent excited atoms [see Fig. 1(a), upper panel]:
� = −Vk,k+1 ≡ −V [34–36,54,55]. It is important to note that
there is still a small probability for unfacilitated (spontaneous)
excitation. Dissipative processes we consider are dephasing
(through the laser linewidth, thermal effects, etc. [33]) with
a rate γ and spontaneous radiative decay of excited atoms,
which occurs with a rate κ . These effects are accounted for by
dissipators L(J )ρ = JρJ † − 1

2 {J †J,ρ} with jump operators
J (deph) = √

γ nk and J (dec) = √
κ σ−

k . Including both incoher-
ent and coherent processes, the evolution of the density matrix
ρ is governed by the Lindblad equation,

∂tρ = −i[H,ρ] +
∑

k

[L(
√

γ nk) + L(
√

κ σ−
k )]ρ. (2)

The quench protocol is as follows. We take as the initial state
the stationary state for � = 0 (laser off), which is the “empty”
configuration | ↓↓ · · · ↓〉. We then change to � > 0 (laser on),
and let the system evolve towards the new stationary state,
which in general will contain a finite density of excitations.
In an idealized description of the dynamics, the evolution
following the quench is characterized by four basic processes:
(i) slow unfacilitated excitation |↓↓〉 → |↓↑〉, which creates
new excitation domains, (ii) fast facilitated excitation |↑↓〉 →
|↑↑〉, which can lead to domain growth by the propagation of
excitations (atom k facilitates atoms k ± 1, which in their turn
facilitate k ± 2, etc.), (iii) decay |↑〉→|↓〉, which introduces an
imbalance between excitation and deexcitation in favor of the
latter, and (iv) dephasing (|↑〉 + |↓〉)(〈↑| + 〈↓|) → |↑〉〈↑| +
|↓〉〈↓|, which determines the nature of the dynamics, ranging
from quantum coherent to classical stochastic. Processes (i)
and (ii) are analogous to nucleation and growth in the KJMA
framework [1–6], respectively. This list does not exhaust all
dynamical possibilities, but allows us to highlight the dominant
processes that will be referred to frequently in the following
sections. In practice, there will be other transitions as well, e.g.,
unfacilitated and facilitated deexcitations, which occur with the
same rates as the reverse processes. They will introduce some
features that are absent in the classical KJMA picture, as will
be discussed below.

Classical limit: Ballistic and diffusive behavior. Current
experiments frequently operate in the limit of strong dephasing
(see, e.g., Refs. [38,39,56]). Here, the dynamics is governed
by a (classical) stochastic rate equation, where the transitions
|↓〉k ↔ |↑〉k have associated configuration-dependent rates

�k = 4�2

γ

1

1 + R2α
(
1 − ∑

l 
=k
nl

|rl−rk |α
)2 , (3)

with the interaction parameter Rα = 2V/γ [41,43]. The func-
tional form of the rates implies that unfacilitated excitations

occur with a rate �spon = 4�2

γ
/(1 + R2α), and facilitated ex-

citations with a rate �fac = 4�2

γ
. The same rates apply to

unfacilitated and facilitated deexcitations, respectively, which
will be initially left out of the dynamics in the numerical explo-
rations below, in order to highlight the connection between the
physics under study and the KJMA theory. In the following, we
consider van der Waals interactions, α = 6, and rescale time
by the facilitation time scale 4�2/γ .

After the quench (i.e., after switching on the excitation laser,
such that � > 0), spontaneous excitations start to appear with
a rate �spon. From these seeds, facilitating processes originate
that excite neighboring sites, thus starting an excitation front
that leads to the growth of transformed domains. When the
interaction parameter R is sufficiently large, the spontaneous
excitation rate is much smaller than that rate at which a
domain grows (i.e., �spon/�fac � 1) [see Fig. 1(a), upper
panel], making the evolution reminiscent of the nucleation and
growth problem that is described by the KJMA theory. We
thus expect to be able to capture the macroscopic evolution
with a transformed fraction f (t), defined as the fraction of the
atoms that have undergone at least one excitation process after
the quench. Following the KJMA arguments [1–5], one should
expect f (t) = 1 − e−2�spon

∫ t

0 dτ G(t−τ ), where �spon acts as the
nucleation (seed creation) rate, and G(t) determines the growth
law of a domain. A derivation can be found in the Supplemental
Material [57].

