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Compact localized modes of ring type exist in many two-dimensional lattices with a flat linear band, such
as the Lieb lattice. The uniform Lieb lattice is gapless, but gaps surrounding the flat band can be induced by
various types of bond alternations (dimerizations) without destroying the compact linear eigenmodes. Here, we
investigate the conditions under which such diffractionless modes can be formed and propagated also in the
presence of a cubic on-site (Kerr) nonlinearity. For the simplest type of dimerization with a three-site unit cell,
nonlinearity destroys the exact compactness, but strongly localized modes with frequencies inside the gap are

still found to propagate stably for certain regimes of system parameters. By contrast, introducing a dimerization
with a 12-site unit cell, compact (diffractionless) gap modes are found to exist as exact nonlinear solutions in
continuation of flat band linear eigenmodes. These modes appear to be generally weakly unstable, but dynamical
simulations show parameter regimes where localization would persist for propagation lengths much larger than

the size of typical experimental waveguide array configurations. Our findings represent an attempt to realize
conditions for full control of light propagation in photonic environments.
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I. INTRODUCTION

Photonic lattices (PLs) are well known periodically mod-
ulated optical materials which exhibit a band-gap structure
with allowed and forbidden bands. The latter ones are also
called “gaps” since there is no possibility for extended Bloch
modes to be guided on frequencies from forbidden bands [1].
However, the light at these “lost” frequencies can be guided
if there are some defects, inhomogeneities or disorder within
the system, or in the presence of nonlinearity. In all these
cases trapping of light is observed owing to the phenomena
based either on Anderson localization [2], defect modes [3],
or modulation instability [4].

Localized structures of the solitary type such as discrete
solitons, gap solitons, and breathers have been identified in the
PLs [5]. Moreover, nonuniform PLs present different kinds of
superlattice structures [6] where additional periodicity opens
an extra minigap in the energy spectrum preventing linear
light propagation through the system, but providing nonlinear
trapping of light as another way of light guiding in the form of
a gap soliton. Gap solitons were predicted and experimentally
realized in binary PLs with alternating channel widths but
constant separations between channels [7,8] and in PLs with
constant widths of waveguides but alternating separations
between them in the presence of cubic type nonlinearities
[9,10].

With developed fabrication technologies it is possible to
fabricate tailor-made photonic structures with optimized prop-
erties enabling a plethora of interesting phenomena related to
light confinement [11]. One of them is localization of light
as a consequence of the specific topology of the waveguide
distribution and, for example, photonic topological insulators
were observed [12,13]. Moreover, for particular geometries,
conditions necessary for destructive wave interference can
be achieved even in periodic PLs, without the presence of
disorder, defects, or nonlinearity. Such systems are known as
flat band systems, due to their energy spectra containing a
perfectly flat energy band that provides diffractionless light
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propagation. Seminal papers showed that interesting effects in
condensed matter systems [14—16] are observed. Additionally,
the influence of the singularity of flat band systems was
investigated in the frame of the fractional quantum and magnon
Hall effect [17,18] and energy localization in the presence of
magnetic fields [19], spin-orbit coupling [20,21], or disorder
[22,23]. Recently this topic attracted a lot of attention. Light
localization effects in 1D nonlinear kagome and ladder ribbons
(uniform and binary) [24,25], as well as in 2D kagome lattices
[26-29] were investigated.

One of the simplest two-dimensional (2D) flat band
geometries is the Lieb lattice. Geometrically, this system
resembles the ordinary square lattice with one site missing on
every even step of the lattice grid [30]. The absence of these
sites changes the energy spectrum giving rise to a completely
flat, nondiffracting band surrounded by two dispersive bands,
touching them in Dirac points within the Brillouin zone. Re-
sults on theoretical predictions and experimental confirmation
of light propagation without spreading have been published in
Refs. [30-33]. However, the presence of Kerr nonlinearity
in the system may exhibit conical diffraction at the Dirac
cone [30,34]. Due to their simple geometry, Lieb lattices are
in the focus of research in ultracold systems as an optical
trap for fermions [35], providing existence of magnon Hall
effect in spite of the presence of inversion symmetry [18],
protection and formation of robust zero modes localized at
point defects [36], optimization of the BCS critical temperature
and superfluid weight [37], and lifting the flat band modes by
PT-symmetric perturbation due to thresholdless PT-symmetry
breaking [38]. Moreover, it has been shown that the Lieb
lattice acts as a good platform for analyzing various topological
transitions in Chern insulators [20,39-41].

As in every flat band system, eigenfunctions belonging
to the Lieb lattice flat band are entirely degenerate states.
Any superposition of these states is nondiffracting as well.
The fundamental flat band eigenmode in this model can be
chosen as a four-site closed ring with staggered phase relation
between neighboring sites in the ring. In general, it has been
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shown theoretically and demonstrated experimentally that
linear compact localized modes of the ring type can be formed
within Lieb systems [30-33].

In this paper we investigate, both theoretically and nu-
merically, the existence and stability of linear and nonlinear
localized modes in the neighborhood of the corresponding
linear flat band in 2D dimerized Lieb lattices, exhibiting
Kerr type of nonlinearity. Our interest is mainly on modes
created inside the gap in the eigenvalue spectra opened due
to the dimerizations. It has recently been shown [42] that
for the uniform, gapless, Lieb lattice, any weak nonlinearity
will destabilize the compact ring modes, while restabilization
occurs only in the large-nonlinearity regime. Following the
model presented in Ref. [30] with on-site nonlinearity, we
examine the existence and behavior of compact localized
modes of closed-ring shape for two types of dimerizations
of the nonlinear Lieb system. For the simplest type of
dimerization with a three-site unit cell, which has been studied
earlier in other theoretical contexts [20,37,39,40] and also
recently realized experimentally with microwave resonators
[36], we prove that, although the compact four-site ring modes
of the uniform Lieb lattice still persist in the linear limit,
their amplitude distribution becomes nonhomogeneous which
prohibits their existence as exact stationary solutions in the
presence of nonlinearity. Instead, we found numerically that
strongly localized gap modes with nonzero tails can exist in
the presence of nonlinearity. Their existence range increases
for stronger dimerization. These modes are shown to be
generally stable for small amplitudes and typically develop
long-lived “breathing” oscillations when perturbed. Then we
introduce another type of dimerization of the Lieb lattice, with
a 12-site unit cell and a fourfold degenerate flat band. For
this system, we prove that for every second four-site ring
mode the amplitude distribution will remain homogeneous,
and thus these modes will persist also for the nonlinear model.
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However, numerical investigations indicate that these compact
modes are generally unstable, although the instabilities in
certain parameter regimes are weak and possibly not detectable
with present experimental setups for optical waveguide
arrays.

