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Group- and phase-velocity-mismatch fringes in triple sum-frequency spectroscopy
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The effects of group- and phase-velocity mismatch are well known in optical harmonic generation, but the
nondegenerate cases remain unexplored. In this work we develop an analytic model which predicts velocity
mismatch effects in nondegenerate triple sum-frequency mixing, TSF. We verify this model experimentally using
two tunable, ultrafast, short-wave IR lasers to demonstrate spectral fringes in the TSF output from a 500-μm-thick
sapphire plate. We find the spectral dependence of the TSF depends strongly on both the phase-velocity and the
group-velocity differences between the input and output fields. We define practical strategies for mitigating the
impact of velocity mismatches.
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I. INTRODUCTION

Triple sum-frequency, TSF, generation is a multicolor
four-wave mixing process in which the generated electric
field has an output frequency defined by the sum of all
three driving fields. TSF is the four-wave mixing extension
of sum-frequency generation (SFG), a three-wave mixing,
ladder-climbing process, and the multicolor extension of
third-harmonic generation (THG). In TSF, three electric fields
drive an oscillating nonlinear polarization which generates the
measured TSF field as defined by the medium’s susceptibility.
This susceptibility is the sole source of analyte information.
In TSF, the driving lasers’ frequencies are scanned; when a
driving field is resonant with a state, the susceptibility becomes
large and the TSF intensity dramatically increases. Wright
and co-workers are actively developing TSF as an analytical
methodology which is sensitive to vibrational-electronic state
coupling [1–4].

It is well known that spectroscopies which are defined by the
sum of their driving frequencies and accomplished in normally
dispersive samples cannot be phase matched. This means that
the emitted TSF field cannot maintain a cooperative phase
relationship with the driven nonlinear polarization for long
distances because they travel with different velocities [5,6].
Velocity mismatches cause the output to scale in a nontrivial
way with sample length. Ultrafast pulses further complicate
the situation because the different fields travel with different
group velocities and can temporally walk away from each other
[7]. For instance, in THG microscopy, group-velocity effects
lead to an unusual depth dependence that can be mistaken
for surface selectivity [7,8]. This nontrivial scaling between
the nonlinear polarization and the emitted field drastically
complicates measurement of the susceptibility.

As a rule of thumb, velocity-matching effects are mitigated
by minimizing the excitation region’s length, L, but the thin-
ness required to satisfy this rule of thumb (L < 10 μm for the
experiment explicated herein) can be structurally untenable.
Structurally, thick windows or substrates are desirable for TSF
spectroscopy (e.g., a thin film deposited on a thick substrate,
or a liquid sample sandwiched between two windows). In this
work, we consider the response of a typical substrate in an
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ultrafast, nonresonant TSF experiment to demonstrate phase
and group-velocity effects. We accomplish a two-color TSF
experiment with frequency ωTSF = ω1 + 2ω2 and spatial phase
�kTSF = �k1 + 2�k2. We find that long samples and broadband
excitation pulses lead to characteristic modulations in the
output spectra defined by velocity-matching conditions. These
modulations depend on excitation color and will obscure the
analyte response unless strategies are used to mitigate the
observed fringes. We define such strategies in the Discussion
section. Our formalism and findings easily extend to all
wave-mixing processes whose output frequency is the sum
of their input frequencies.

II. THEORY

In this section we solve the wave equation for TSF using
pulsed excitation with finite bandwidth. Our derivation is
informed by Angerer et al.’s [9] frequency-domain derivation
of ultrafast second-harmonic generation (SHG) and Boyd’s
[10] derivation of cw SHG intensity. Our derivation neglects
the transverse evolution of the wave equation; these effects are
important in experiments that tightly focus or have large beam
crossing angles [11].