In a first step, we consider an idealized dynamics without
deexcitations and without decay (i.e., only |↓〉 → |↑〉 transi-
tions are possible), which is relevant for the very initial stages
after the quench [58]. In this case, the front arising from
an unfacilitated excitation, |↓↓↓↑↓↓↓〉 → |↓↓↑↑↑↓↓〉 →
|↓↑↑↑↑↑↓〉, is expected to propagate ballistically [see
Fig. 1(a)]. This is confirmed by continuous-time Monte Carlo
(CTMC) simulations [59] starting from a single initial excita-
tion [see the inset of Fig. 1(b)]. In Fig. 1(c), we see a typical
trajectory, where several nucleation events are observed to
give rise to facilitation fronts. Due to the power-law interac-
tions in Eq. (3), the time it takes to facilitate an excitation
at the boundary of a large domain, | · · · ↑↑↑↑↓↓↓↓〉 →
| · · · ↑↑↑↑↑↓↓↓〉, is given by �̃−1 ≈ 1 + S2

2 R12, where S2 ≡∑∞
l=2 l−6 = π6

945 − 1 ≈ 0.017. We thus have the domain growth
law G(t) = �̃t , which leads to

f (t) = 1 − e−�spon�̃t2
. (4)

The transformed fraction is equal to the density of excitations,
f (t) = n(t) ≡ N−1 ∑

k〈nk(t)〉, as domains contain only up-
spins in this case, but the distinction will be important below
when we consider deexcitations. In Fig. 1(b) we compare
Eq. (4) with the density of excitations in the CTMC simu-
lations. The agreement is excellent, showing the applicability
of the KJMA approach. The small discrepancy at long times
results from the fact that the boundaries of merging domains
excite only at very long times, as their associated rates are
approximately �spon � �̃ [see Fig. 1(c)].

In the presence of deexcitation processes, the domains
emerging from seeds acquire a more complex shape [see
Fig. 2(a)]. Domains now grow diffusively, as each bound-
ary of a large domain behaves as a random walker. The
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FIG. 1. Illustration of idealized quench dynamics. (a) Domains of excited atoms (blue) grow from spontaneous seeds (green). In a Rydberg
gas this is achieved via facilitated excitation (see text) that is driven by a laser with Rabi frequency �. (b) Excitation density as a function of time
n(t) (blue) for a system of N = 100 000 (average based on ten realizations) and R = 2, where the deexcitation process is artificially switched
off, and an analytical prediction is given by the Avrami equation in Eq. (4) (red). The inset shows the dynamics of the domain boundaries (see
blue line) starting from a configuration with a single excitation in the center of the chain (based on 10 000 realizations). The blue color of
the region contained within the boundaries highlights the transformed domain. (c) Representative trajectory of a chain of N = 300 atoms for
R = 2.

probability to move one site away from or towards the
nucleation center is approximately the same. This is clearly
observed by initializing the system with a single excitation
[see the inset of Fig. 2(b)]. The diffusion time scale is �̄−1 =
1 + b2S2

2 R12, where b ∈ [1/2,1] is the (unknown) domain
density in the vicinity of the boundaries. The probability of
a boundary to be at position k evolves according to ∂tP (k,t) =
�̄[P (k − 1,t) + P (k + 1,t) − 2P (k,t)], which in the contin-
uum limit gives ∂tP (x,t) = �̄ ∂2

xP (x,t). Then ∂t 〈x2〉 = 2�̄,
and we obtain for the domain growth function G(t) =

√
〈x2〉 =√

2 �̄ t . This yields the Avrami function

f (t) = 1 − e− 4
√

2
3 �spon�̄

1/2t3/2
, (5)

where the power of the time dependence has changed with
respect to Eq. (4). This expression gives us the fraction of
the system that has been reached by the excitation domain
boundaries. However, by inspecting Fig. 2(a), one can see
that the formed domains do not remain unaltered when
time progresses. Rather, “spontaneous deexcitations” [see red

FIG. 2. Diffusive regime. (a) Representative trajectory of a chain
of N = 300 atoms. Red circles highlight “spontaneous deexcitations”
within domains, from which deexcitation fronts originate (see text for
an explanation). (b) Numerically calculated excitation density n(t)
(blue) for a system with N = 1000 atoms (average based on 10 000
realizations) and analytical Avrami curve (red). The inset shows the
evolution of the boundaries of a single domain emerging from a seed
at the center of the chain (see blue line; 10 000 realizations have
been averaged). The blue color of the region contained within the
boundaries highlights the transformed domain.