II. MODEL EQUATIONS

The uniform 2D Lieb lattice [30—33] pattern is schemat-
ically presented in Fig. 1(a), if all coupling constants
(Vx1,Vi2,Vy1, and V) are taken to be identical. Its primitive
cell contains three sites as denoted by the dashed square in
the figure. By spatial translation of this fundamental block in
horizontal and vertical directions, a Lieb lattice with flat band
energy spectrum is obtained. In general, however, couplings
between neighboring sites can take arbitrary (even random)
values and still keep the particular property of the Lieb lattice
with a flat band in the linear spectrum [32].

In the following, we will consider two particular types of
dimerized Lieb lattices. The first one, here denoted as “type I”’
and described in several earlier works [20,36,37,39,40], can
be realized by arranging the lattice pattern according to the
scheme in Fig. 1(b). The primitive cell contains the same
three sites (bounded in the figure with a dashed square) as
in the uniform case. Notice that, while the uniform Lieb
lattice exhibits reflection symmetry through diagonal as well
as antidiagonal axes through all four-bonded (b) sites, the
“type I” dimerized lattice, having different intracell and
intercell couplings, loses the antidiagonal symmetry. This will
be shown to be important for the possibility of existence of
compact modes for the nonlinear model below.

For the case of general periodic Lieb lattice with three-site
unit cell and four different coupling constants [Fig. 1(a)], the
evolution of the light wave amplitude through the system
can be modeled by the following set of dimensionless
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FIG. 1. Schematic representations of two classes of dimerized Lieb lattices: (a) three-site unit cell with general coupling coefficients; (b)
special case of (a) with a diagonal symmetry axis through b sites (“type I); (c) 12-site unit cell (“type II”’) with diagonal symmetry axis through
sites f and j, and antidiagonal symmetry axis through sites d and /. The primitive cells are denoted by dashed squares. Amplitudes within
the characteristic sites are denoted by a,b,c.d,e, f,g,h.i, j,k, and [, respectively. Here, p (¢q) denotes cell index in the x (y) direction, where
p.,q € [1,N]. The Bloch vector corresponding to translations between two neighboring fundamental blocks is described by k, in the horizontal
and k, in the vertical direction, respectively. Different colors of lines in (a) represent different strengths of coupling between sites, while solid

and dashed lines stand for the two coupling constants in (b) and (c).
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differential-difference nonlinear Schrodinger equations:

10,0 + Viibp_14 + Viaby g + vlay4*ap, =0

10:bp.g + Viaapg + Vaiaprig + Viacp g + Viicpgn

+ V|bp,q|2bpvq =0

10.¢p.q + Vyobpg + Vytbp g1 + VIcpql’cpg =0, (1)
where a4, b, 4, and cp, , are mode amplitudes at a,b, and ¢
sites, respectively. Coupling constants along the x direction are
denoted by V. and V,,, along the y direction by V,; and V,,,
while z stands for the propagation coordinate. The effective
(normalized) nonlinear coefficient y may represent focusing

(y = 1) or defocusing (y = —1) types of Kerr nonlinearity.
Conserved quantities in the system are norm (power), P:

P = (lapq + 1bpql* + lcpgl. )
P.q
and Hamiltonian:
1
H = =23 {y(lapgl* + 1bpgl* + lepl")

P4

+ [ap,q(vxlbp—l,q + Vx2bp,q)*

+ bpq(Viodpq + Virapiig + VioCpg + VyiCpgin)*

+ Cqu(V)'sz,q + ‘/ylbp,q—l)* + C.C.]}. 3)

In addition, we construct another type of dimerized Lieb
lattice with a primitive cell containing twelve sites, as denoted
by the dashed square in Fig. 1(c). This lattice will be noted
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in the following as the “type II” dimerized Lieb lattice. In
contrast to the type I dimerization in Fig. 1(b), this lattice has
bond alternation of vertical couplings [V, and Vy, in Fig. 1(a)]
also along the horizontal (x) direction, and bond alternation of
horizontal couplings [V,; and V., in Fig. 1(a)] also along the
vertical (y) direction. With this construction, one regains the
antidiagonal reflection symmetry axes through every second
four-bonded site [sites d and / in Fig. 1(c)], at the price of
losing the diagonal symmetry axes around these sites.

The corresponding set of model equations is completely
analogous to Eq. (1) but algebraically too cumbersome for
writing out explicitly here. It contains 12 equations for
complex mode amplitudes which are coupled as schematically
shown in Fig. 1(c). As will be shown in the following, the
symmetry of this particular type of dimerized Lieb lattice
allows for the possibility to bond ring-compact localized
modes with uniform amplitude, analogous to rings in the
uniform Lieb geometry. This system is also characterized
by two invariants, power and Hamiltonian, with definitions
analogous to Egs. (2) and (3), respectively.