The formation of the TSF electric field, E4(z,ω), through a
dispersive medium is given by Maxwell’s scalar wave equation
(presented in the frequency domain and in the SI unit system)
[10]: [

∂2

∂z2
+ k2(ω)

]
E4 = ω2

ε0c2
PNL, (1)

in which ε0 is the vacuum dielectric constant, c is the vacuum
speed of light, PNL is a nonlinear polarization driven by the
excitation fields, and k(ω) is the frequency-dependent spatial
wave vector. For both the excitation pulses and the TSF output
field, the spatial wave vector is described by a first-order Taylor
expansion about the field’s central frequency, ω0:

k(ω) ≈ k(ω0) + ∂k

∂ω

∣∣∣∣
ω0

(ω − ω0)

= v−1
p ω0 + v−1

g (ω − ω0), (2)

where vp and vg are the phase and group velocity at ω0,
respectively. The phase velocity is related to the refractive
index, n, by vp = c/n, and the group velocity is related to
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the phase velocity and refractive index by vg = vp(1 + ω
n

∂n
∂ω

).
Truncating the Taylor series after the first-order neglects effects
like group-velocity dispersion. We also neglect effects like
self-phase modulation. These effects are small because we
work with sufficiently short samples and weak driving fields
[12].

Our electric fields have Gaussian envelopes:

Ej (z,ω; ωj ) = Aj (z) exp [ikj (ω)z] exp

[
− (ω − ωj )2

2σ 2
j

]
,

(3)

where ωj is the spectral center, σj is the spectral bandwidth,
kj (ω) is k(ω) expanded such that ω0 = ωj , and Aj (z) is the
amplitude through the sample. As we shall show, an analytic
solution to the wave equation results when we assume this form
for both the driving excitation fields (E1, E2, and E3) as well as
the generated TSF field (E4). Using this definition for our TSF
field, and invoking the slowly varying envelope approximation
(| ∂2A4(z)

∂z2 | � |2ik4(ω) ∂A4(z)
∂z

|) in order to disregard the second-
order derivative, Eq. (1) becomes

∂A4(z)

∂z
exp [ik4(ω)z] exp

[
− (ω − ω4)2

2σ 2
4

]

= ω2

2ik4(ω)ε0c2
PNL(z,ω). (4)

We now consider the form of the nonlinear polarization. In
the convention of [13], PNL is given by

PNL(z,ω4 = ω1 + ω2 + ω3)

= ε0χ
(3)(ω4; ω1,ω2,ω3)

× E1(ω1)E2(ω2)E3(ω3), (5)

in which χ (3) is the third-order susceptibility (we suppress all
tensors in this derivation). Equation (5) neglects the buildup of
polarization that can occur with resonant, impulsive excitation
[14]. It is applicable for this work since transparent materials
lack visible and near-IR resonances.

To account for our finite pulse bandwidth, the nonlinear
polarization is the weighted average of all incident field
components:

PNL(z,ω4) = ε0

∫∫∫ +∞

−∞
χ (3)(ωα + ωβ + ωγ ; ωα,ωβ,ωγ ,)

× E1(z,ωα; ω1)E2(z,ωβ ; ω2)E3(z,ωγ ; ω3)

× δ(ω4 − ωα − ωβ − ωγ )dωαdωβdωγ , (6)

in which δ is the Dirac δ distribution. Furthermore, since
transparent materials have a pseudoflat spectral response, χ (3)

is well approximated as a constant and may be removed from
the integral.

For this work, we assume all driving fields have the
same bandwidth, σj = σ . Assuming χ (3) is constant and
approximating k(ω) with a first-order Taylor expansion, Eq. (6)

can be evaluated [15] as

PNL(z,ω) =P (z) exp

[
− (ω − ω1 − ω2 − ω3)2

6σ 2

]

× exp
[
iz

(
v−1

p,1ω1 + v−1
p,2ω2 + v−1

p,3ω3
)]

× exp

[
iz

3

(
v−1

g,1 + v−1
g,2 + v−1

g,3

)

× (ω − ω1 − ω2 − ω3)

]