circles in Fig. 2(a)] occur within them that lead to deexcitation
fronts, giving rise to secondary (deexcitation) nucleation and
growth processes within the domains. In fact, as both the
spontaneous and the facilitated deexcitation rates in a fully
excited domain are very similar to the excitation rates pre-
viously considered [see Eq. (3)], such deexcitation processes
must evolve in time in much the same way as the excitation
processes that are the main object of our study. While a full
characterization of the combined effect of such secondary and
higher-order (excitation and deexcitation) processes appears to
be challenging, on average their effect is captured by simply
assuming that domains instantaneously reach the stationary
density of 1/2, n(t) ≈ f (t)/2—domains lose excitations on
the same time scales along which new domains form. In
Fig. 2(b), we plot n(t) obtained via CTMC and f (t)/2 as in
Eq. (5) choosing the free parameter b = 0.68 [using Eq. (5)
to fit the numerically obtained n(t) with b as the fitting
parameter yields b = 0.68 ± 0.05], which show an excellent
agreement.

Classical limit: Quench dynamics in the presence of decay.
For very long times, the radiative decay of excited atoms to their
ground state becomes an important element of the dynamics.
For small decay rates, i.e., when κ � �̄,�̃, the domain growth
law G(t) will not be modified significantly, but the density of
excitations within each domain will decrease. This requires
a modification of the KJMA approach: To this end, we
introduce a function c(t) that represents the concentration of
excitations in the transformed domains as a function of time,
which will be estimated from CTMC simulations as explained
below. The total excitation density is then given by the
convolution of the transformation rate and the concentration,
n(t) = ∫ t

0 dτ ḟ (τ )c(t − τ ), where c(t − τ ) accounts for the
concentration at time t of regions that were reached by the front
at a time τ < t . For κ = 0, we have c(t) = 1/2 for intermediate
and long times [c(t) = 1 if deexcitations are suppressed], thus
recovering the results of the previous section. Figure 3(a) shows
that this modeling excellently describes the data obtained from
CTMC simulations. Here, n(t) is based on the convolution of
Eq. (5) and the concentration c(t) resulting from the CTMC
evolution of the system starting from a random configuration
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FIG. 3. Quench dynamics in the presence of decay. (a) Density of
excitations n(t) (blue) for a system of N = 1000 (average based on
1000 realizations), and Avrami curve (red), for decay rate κ = 10−3.
Inset: Analogous results for the dynamics without deexcitations (axis
labels are the same as in the main panel). (b) Excitation density n as a
function of normalized time κt and relative driving strength 4�2/γ κ:
Continuous time Monte Carlo results (blue lines), for N = 1000, and
Avrami curve (red surface). For long times the density approaches a
(quasi)stationary state (thick black line) which displays a smoothed
nonequilibrium phase transition [60,61] as a function of the decay
rate. Averages based on 1000 realizations.

with density 1/2, which shows an excellent agreement. We
report analogous results for the dynamics without deexcitations
in the inset.

More importantly, this approach allows for the exploration
of the excitation density n(t) as a function of the decay
rate κ . The corresponding data are shown in Fig. 3(b). At
stationarity (black line), n(t) acquires a sigmoidal shape
[60] that interpolates between two distinct stationary states,
which are linked by a smoothed-out nonequilibrium phase
transition [60–62]. For a large decay rate κ , domain growth
is suppressed and the stationary state density is close to
zero. However, for sufficiently small values of κ , a stationary
state with a large excitation density is quickly approached.
Both regimes are well captured by the KJMA approach,
demonstrating its applicability also in the vicinity of a phase
transition.