Linear dimerized Lieb lattices

We consider first the Lieb dimerization with three-site unit
cell and general coupling coefficients [Fig. 1(a)]. By intro-
ducing a stationary solution, {a, ,,b, 4,cp 4} ~ e*PTha+h),
with the corresponding 2D Bloch wave vector k= (ky,ky),
into the linear part of Eq. (1), we derive the dispersion relation
whose solutions can be written in the form:

Bo=0. io=%/V2+VE+ Vi +Vh+2VaVircosk, + 2V, Vyscosk,. )

We distinguish three linear bands, two of which are dispersive
and one is completely flat: 8y = 0. Highly confined states that
belong to the flat band are the so-called “ring” solutions which
have four peaks with alternating sign of amplitude. In the
uniform lattice these rings are compact modes characterized
by equal absolute values of the peak amplitudes. In the case
of the dimerized lattices in Fig. 1(a) with arbitrary couplings
among sites, it is possible to construct a minimal ring mode at
Bo = 0 if the following relations are obeyed:

a,, = Vyzc a = —Vylc
rqg — Pq> pg—1 = 7 Pq>
Vx2 Vx2
Vxl
Cr-lg =, Cra o)
x2

Any linear combination of ring modes is an eigensolution of
the system.

Specifically, we focus on the “simplest” special case of the
type I dimerization [Fig. 1(b)], setting the coupling constants
to fulfill the following dependence: V,; = V,; = V) (intercell
coupling) and V,, = V,, =V, (intracell coupling). In this
case, the dispersion relation (4) reduces to the form given
in Ref. [37]. An example of a fundamental ring mode and
its linear combinations in this linear dimerized Lieb system
are represented in Figs. 2(a)-2(c). Due to the symmetry

(

properties of the introduced dimerization, the profiles of the
fundamental ring modes [Fig. 2(a)] are antisymmetric under
diagonal reflection through the ring center but asymmetrical
under antidiagonal reflection, as dictated by Eq. (5).

Depending on the symmetry of the introduced dimerization,
ring modes with profiles of different symmetry can be achieved
in the lattice. In the case of the type II Lieb lattice dimerization,
linearization of the set of model equations analogous to (1) will
lead to the dispersion relation (eigenenergy spectrum):

Bo =0,
Bia = £V/2,[VE + Vi = Vi Va(cos k, /2 + cosk, /2).

B4 = iﬁ\/Vlz + Vi + ViVa(cosky /2 — cosky /2),  (6)

Bs.e = i\/z\/Vlz + Vi 4 Vi Va(— cosk, /2 + cosk, /2),

Brs = iﬁ\/vlz + Vi + Vi Va(cos ky /2 + cos ky /2).

Figure 3 depicts band structures obtained for uniform lattice
(a), and dimerized lattices of type I (b) and type II (c), re-
spectively. In the case of the uniform Lieb lattice, the flat band
touches the dispersive bands in points at the end of the Brillouin
zone. By introducing additional periodicity in the system either
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FIG. 2. Real parts of amplitude for: (a) minimal 4-peak ring mode; (b) 6-peak ring mode—superposition of two “out-of-phase” 4-peak
modes that cancel each other at the central ¢ site; (c) 7-peak ring mode—superposition of two “in-phase” 4-peak modes. The amplitude changes
sign from site to site, according to the relation (5). Couplings V,; = V,; = 0.5 are marked by orange (gray) lines, while V,, = V,, =1 are
marked by black ones. The indices m and n represent the site numbers of the lattice.

of type I or II, gaps (minigaps in the following) open symmetri-
cally above and below the flat band as can be seen in Figs. 3(b)
and 3(c), respectively. This may be contrasted with the case of
the Lieb lattice with constant couplings but binary modulated
on-site energies, where a gap appears only on one side of the
flat band [43]. The size of the primitive cell dictates the com-
plexity of the energy spectrum. For the type I dimerization we
distinguish three bands, while the type II apparently provides
the existence of nine distinct linear bands. In both cases, only
one band is completely flat and degenerated (8 = 0), Figs. 3(b)
and 3(c). The widths of the minigaps depend on the ratio of
coupling constants V;/V, as depicted in Fig. 3(d). As follows
from (4) and (6), the gap widths A are in both cases given by:

A =21V, — V), (7

|
~ oo

so that for increasing dimerization the minigaps become wider,
directly proportional to the difference between the coupling
constants. Moreover, the flat band is preserved for every
ratio of the coupling constants. In order to preserve stronger
coupling between sites within a primitive cell (p,q) [as shown
in Figs. 1(b) and 1(c)], we always set coupling constant V, to
have a higher value than V.

The fact that the type II dimerization, with a 12-site unit
cell, only shows nine distinct bands is explained by the
flat band itself being fourfold degenerate, since one may
construct four different fundamental compact four-site ring
modes involving nonequivalent sites from a given unit cell
[e.g., with the labeling of Fig. 1(c), the modes contain sites
{e,g.h.k}, {a,c}, {b}, and {i}, respectively, from cell (p,q),
with the remaining sites belonging to neighboring cells]. Due

® 5, o 2
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FIG. 3. Dispersion relations (energy spectra) for the cases of (a) uniform Lieb lattice, and dimerized Lieb lattices of (b) type L, and (c) type II,
when V; =1 and V, = 2. Plot (d) shows influence of strength of dimerization V,/V, on gap width of both dimerized Lieb lattices of I and II
type. Second coupling parameter V; is fixed to one. Dashed vertical line marks the case of uniform lattice for which only semi-infinite gaps

exist.
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FIG. 4. The amplitude distribution of a 4-ring mode in the
dimerized Lieb lattice of type II. Orange (gray) and black solid
lines depict coupling strength V; and V,, respectively. The dashed
square frames a block with the particular couplings between sites that
provides existence of ring modes.

to the particular symmetries of the type II dimerized Lieb
lattice, these highly confined states that belong to the flat band
will be antisymmetric under diagonal as well as antidiagonal
reflections with respect to their ring centers, and thus they will
have four peaks with alternating sign of amplitudes and equal
absolute values (see Fig. 4). In other words, the fundamental
flat band eigenmodes will have profiles of the same symmetry
as those obtained for a uniform lattice.