× exp

[
σ 2z2

3

(
v−1

g,1v
−1
g,2 + v−1

g,1v
−1
g,3

+ v−1
g,2v

−1
g,3 − v−2

g,1 − v−2
g,2 − v−2

g,3

)]
, (7)

in which we defined the spatial amplitude term

P (z) ≡ 2πε0σ
2

√
3

χ (3)A1(z)A2(z)A3(z). (8)

Inspection of Eq. (7) shows that the spectral bandwidth of the
polarization is

√
3 larger than the driving fields and centered at

the TSF frequency ω = ω1 + ω2 + ω3. The last multiplier in
Eq. (7) depends on σ 2z2 and the differences in group velocity
among the driving pulses. By the Cauchy-Schwarz inequality,
the exponent is always negative so that the multiplier is
bounded to (0,1]. This term captures how group-velocity
differences cause the pulsed excitation beams to temporally
walk off from each other. Such effects may become important
in TSF using disparate driving frequencies. For simplicity, we
approximate this term as unity, which is valid when all driving
fields have sufficiently similar group velocities. Since we have
assumed a nonresonant medium with a shallow focus, there
is no depletion of the excitation fields so we approximate the
amplitudes as constant: P (z) = P .

We now substitute Eq. (7) into Eq. (4). We assume the
generated TSF field has the same spectral properties as PNL

(σ4 = √
3σ and ω4 = ω1 + ω2 + ω3), and so Eq. (4) simplifies

to

∂A4(z)

∂z
=P

ω2

2ik4(ω)ε0c2
exp

[
iz

(
�k + (ω − ω4)�v−1

g

)]
,

(9)

where the phase-velocity mismatch, �k, and the group-
velocity mismatch, �vg , are defined according to

�k ≡ v−1
p,1ω1 + v−1

p,2ω2 + v−1
p,3ω3 − v−1

p,4ω4, (10)

�v−1
g ≡ v−1

g,1 + v−1
g,2 + v−1

g,3

3
− v−1

g,4. (11)

Integration of Eq. (9) (from z = 0 to L) yields

A4(L,ω) = Pω2

2k4(ω)ε0c2

×
[

1 − exp
{
iL

[
�k + (ω − ω4)�v−1

g

]}
�k + (ω − ω4)�v−1

g

]
,

(12)
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where L is the sample path length. The total TSF field is then

E4(L,ω; ω4) =A4(L,ω) exp [ik4(ω)L] exp

[
− (ω − ω4)2

6σ 2

]
.

(13)

For intensity-level detection, I4 ∝ |E4|2, we arrive at the key
equation for this work:

I4(L,ω) ∝ I1I2I3L
2sinc2

[[
�k + (ω − ω4)�v−1

g

]
L

2

]

× exp

[
− (ω − ω4)2

3σ 2

]
. (14)

Equation (14) describes the expected TSF signal as L, �k,
and �v−1

g change. If there is no group-velocity mismatch,
�v−1

g = 0, or if we measure at the center of the output pulse,
ω = ω4, then we recover the same �kL periodicity known in
SHG and other processes [10,16,17]. Fringes defined by �kL

will hereafter be called phase-mismatch fringes. These are
also referred to as Maker-Terhune–type oscillations [17,18].
We note the expected intensity is periodically dependent on
[�k + (ω − ω4)�v−1

g ]L. Normally, minimizing �kL maxi-
mizes the output intensity, but for ultrafast pulses, the group-
velocity mismatch is also important. The [(ω − ω4)�v−1

g ]L
term will result in periodicities of the spectrally resolved output
for a given color combination of pulses (hereafter called group
mismatch fringes). This spectral dependency on group-velocity
mismatch is known for SHG [19–23].

To understand the consequences of this model, we calculate
the electric field generated through a sapphire substrate as a
function of sample length, L. We use the refractive index
of sapphire as measured by [24]; for the range of excitation
frequencies we survey, |2π/�k| ≈ 15 μm and |2π�vg| ≈
30 μm/fs. Figure 1 shows the calculated TSF field that results
over a range of different substrate lengths. By showing the
range of substrate lengths, one can observe the “buildup” of
TSF through the sample. The frequency-domain [Fig. 1(a)]
and time-domain [Fig. 1(b)] representations of the TSF field
provide different insights on the propagation. We explore both
representations to give a thorough picture of the propagation
effects.