Quench dynamics in the quantum regime. In Rydberg
experiments the quantum limit is approached by reducing the
relative strength of the dephasing noise, such that γ < �.
In the following, we show that the KJMA theory allows an
approximate analytical solution for the quench dynamics in
this regime. For simplicity, in this section we do not consider
the effect of spontaneous decay. We begin by numerically
simulating the evolution of a domain emerging from a single
seed via quantum jump Monte Carlo (QJMC) simulations [63]
[see Figs. 4(a) and 4(b)]. For large dephasing, the domain
walls propagate in a manner that seems compatible with our
predictions of the strongly dissipative regime, i.e., the size of
the domain appears to grow as G(t) =

√
2�̄t [see the red line

in Fig. 4(a)].
In the quantum limit, we find a ballistic behavior [see

Fig. 4(b)] for γ = 10−3 �. In order to obtain an analytical
expression of the growth function G(t), we consider that an
initial seed gives rise to two domain walls. Facilitation will only
move the domain walls, but will neither create nor annihilate
them. A domain is thus characterized by two coordinates: its
length x � 1, and its center of mass X. The corresponding

FIG. 4. Domain growth in the quantum regime. (a) Local exci-
tation density 〈nk(t)〉 for γ = 10 obtained via QJMC in a chain of
N = 11 atoms (� = 1, C6 = −� = 50) and prediction based on
the (classical) strongly dissipative dynamics (red line). (b) Local
excitation density 〈nk(t)〉 for γ = 10−3 [other parameters as in (a)]
obtained via QJMC and prediction based on the quantum domain-wall
propagation model, G(t) = 2�t (red line; see text). The results shown
in (a) and (b) are averages of 1000 QJMC runs. (c) Sketch illustrating
the degrees of freedom (upper plot) and 〈nk(t)〉 as given by the solution
of the domain-wall model for a system of N = 81 sites (lower plot).
(d) 〈nk(t)〉 as given by the solution of the domain-wall model for a
system of N = 11 sites, and ballistic prediction [red line as in (b)].

equation of motion is

i∂tϕx,X = �(ϕx+1,X+ 1
2
+ϕx+1,X− 1

2
+ ϕx−1,X+ 1

2
+ ϕx−1,X− 1

2
).

(6)

As the domain grows or shrinks by one site, X is shifted
by 1/2 to the left or to the right, depending on the affected
boundary [see Fig. 4(c), upper plot]. The solution of (6) can be
explicitly written in terms of Bessel functions of the first kind
(see Ref. [57]). The maximum of the probability amplitude is
reached at the position of the propagating wave front, which
follows x ≈ 4�t + 1. We thus obtain G(t) = 2�t [see the red
line in Figs. 4(b) and 4(d)]. The time evolution corresponding
to the solution of Eq. (6) (see Ref. [57] for details) is shown in
Figs. 4(c) (lower panel) and 4(d).

To derive an expression for the transformed fraction f (t),
we need to combine the result for G(t) with the rate for the
spontaneous creation of excitations. The latter is a classical
process, which takes place at a rate 2γ�2/V 2 (see Ref. [57]).
This leads to

f (t) = 1 − e
− 4γ�3

V 2 t2

, (7)

which is clearly distinct from the Avrami curve in the classical
regime. Note that the KJMA approach giving rise to this
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expression is applicable only below a certain dephasing
strength, as the ballistic growth takes place only for times
smaller than tdeph = 1/γ . Equation (7) is thus valid only when
the domain emerging from one seed hits the domains originat-
ing from its neighboring seeds [see Fig. 1(a)] at times smaller
than tdeph. As the average density of spontaneously created
seeds after time t is (2γ�2/V 2)t , the typical distance between
seeds is the inverse of this quantity. On the other hand, the radii
of emerging domains grow as G(t) = 2�t , which must clearly
exceed the typical distance between seeds when t is approach-
ing tdeph. Combining these constraints yields an upper bound
for the dephasing rate γ < 4�3/V 2 below which Eq. (7) is
applicable.

Conclusions. We have shown that the KJMA framework
serves as a basis for the analytical understanding of the
quench dynamics of an open quantum system. While the
quantum simulation of such systems is nontrivial even in
1D, modern Rydberg quantum simulators [49–51] will be
able to verify these predictions, in particular, Eq. (7). More
importantly, experiments will be able to access very inter-
esting regimes that are intermediate between “classical” and

“quantum,” and also will allow one to probe quenches in
higher spatial dimensions, for which numerically exact calcu-
lations become rapidly intractable. While we have focused on
nonequilibrium Rydberg gases under facilitation conditions,
our approach could be adapted to other cold atomic settings
where relaxation is driven by nucleation events, as discussed,
e.g., in Ref. [64].
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