Note also that in the “anticontinuum” limit, with one of
the two coupling constants vanishing (e.g., V; = 0), both
configurations (type I and type II) transform to a system of
mutually uncoupled trimers with a 90° angle at the central
site. Each trimer is actually a fundamental block that supports
the existence of a highly localized mode with amplitude
distribution {a,b,c} = {1,0,—1} (type I lattice), and {e, f,h} =
{1,0,—1} or {g,j.k} = {1,0,—1} (type II lattice), respectively.
For the type I dimerization [Fig. 1(b)], these trimers all
point in the same directions, and thus they cannot simply be
combined to form a four-site ring mode. On the other hand,
for the type II dimerization [Fig. 1(c)] the trimers will be
“pointing” alternately upwards and downwards when moving
in the horizontal direction, and thus any four-site ring mode
may be viewed as the combination of two diagonally located
“anticontinuous” trimer modes.

III. NONLINEAR DIMERIZED LIEB LATTICES

The influence of nonlinearity in dimerized (“binary”) flat
band systems have previously been studied for 1D kagome
and ladder strips [25]. There, three types of nonlinear ring
solutions were found to exist: unstaggered, staggered, and
vortex. The binarism in strips provided formation of closed
six/four site structures mutually coupled via the same coupling

PHYSICAL REVIEW A 96, 063838 (2017)

constants. In this way, conditions for generation of stable ring
solutions were ensured in the nonlinear regime, too. However,
as may be deduced from the previous section, the additional
periodicity in the type I Lieb dimerized lattice does not allow
for constructing an arrangement of sites mutually coupled with
the same strength into ring formation, in contrast to the case
of the type II dimerization. This will be shown more explicitly
in the following.

Below we study the regime when nonlinearity of Kerr
type is “turned on” in dimerized Lieb lattices of type I
(Sec. IITA) and II (Sec. I B). Due to the symmetries of the
linear energy spectra (4), (6) of both systems with respect
to B = 0, equivalent results are obtained for defocusing and
focusing types of nonlinearity in (1). In the case of defocusing
nonlinearity localized modes will be generated in the gap
below the flat band, while in the case of focusing nonlinearity,
light localization will be possible in the gap above the flat
band. Due to this fact, we consider only the case of focusing
type of nonlinearity (y = 1), without loss of generality.

The stability of the nonlinear localized modes obtained
below is studied applying the linear stability analysis (LSA)
and direct dynamical simulations. Both procedures are per-
formed by introducing small perturbations to the modes.
Briefly, the LSA reduces to the derivation of the eigenvalues
(EVs) of the characteristic matrix of the linearized equations
for small perturbations. The instability is then related to the
nonzero real part of the corresponding EVs, which are actually
the growth rates of the perturbations [44—46]. Two types of
instability can be distinguished, the exponential (purely real
EV) and oscillatory (complex EV) type. On the other hand,
the dynamical stability of a certain mode is confirmed by
observing the effect of a small random amplitude perturbation
initially added to the mode. The perturbation is numerically
modeled by applying a uniform random number generator,
which gives a set of random numbers from the interval
[—0.01,0.01] [46].

A. Type I dimerization: Gap solitary modes

For the type I dimerization, using an ansatz in the
form of a stationary solution {a,,(2).bp 4(2),cp4(2)} =
{A,q.B,4,C p,q}eif’z, with  z-independent  amplitudes
{A,.4,Bp4,Cp 4}, and imposing the amplitude conditions (5)
for a fundamental four-site compact ring, we obtain from (1)
the following relations for the nonlinear frequency shift g:

Apg=—Cpq—>B= V|Cp,q|2’

2
A = e o =r(2) ic,.P2 8)
pq—1 = VZ p.q ﬁ =V V2 | p,q| ) (

Vi Vi Vi\? 2
Cp1q = _VZAM = vch,q - p= 7/(72> 1Cpgl™

Thus, unless y = 0 (linear model) or V, = V; (uniform Lieb
lattice) we see that sites located on opposite sides of the
antidiagonal through the center of the ring mode would get
different nonlinear frequency shifts, violating the assumption
of stationarity, and thus the compact ring structure cannot be
preserved in the nonlinear regime.

Still, we would expect that, at least as long as the nonlinear
frequency shift 8 is small (i.e., for small amplitudes or weak
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FIG. 5. Nonlinear localized modes in the minigap of type I dimerized Lieb lattice: (a) Power vs propagation constant for two families (A
and B) and corresponding amplitude profiles of a typical small-amplitude mode from (b) family A (8 = 0.101) and (c) family B (8 = 0.3)
when V;/V, = 0.25. Orange (gray) solid lines stand for V; = 0.25 coupling strength, while black ones represent V, coupling. The m and
n represent the site numbers of the lattice. Power curves in (a) show the existence range of solutions until the upper gap edge, located at
B = 0.75+/2 ~ 1.06 (solid curves, V; = 0.25) and B = 0.5+/2 ~ 0.71 (dashed curves, V; = 0.5), respectively.

nonlinearities), there should exist some family of (generally
noncompact) stationary solutions which connects to the exact
compact modes in the limit of the uniform Lieb lattice,
Vi/Vo— 1.

As V,/V, departs from 1, energy injected locally in the
system cannot equally distribute among the four ring sites.
Instead, the numerical simulations presented below show that
it primarily spreads to a and c sites of cells which are closest
to the ring block. This will lead to the formation of a localized
mode consisting of the four ring sites and two additional
neighboring sites where light (energy) has been redistributed.