As sample length increases, higher-order propagation
effects are needed to explain the output. For the shortest
path lengths (L � �k−1), phase mismatch and group-velocity
mismatch do not strongly influence the output and the signal
grows quadratically with L. Between the shortest path lengths
and ∼50 μm, (�k−1 < L < �vg�t ), signal output modulates
with phase-mismatch fringes. The modulation only depends
on the sample length. If cw driving lasers were in use, we
would only see these phase-mismatch fringes.

At path lengths longer than ∼50 μm, the pulsed nature of
the propagation becomes essential to explain the evolution. In
the frequency domain, these path lengths are large enough to
resolve periodicities across the bandwidth of the TSF output.
The fringes, which were horizontal at smaller path lengths,
now accrue a tilt that gives them a mixed frequency and
path length dependence. The accrued tilt is defined by the
color dependence in Eq. (14), which gives modulations in
the frequency distribution. In the time domain [Fig. 1(b)], the

FIG. 1. Pulsed excitation model for degenerate excitation (ν̄1 =
ν̄2 = ν̄3 = 7700 cm−1) in sapphire with sample lengths up to 500 μm.
(a) Frequency distribution of the output against sapphire sample
length. The frequency axis is referenced to the TSF frequency center,
ω4 = ω1 + ω2 + ω3. (b) The temporal envelope of the output against
sapphire sample length. The time axis is referenced relative to when
a TSF pulse which was generated at the front of the sample leaves the
sample. In both plots, the small plots overhead show frequency and
time cross sections of L = 10 μm (dotted orange) and L = 400 μm
(solid dark pink). The driving fields have widths of σ = 160 cm−1.

group-velocity difference is large enough that the driving field
walks off of the initial TSF polarization created at the front of
the sample. In effect, this walkoff causes the Gaussian pulse
to break into two distinct pulses separated by time �vgL.
The delay corresponds to the TSF field created at the back of
the sample exiting the sample sooner than the field created at
the front of the sample. There is no TSF field in between
the pulses because of symmetric, destructive interference
of the phase-mismatch fringes, as previously seen in THG
microscopy [7,8]. Only electric fields generated at the sample
edges contribute significantly to the observed output—electric
fields generated at different planes in the sample interior are
out of phase with each other and thus destructively interfere
[7]. Others have observed and explained this type of separation
in SHG [18,25,26].

III. EXPERIMENTAL

An ultrafast oscillator (Spectra-Physics, Tsunami) seeds
a regenerative amplifier (Spectra-Physics, Spitfire Pro XP)
which creates ultrafast pulses (∼35 fs) centered at 12500 cm−1

with a 1-kHz repetition rate. These pulses pump two optical
parametric amplifiers, OPAs, (Light Conversion, TOPAS-C)
which we label “OPA1” and “OPA2.” The OPAs are operated
in the “signal” region for this experiment and their motors are
tuned to maximize the smoothness of the OPA’s tuning curve.
[See Figs. 5(a)–5(d) for OPA power curves and tuning tests.]
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FIG. 2. TSF amplitude at multiple combinations of pump colors—a juxtaposition between experiment and model. Experimental spectra
(a and b) are represented as the square root of the detected intensity. These spectra go to zero near the edges due to a lack of driving laser
intensity—see Figs. 5(a) and 5(b). We note that (b) has been lightly smoothed. (c) Our model’s prediction assuming ω = ω1 + 2ω2 with
effectively no spectral bandwidth of resolution. (d) Comparison of a color and linestyle-coded trace from each of (a, b, and c).