To search for such families of gap solitary modes as exact
stationary solutions to Eq. (1), we implement a standard
numerical continuation procedure based on the modified
Powell minimization method [47], where exact four-site
compact modes of the linear model may be used as initial trial
solutions. As a typical criterion for identifying numerically
exact solutions, a convergence tolerance of 1078 is used. In
Fig. 5, we illustrate properties of two different families of
nonlinear stationary modes, denoted as A and B, found to
exist in the minigap of the type I dimerized lattice. Family
A [Fig. 5(b)] keeps ring’s symmetry properties of having its
main excitation on the four ring sites [cf. Fig. 2(a)] and being
antisymmetric around the diagonal through the ring center,
but delocalizing mainly to the sites strongly coupled to the
two antidiagonal b sites connecting the ring. On the other
hand, family B [Fig. 5(c)] can be viewed as a nonlinear
superposition of two A modes connected antidiagonally at
b site [(m,n) = (12,10) in Fig. 5(c)], with phases such that
the whole mode is antisymmetric around the diagonal through
this site. Note also from Fig. 5(a) that the power carried by a
solution from family B is approximately twice as big as that of
a solution from family A for the same 8. Both mode families
are characterized by strong localization in the vicinity of the
flat band (small g), while they become broader as 8 increases
and they get closer to the edge of the upper dispersive band
given by Eq. (7). Approaching the dispersive band (higher ),
very small amounts of energy can be localized also in b sites.

For stronger dimerization, the localization of light gets
more pronounced on sites coupled by the higher coupling
constant, which enables formation of highly peaked modes.

Figure 6 depicts “compactness” as a function of V;/V,.
Compactness indicates ratio of the power of localized mode
(on 4 and 2 main sites) with respect to total power launched
in the system. Red (upper) solid line depicts this ratio for the
four main sites in the case of ring structure (Compactness =
(lara 111> + laa 111> + le1z121* + leis,101*)/ P), while the blue
(lower) one indicates compactness for two main sites linked by
stronger coupling thus forming a trimer in the limit V; /V, — 0
(Compactness = (|ai4.11]* + |c13.12/>)/ P). Here, site indexing
(m,n) corresponds to the one presented in Fig. 5.

In the case of family A solutions, blue (lower) and red
(upper) lines approach each other with the decrease of ratio
Vi/V, [see Fig. 6(a)]. In the limit V; < V5, when the lattice
basically reduces to weakly coupled trimers as pointed out in
Sec. IT A, the family A reduces to a trivial nonlinear two-site
antisymmetric solution localized only at sites a and ¢ within
a single trimer, while the family B (not shown in Fig. 6)
reduces to the superposition of two such identical solutions
positioned in two neighboring trimers along the antidiagonal.
In fact, solutions continued from these trimer modes exist
not only in the gap but also above the linear spectrum, but
their shapes bear no resemblance to flat band modes in this
regime. On the other hand, as the coupling ratio approaches
the case of uniform lattice, the energy of the gap soliton slowly
spreads to the neighboring sites of the two dominant sites
within the ring formation (see mode distribution for V,/V, =
0.9 in Fig. 6). With further decrease of dimerization strength
this mode profile doesn’t change and “‘survives” in the case
of uniform lattice as a nonlinear stationary solution carrying
around 93% of the total amount of power on four ring sites.
Thus, there is no continuation of solutions of family A to the
exact compact modes in the limit of the uniform Lieb lattice,
Vi/ Vo — 1.

Beside A and B families of nonlinear gap solutions,
we found a narrow region of existence of another class of
nonlinear localized solution which connects to the exact
compact modes in the limit of the uniform Lieb lattice
as depicted in Fig. 6(b). This class of solutions does not
preserve full compactness of the nonlinear ring mode when
continued away from the uniform case. Although its power
is mostly localized in the ring formation, a small amount
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FIG. 6. Compactness vs V;/V, with V; < 1 and V, = 1 for (a) family A and (b) nonlinear ring solitons, characterized with 8 = 0.001. The
upper (red) lines show compactness on all four ring sites, while the lower (blue) lines show compactness on the two ring sites belonging to a
strongly bonded trimer. Panels on the right show amplitude distributions of modes for different coupling strengths: trimer solution (V,/V, = 0)
and gap soliton of family A for V;/V, = 0.25—first row, and gap solitons of family A for V,/V, = 0.9 and V;/V, = 1—second row. Amplitude
distributions of nonlinear ring solitons for V;/V, = 0.96 and uniform lattice are depicted in the third row.

of energy is distributed among neighboring sites making an
antisymmetric pattern around the diagonal through the ring
center, as depicted in the third row of amplitude distribution
plots in Fig. 6 when V;/V, = 0.96. Note that, in contrast
to the family A (and B) modes, this solution family has its
largest amplitude on the two ring sites connected with the
smaller coupling constant V| [compactness with respect to
the strongly bonded trimer sites in Fig. 6(b) is smaller than
0.5], and thus it cannot be continued into a single trimer mode
for decreasing V. However, these solutions are shown to be
unstable in the whole range of existence and detailed analysis
of their behavior is beyond the scope of this paper.

The stability of the families of localized modes A and
B is considered by applying both the LSA and dynamical
simulations. Figure 7 represents the corresponding stability
diagram for A family of solutions when V, is set to 1 and
Vi < 1. The area of stable propagation regime is depicted
with light blue (gray) color. In the rest of the existence range,
solutions exhibit oscillatory instability during the propagation
through the lattice. An example of the instability scenario for
the family A is illustrated in Fig. 8. The very weak instabilities,
signalled by LSA for small g, are possibly due to the finite-size
effects and decrease with increasing system sizes, as seen in
Fig. 8(b). Similar scenarios are well known for other situations
with resonances between extended eigenmodes belonging
to continuous bands, see, e.g., Refs. [45,48] and references
therein. We confirmed by direct simulations that these have no
notable effects on the core part of the localized modes, and

therefore the corresponding regimes are identified as stable in
Fig. 7. On the other hand, the true instability (not vanishing
for larger systems) appearing for larger amplitude [ =~ 0.3 in
Fig. 8(a)] can be associated to a resonance between an internal
mode of the localized solution and extended eigenmodes and
results in increasing amplitude oscillations and radiation from
the localized solution center.

While a range of stable propagation of family A solutions is
found to exist, solutions of family B exhibit unstable behavior
in the whole range of existence. In the case of the family A
solutions, the widest range for 8 of stable propagation occurs
for V,/V, = 0.5, while it narrows as we approach to the limits

1.5

stable propagation
I unstable propagation
| nosolution

0.5

FIG. 7. Stability diagram for the solution of A family of the type I
dimerized Lieb lattice for V| < 1 and V, = 1.
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conditions). (b) Magnification of (a) for smaller 8. The dashed lines depict growth trend of EVs.

which correspond to the cases of uncoupled antisymmetric
trimer modes (V;/V, — 0) and uniform lattice (V;/V, — 1).
In the anticontinuous limit the trimer solutions (Fig. 6) are
themselves unstable for 0 < 8 < 2\/§V2 [49]. On the other
hand, as we approach to the limit of uniform lattice, nonlinear
localized modes lose their stability due to the proximity of
dispersive bands.

If a finite perturbation of 1% of amplitude on the particular
site is added to a stationary mode in the stable regime of Fig. 7,

® Alllm(EV)
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real part of EVs (>0.0001)
s T

o©
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power
spectrum

0.00

400
Z

800
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—_
2
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one may observe very long-lived “breathing” oscillations as
illustrated in Fig. 9(b). These are explained by the existence
of low-frequency internal modes in the linearized spectrum,
see Figs. 9(a) and 9(d). When the internal mode frequency ap-
proaches the continuous band (8 =~ 0.2), its second harmonic
lies inside the band and second order resonances take place. On
the other hand, for smaller 8 only higher frequency harmonics
with corresponding small peaks as shown in Fig. 9(d) enter
the continuous spectrum, and thus in this regime the radiative

*(b)

400 800

(d)

® corresponding Im(EVs) for
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FIG. 9. Dynamics of gap solitons (family A) for V; = 0.5 and V, = 1. (a) The plot of the upper part of full spectrum of stability EVs
[positive Im(EV)] vs 8. Examples of oscillating dynamics of gap solitons for (b) § = 0.04 (no apparent decay of oscillations) and (c) § = 0.42
(unstable regime). Red (gray) lines in plots (b) and (c) depict profiles of amplitude on a site [(m,n) = (12,13) in Fig. 5(b)] with added
perturbation, while the black one stands for the case when the mode evolves without presence of perturbations (only affected by numerical
round-off errors). Green (left) and blue (right) vertical dashed lines in (a) correspond to the modes depicted in (b) and (c), respectively. Plot (d)
depicts spectrum of amplitude presented in (b) with corresponding positive Im(EVs).

063838-8



LOCALIZED GAP MODES IN NONLINEAR DIMERIZED ...

PHYSICAL REVIEW A 96, 063838 (2017)

m ImEV)al (a) ®ImEV)al (b) B mEV)al (c)
304 Im(EV) with significant 304 Im(EV) with significant Im(EV) with significant
. real part of EVs (>0.0001 ||||||||||||||| : real part of EVs (>0.0001) i 3.0 real part of real EVs (>0. 0001)
Il i Prord porb b
S IIIIIII|I|III|IIIIIIIIIIIIIIIIIIIIIIIIII i NN REREE
@ g ; REEE EEEEE
= III|IIIII||I||II|I||||II P SREE AN A
E 1.5 .-|||||IIIHH||||| 1.5 454 14 i i i i | (T A
= s : v ioqot
||IIII|I|IIIIII|IIIIIIII|III |II|IIIIII|II||I||||||.. i ! P
I|III||
I|II||II|II|IIIIIIIII|II||||||Jﬂ[|| . F
0.0 fuz 0.0 frosseerzits 0.0 N S S S S T S S S S
0.0 06 1.2 0.00 0.35 0.70 0.00 0.07 0.14
m Re(EV) pure m Re(EV) pure 0.067 g
1 Re(EV
0-50 Re(EV) compex (>0.0001) (d) 030] © Re(EV)complex (>0.0001) (e.) Re(EV) bompex (-0.0001) 0
>
[ ] 0.03+
760‘25 0.15+
o
0.00 . : 0.00-k . : 0.00 1 : !
0.0 0.6 1.2 0.00 0.35 0.70 0.00 0.07 0.14
p p p

FIG. 10. Upper part of full spectrum of stability EVs [positive Im(EVs)] vs 8 for coupling ratios (a) V,/V, = 0.1, (b) V;/V, = 0.5, and
(c) Vi/V, = 0.9, and corresponding positive Re(EVs) vs g in (d), (e), and (f). Size of the system is 7 x 7.

decay of the oscillations becomes extremely slow [Fig. 9(b)]
and probably unnoticeable in any experimentally feasible
setup. The low-frequency internal modes are seen in Fig. 9(a)
to become resonant with the continuous spectrum for g =~ 0.4,
yielding instabilities for larger . However, as seen in Fig. 8,
the mode becomes unstable already for smaller values of
B. By comparison, we may conclude that the very weak
size-dependent instabilities for small 8 in Fig. 8 correspond to
overlapping bands in Fig. 9(a), while the surviving instability
for B 2 0.3 corresponds to a localized eigenmode which is
seen to bifurcate from the upper edge of the band with negative
slope in Fig. 9(a), resonating with the band with positive slope.
An example of dynamics in a regime with several unstable EVs
is shown in Fig. 9(c).

Both solution families have very small, almost insignificant
power thresholds necessary for their existence (minimal P for
every ratio V;/ V; is in the order of 1073 or smaller). However,
while the A family can be found for all ratios, the existence
range of B family of solutions is narrower and extends up to
V1 / V2 < 0.65.