Their output, which we label ω1 and ω2, ranges from 6200 to
8700 cm−1. A silicon wafer (0.4 mm thick) acts as a low-pass
filter (cutoff: ∼8900 cm−1) for removal of residual 12500 cm−1

pump light. A motorized (Newport, MFA-CC) retroreflector
defines the time delay, τ21, between the two pulses. The
relative delay of different colors of light caused by dispersion
of transmissive optics is actively corrected by offsetting the
τ21 set point for each possible color combination. The offset
is empirically defined by maximizing the transmitted TSF
signal—see Appendix B for the measured offset. A spherical
mirror (f = 1 m) focuses the two beams onto the sample
500-μm-thick, double-side-polished sapphire) with each beam
being 1◦ from surface normal (2◦ between beams). The width
of the Gaussian mode at the sample position is ∼375 μm; inci-
dent pulse energies are ∼10 μJ (ω2) and ∼1 μJ (ω1) per pulse.
The transmitted, spatially and temporally coherent output from

the sample is spatially isolated in the k1 + 2k2 direction with an
aperture, focused into a monochromator (HORIBA Jobin Yvon
MicroHR, 140 mm focal length, with a 1200 nm blaze and 150
grooves per mm grating), and homodyne detected (intensity
level) with a thermoelectrically cooled photomultiplier tube
(PMT) (Hamamatsu Photonics, H7422-20). This PMT has a
responsivity which changes by a factor of ∼4 over the range
of detected light. All collected TSF spectra are shown on the
amplitude level (in postprocessing we take the square root of
the detected and recorded intensity). The acquisition software
which controls all motors and records data is open source,
written in PYTHON and available at http://github.com/wright-
group/PyCMDS. The PYTHON computing language and the
NUMPY, SCIPY, and MATPLOTLIB libraries were used to
collect, analyze, and represent the data presented in this
work [27–30].
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FIG. 3. TSF amplitude for multiple combinations of pump and
monochromator color. The experimental spectrum (a) is represented
as the square root of the detected intensity. Subplot (a) shows
experiment while subplot (b) shows our model’s prediction.

IV. RESULTS

We have described and shown the oscillatory nature of the
TSF output as a function of sample length. However, when
using TSF as an analytical method, the sample and substrate
length are generally constant while the carrier frequencies
of the driving pulses are scanned across resonances. This
scanning of carrier frequencies changes �k and �v−1

g and
can cause velocity mismatch fringes. In order to observe these
effects we performed a TSF experiment using two tunable,
ultrafast pulses where ωTSF = ω1 + 2ω2 and �kTSF = �k1 + 2�k2.
The pulses have a bandwidth of σ ≈ 160 cm−1. Figure 2
shows the normalized TSF magnitude as a function of the two
excitation frequencies. Figures 2(a) and 2(b) show the experi-
mental data with and without a tracking monochromator (ω =
ωmeasured = ω1 + 2ω2), respectively [31]. Figure 2(a) displays
deep periodicities along both axes. We are able to reproduce
these periodicities with our model—see Fig. 2(c). With a
tracking monochromator, all periodicities are exclusively due
to the changing phase-velocity mismatch, �k, between the
the TSF emission and polarization. Without a monochromator
[Fig. 2(b)], there are no fringes. We observe a peaked spectral

profile which roughly follows the intensity profiles of our
excitation lasers and detector spectral response function [much
the same as the envelope of Fig. 2(a)]. In other words, for any
combination of ω1 and ω2, TSF amplitude is created; however,
the central frequency may not have appreciable amplitude due
to phase-mismatch effects.

In order to clarify the monochromator’s role in the observa-
tion of spectral fringes, we scanned both ω1 and ωm for a set ω2

frequency. The results are shown in Fig. 3(a). The total signal
lies along the line ωm − ω1 = constant, but modulations are
present along this line. These modulations are the same as those
observed in Fig. 2(a). Figure 3(b) shows the TSF amplitude
as predicted by our model. All periodicities along the ωm

axis are due to the (ω − ω4)�v−1
g term in Eq. (12) (group

mismatch fringes). We note that there is a slight curvature in the
periodicities as ω1 changes; this curvature is due to the changes
in group velocity of ω1 and ω4 not perfectly offsetting each
other as ω1 changes. Sapphire has fairly static group-velocity
differences between the excitation and emission frequencies
explored in this work, so the curvature is slight.