To summarize this part on the type I dimerization, we can
conclude that dynamically stable breathing localized modes
can be found close to the flat band. This is an important
result because it refers to a significance of the dimerization.
In other words, the additional periodicity in the lattice pattern
opens gaps in the energy spectrum which offers possibility for
formation of nonlinear localized modes.

B. Type II dimerization: Nonlinear compact modes

On the other hand, analysis analogous to that of Eq. (8)
shows that the arrangement of couplings between sites pro-
posed in Fig. 1(c) also provides the existence of nonlinear
stationary compact modes (ring modes) in the dimerized Lieb
lattice of type II. Namely, for such a dimerized configuration,
all sites of the linear ring mode have amplitudes of equal

absolute values as shown in Sec. II A (Fig. 4), and thus every
site gets the same nonlinear frequency shift 8 = y|A|?> from
the on-site nonlinearity. Consequently, there is a continuation
from the linear compact modes into a nonlinear branch of
compact homogeneous four-site ring solutions with respect to
the nonlinearity parameter, with power given by P = 48/y.
Therefore, we can conclude that by a particular arrangement
of the lattice geometry, where an enlarged unit cell of 12 sites
is needed in order to sustain rings with both diagonal and
antidiagonal symmetry axes in the presence of dimerization,
nonlinear ring modes can be managed. In the following, we
will consider properties of such topology.

Nonlinear ring modes in the dimerized lattice of type II are
found to exist in the minigap, as well as in the semi-infinite
gap above the linear spectrum, Fig. 3(c). However, the LSA
generally indicates the instability of these nonlinear ring modes
inside the minigap as shown in Fig. 10.

Several features of these instabilities can be understood
analytically from certain limiting cases. First, in the an-
ticontinuous limit (V;/V, — 0), the lattice can be viewed
as a system of weakly coupled trimers and the nonlinear
ring solution reduces to a superposition of two identical
single trimer solutions positioned within the ring block (cf.
Fig. 4). As shown in Ref. [49], these solutions are unstable.
From the exact expression for the stability EVs A derived in
Ref. [49], we obtain for small 8 < V; (i.e., weak nonlinearity)
A = £iv2V, £ B/2 + O(B2). These instabilities will persist
also for small but nonzero V| « B, resulting in the complex
instabilities seen in Figs. 10(a) and 10(d). The corresponding
eigenvectors are symmetric with respect to the diagonal, and
thus break the spatial antisymmetry of the ring mode, and
correspond to perturbations which populate the originally
empty middle site in each trimer. In addition, we note in Fig. 10
a purely real EV which is not present in the anticontinuous
limit, but which grows and becomes the dominating instability
mechanism when V;/V; increases [Figs. 10(e) and 10(f)]. This
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FIG. 11. Moduli of amplitudes on ring sites with the corresponding power of a perturbed nonlinear ring mode, characterized by g = 0.1,
in a dimerized Lieb lattice of type II with (a), (b) V;/V, = 0.1, (¢), (d) V;/V, = 0.5, (e), (f) V;/ V> = 0.9, and (g), (h) V;/V, = 1. In all cases

V,issetto 1.

EV belongs to a different symmetry class, with eigenvector
antisymmetric with respect to the diagonal but symmetric
with respect to the antidiagonal, implying that the middle
sites in the strongly bonded trimers remain unexcited, while
exciting instead the weakly bonded sites connecting two
trimers. By assuming A,8,V; < V,, one may obtain from
a straightforward perturbation calculation for this symmetry
class that, for the unstable EV, A ~ :I:«/ZB Vi/V, to lowest
order. Likewise, we obtain also from this symmetry class a
stable eigenmode with A & +i8, which as seen in Figs. 10(a)
and 10(b) generates additional weak oscillatory instabilities as
it collides with the band spectrum for larger .

Direct numerical simulations show that the dynamics of
nonlinear ring modes and evolution of instabilities indeed
depend strongly on the ratio of coupling constants. In all cases
a certain amount of energy exchange between the background

and the lattice sites at which the ring is localized has been
observed. Figure 11 depicts dynamics of nonlinear ring modes
through moduli of amplitudes on ring sites (e, &, g, and k
sites) as well as power change on corresponding ring sites
for different coupling ratios. Here, random perturbation has
been added only on sites occupied with a nonlinear ring.
The amplitude of perturbation equals 1% of the value of
the amplitude at the particular site. Explicit examples of
resulting (moduli of) amplitude distributions for two cases
with qualitatively different dynamics are shown in Fig. 12.

In the range of coupling ratios when V| < V,, nonlinear
ring modes tend to delocalize whereby most of the energy
spreads across the lattice. An example of propagation of a
perturbed nonlinear ring mode (8 = 0.1) through a lattice with
coupling ratio V;/V, = 0.1 is depicted in Fig. 11(a). Decrease
in power [Fig. 11(b)] is evident implying radiation of energy
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FIG. 12. Moduli of amplitude distributions of perturbed ring modes at z = 1045 in a dimerized Lieb lattice of type II with (a) V;/V, = 0.1

and (b) V;/V, =0.5.

from the “ring sites.” Figure 12(a) shows the corresponding
amplitude distribution at z = 1045. Note that the pattern of
amplitude moduli is very close to symmetric with respect to the
antidiagonal through the initial ring mode, which indicates that
the amplitude pattern itself essentially keeps its antidiagonal
antisymmetry, while the (anti)symmetry around the diagonal
is clearly broken. This is a typical outcome in the regime
dominated by the complex instability in Figs. 10(a) and 10(d).

With decreasing dimerization strength (increasing V;/ V),
the dynamics of the solution goes into a regime with a long-
lived regular exchange of energy between ring and neighboring
sites as shown in Fig. 11(c), whereby power on “ring sites”
can drop to around 70% of the total mode’s power [Fig. 11(d)].
As can be seen, energy exchange also occurs within the ring
formation itself: between e and &, and g and k sites. The
corresponding amplitude distribution at z = 1045 is shown in
Fig. 12(b). Although the power on ring sites has minimum
value at this propagation length z = 1045 [see Fig. 11(d)],
most of the energy stays localized on and close to the ring
sites preserving the ring formation of the mode as shown in
Fig. 12(b). As also can be seen, in contrast to the case in
Fig. 12(a), the mode remains very close to (anti)symmetric
around the central diagonal, while the (anti)symmetry is
clearly broken around the antidiagonal. This is the typical
feature of the regime dominated by the real instability in
Fig. 10(e).

As we approach the case of the uniform lattice the situation
changes. After a certain propagation length [z ~ 1300 for the
case with V;/V, = 0.9 illustrated in Figs. 11(e) and 11(f)],
light tends to localize more within one site of the ring [e site
in Fig. 11(e)] weakly interacting with closest neighbors. Thus,
even though the transient dynamics is still derived from the real
eigenmode in Fig. 10(f) with preserved diagonal antisymmetry,
further instabilities will finally also break this symmetry. In the
case of uniform lattice, no significant change appears prior to
z ~ 300 when instability slowly develops and light tends to
stay maximally localized only on one site of the ring [e site in
Fig. 11(g)] radiating most of the energy across the lattice.

Generally, the energy exchange rate also grows for modes
with g taking values away from the flat band position for fixed
dimerization strength V;/V,. In order to check regularity of
energy exchange among the sites of nonlinear ring modes, we

took the propagation length in our simulations to be z = 500.
Relying on experimental results published in Ref. [31], in
which dimensions of waveguides and separations between
them are several microns, and presuming that the coupling
constants are dominantly dependent on these quantities,
the estimated length of z =500 in arbitrary units would
correspond to a sample length of 50 cm. This can be considered
as a long propagation limit. Based on this, we can state that the
main excitation stays close to the ring and that nonlinear ring
modes are practically preserved for such experimental setups if
the exchange of the energy between ring and neighboring sites
during the propagation length (z = 500) is regular as shown in
Fig. 11(c) and if the power outside the ring sites doesn’t exceed
more than 1/3 of the total mode’s power. If these conditions
are satisfied we assume that the nonlinear ring formation has
been preserved in relevant experiments.

According to the performed dynamical simulations appro-
priate “power localization on ring” diagram has been obtained
as plotted in Fig. 13. The plot shows two different regimes
within the existence range of nonlinear ring modes, in which
the observed ring mode is viewed as preserved [light blue

15 : ‘ ‘ ‘ ‘
preservation of ring formation
I breaking of ring formation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
VN,

FIG. 13. Parameter diagram depicting regimes of preservation
[light blue (gray) color] and breaking [deep blue (dark gray) color]
of four-site nonlinear ring formation when 0 < V; < 1l and V;, =1,
of the type II dimerized Lieb lattice. Regimes are defined upon two
criteria: regular exchange of energy along the propagation length
z = 500 and power preservation of at least 2/3 of total modes’ power
on four main sites. Line between deep blue (dark gray) and white
region represents upper border of minigap.
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(gray) color in Fig. 13] if the above criteria are fulfilled.
As can be seen, this region gets widest for coupling ratio
Vi/ V2 = 0.75. Approaching to the anticontinuous limit, the
nonlinear ring mode can be considered as a superposition
of two uncoupled unstable trimer modes which leads to
delocalization of the nonlinear ring mode. In the limit of
uniform Lieb lattice we observe light localization dominantly
on one site of the ring. It is interesting to note that the regime
characterized as experimentally preserved in Fig. 13 largely
coincides with the regime where the instability scenario is
strongly dominated by the real EV preserving the diagonal
antisymmetry in Figs. 10(d)-10(f).

Finally, it is worth noting that the same procedure has been
done when random perturbation is added on all sites of the
lattice and equals 1% of the amplitude value on site e. Similar
behavior of amplitudes’ dynamics has been observed whereas
delocalization of nonlinear ring modes occurs later for the case
of random perturbations added only on ring sites. The reason
for this is absence of noise and smaller coupling between zero
amplitude neighboring sites.

IV. CONCLUSIONS

In this paper we have considered the mutual effects of the
nonlinearity and dimerization, characterized by the opening of
gaps in the EV spectra, on the different localized mode gener-
ation and propagation in 2D Lieb lattices. We have considered
two explicit dimerization patterns with different symmetry
properties and unit cell sizes. Nonlinear compact localized
modes, emerging inside the newly opened minigaps from the
linear flat band ring solutions, were shown to form only in
the dimerized lattice having both diagonal and antidiagonal
symmetry axes (“type II”’). For the dimerization with only di-
agonal reflection symmetry (“type I”’), we have instead shown

PHYSICAL REVIEW A 96, 063838 (2017)

the possibility to generate nonlinear stationary and “breathing”
localized modes inside the minigaps, which are dynamically
stable in the vicinity of the flat band. While the ring mode in the
type Il nonlinear dimerized lattices is reminiscent of the linear
flat band ring, the localized breathing modes found in the mini-
gaps of the type I lattice are highly localized structures which
can carry a large amount of energy within just a few sites. Our
findings might open a new pathway in the attempts to realize
the most suitable environment and conditions for full control
of the light propagation in photonics. Some experimental real-
izations of electronic Lieb lattices have also been done recently
using CO molecules on Cu(111) [50]. The proposed system
may be a good candidate for our predictions, since it allows one
to tune parameters that cannot be easily varied in a real solid-
state material. Moreover, with the dint of femtosecond laser
inscription technique it is possible to realize various lattice
patterns. For instance, in Refs. [51,52] experiments showed
that weak coupling was required to obtain nonlinear localized
solutions at the surface of femtosecond laser written nonlinear
square lattices. Having in mind that in dimerized Lieb lattice
soliton solution bifurcates from the linear limit, its geometry
can provide conditions for tailoring strength of coupling.
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