V. DISCUSSION

Transparent materials are foundational components in
optical sample cells because they are inactive as absorbers
over spectral regions of interest. However, these materials
do have substantial refractive indices. Consequently, they are
bright in many nonlinear experiments that are sensitive to
both absorption and refraction and thus form a background
signal that must be taken into account. By exploring the
multidimensional TSF spectrum of sapphire, we have shown
that TSF spectroscopy can have complex and significant
backgrounds from transparent materials used as windows
or substrates. Unlike window contributions in other non-
linear spectroscopies (cf. Murdoch et al. [32]), window
and substrate contributions to TSF are highly modulated
in their output amplitude. These modulations can obscure
analyte line shapes, especially when the modulation peri-
odicity (�v−1

g ) is comparable to the bandwidth of analyte
features.

These potential complications can be avoided in a variety of
ways. The most direct approach is to keep material path lengths
short (L < 2π

�k+(ω−ω4)�v−1
g

), which prevents the formation of

mismatch fringes entirely. This path length criterion is a
modification of the cw standard of using samples thinner
than 2π/|�k|. Figure 1 shows that sapphire samples and
substrates thinner than ∼10 μm fall within this standard.
Additionally, for the ranges of frequencies explored in this
experiment, �k � √

3σ�v−1
g (greater by a factor of >35) so

just as in the cw case, �k defines the critical dependence on
length that the experimentalist must consider for these thin
samples.

Sufficiently short material path lengths are often impractical
because they are structurally weak. If thick sample cells
are required, a reflective geometry can mitigate background
effects. Reflected (epi) THG has an effective penetration depth
of ∼λfundamental/12π , which is ∼40 nm for our experiments.
This small interaction distance is within the “thin sample”
limit and therefore is not affected by mismatch effects. The
small depth also keeps the amplitude of the background much
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smaller than the asymptotic limit, shown in Fig. 1. In a
similar vein, researchers doing coherent anti-Stokes Raman
and transient grating spectroscopies have used reflective
geometries to efficiently discriminate against the background
signal [33,34]. We also note that some groups have already
accomplished THG in a reflective geometry in order to mitigate
absorptive losses and focusing effects [35,36].

For another option, we note that mismatch fringes are
only observed if the output field is spectrally resolved: if
the spectral (angular frequency) resolution, R, is worse than
R ≈ L�v−1

g , then the fringes are washed out. Decreasing the
resolution of a monochromator, using no monochromator [as
in Fig. 2(b)], or using sufficiently long material path lengths
(large L) can all remove velocity mismatch effects. These
are effectively a smoothing of Eq. (14) with respect to ω

because the monochromator is incapable of resolving the fast
oscillations. Importantly, the decrease of output resolution may
not affect the instrumental resolution as it pertains to χ (3),
because the bandwidth of the excitation fields already broadens
the resolution [14].

In light of our understanding of the TSF generation in
nonresonant media, it is prudent to consider how resonant
analytes will affect pulse propagation. Unlike the window and
substrate materials we have studied here, input frequencies
will be scanned about analyte resonances, which can introduce
dramatic pulse distortions that require a higher-order (and
complex-valued) expansion of Eq. (2). This potentially makes
analyte TSF polarizations much different from the normally
dispersive case analyzed here, because dispersion can be
anomalous and large, and absorption is strong [37]. These
complications are avoidable in cases of small analyte loading.
We note that it is common practice to keep analyte loading
small enough (OD < 0.3) to avoid depletion of the pulse fields
and the consequent spectral [38,39] and temporal [40] signal
distortions.

VI. CONCLUSION

The use of tunable ultrafast excitation pulses in triple
sum-frequency spectroscopy requires extension of previous
treatments of phase-matching effects to include group-velocity
mismatches. The group-velocity mismatch fringes appear as
both periodic modulations in the frequency distribution of
the output or changing temporal delays between the output
beams created near the front and back surfaces of the
sample. If a monochromator is used to isolate the triple sum-
frequency signal, there will be interference effects between
the beams. These effects create fringes that are defined by

| sin [
(�k+(ω−ω4)�v−1

g )L
2 ]|, where the first and second terms of the

argument describe the wave-vector (phase-velocity) mismatch
and group-velocity mismatch, respectively. The fringes create
modulations in multidimensional triple sum-frequency spectra
as the excitation or monochromator frequencies are scanned.
The modulations can complicate and obscure spectral features
in samples containing resonances. These effects can be
minimized by using short samples or keeping the output
resolution at or lower than the pulse bandwidth.

ACKNOWLEDGMENTS

We acknowledge support from the Department of Energy,
Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering, under Award No. DE-FG02-
09ER46664.

All data and the workup/representation/simulation script
are available for download at http://dx.doi.org/10.17605/
osf.io/emgta.

APPENDIX A: CALCULATION OF PHASE
AND GROUP VELOCITIES

We use the following relations to calculate the phase and
group velocity from refractive index data:

vp(ω) = c

n(ω)
, (A1)

vg(ω) = c

n(ω) + ω ∂n
∂ω

. (A2)

We use the refractive index of sapphire as measured by [24].
Our results are shown in Fig. 4.

APPENDIX B: OPA OUTPUT CHARACTERIZATION
AND CORRECTION

We characterize the OPA outputs using two principal
metrics:

(1) Measuring the output power for each color with a
thermopile (Newport, 407A).

FIG. 4. Phase and group velocities (vp and vg , respectively) in
sapphire. Calculated from refractive index data measured by [24].
The salmon- and magenta-colored regions represent the experimental
colors explored in this work by our pump lasers (labeled ω1,ω2) and
TSF output (labeled ωTSF), respectively.
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FIG. 5. OPA output characterization and correction for different colors of pump light. The left-hand column corresponds to ω1 and the
right-hand column corresponds to ω2. Subplots (a) and (b) were acquired by measuring the filtered NIR output of the OPAs with a thermopile
[slight smoothing has been applied]. Subplots (c) and (d) were acquired using a monochromator and array detector to spectrally resolve the
NIR output of each OPA. Subplots (e) and (f) were acquired by measuring the TSF output of sapphire in transmissive geometry with a PMT
and scanning monochromator.

(2) Measuring the output spectrum for a given set point
with a home-built InGaAs array detector (Sensor: Hamamatsu,
G9494-256D) coupled to a monochromator.

In Figs. 5(a)–5(d) we show these metrics for both OPAs
prior to collection of the data which is presented in the main
article.
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We correct for the color-dependent arrival times of incident
pulses which we attribute to the dispersion of transmissive
optics. The corrections that we apply control the arrival times
of the driving pulses relative to each other. The data we use
to build our corrections are shown in Figs. 5(e) and 5(f).
These data were acquired by performing TSF in a transmissive
geometry while scanning both delay and set-point frequency
for a given OPA with the other OPA set to 77001 cm−1.
Note how slight periodicities are present along the set-point
axis—these are phase-mismatch fringes. We splined over these
data and then actively offset pulses from each other for every
pulse color combination. We did not take into account the
effects of our silicon filter due to it being added to the system
after corrections were applied.

APPENDIX C: DETERMINATION OF PULSE BANDWIDTH

We determine our approximate pulse bandwidth (Fig. 6) by
taking the data present in Fig. 5(d), summing along set-point
frequency, and then fitting the result to a Gaussian function.
We find our driving pulses to have a width, on the intensity
level of σI = 112 cm−1, which corresponds to an amplitude
level width of σ = √

2σI = 160 cm−1. FIG. 6. Determination of pulse bandwidth. Data are blue points
while fit is the orange line.
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