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Nonlinear quantum Langevin equations for bosonic modes in solid-state systems
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Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open
quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role
played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented
by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling
the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how
this model represents a specific example of a class of open quantum systems that can be described by nonlinear
quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently
observed in circuit-QED cavity optomechanics experiments.
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I. INTRODUCTION

The dynamics of open quantum systems, i.e., quantum
systems that can be described as separate entities from their
surrounding environment while being somehow coupled to it,
is arguably one of the most fundamental problems in quantum
mechanics, encompassing concepts such as the measurement
paradox [1] and the boundary between quantum and classical
physics [2]. On general grounds, the interaction between a
quantum system and its environment represents an important
aspect of the physics of condensed matter and complex
systems, which has been the focus of extensive analysis
[3–5], with repercussions in contexts ranging from the energy
transport in photosynthetic complexes [6] to the physics of
ultracold gases [7–9].

In the description of these systems, the inclusion of
the role played by coupling to an external environment is
necessary, if only because the system has to be coupled to
an external measurement apparatus which, from the quantum-
dynamical perspective of the system, represents a source of
noise and dissipation. At the same time the manipulation
of open quantum systems has recently led to the possibility
of preparing and detecting quantum states of matter and
radiation [10,11], paving the way for the definition of a
new paradigm of quantum technology, which represents an
important field for applications ranging from secure (quantum)
communication [12] to sensing of electromagnetic fields
[13] and to the detection of gravitational waves [14]. This
prospect of technological application of quantum mechanics
is rooted in the relatively recent development of fabrication
techniques at the nanoscale, in particular, nanomechanical
resonators, superconducting qubits, and, more in general,
circuit quantum electrodynamics (QED) setups [15–18], where
the characteristic scales involved in the dynamics of these
systems naturally lead to the study of the quantum properties
in the presence of coupling to an environment.
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Within this framework, it has recently been observed that
this coupling can represent an important resource leading
to the notion of reservoir engineering [19]. This concept
corresponds to the idea that, by manipulating the properties of
the environment coupled to a given quantum system or even the
nature of the system-environment coupling itself, it is possible
to generate specific (quantum) states for the system. Prominent
examples are represented by the recent achievements in the
field of cavity optomechanics, where ground-state cooling
[20] and squeezing below the standard quantum limit (SQL)
[21–23], along with nearly quantum limited amplification
[24,25] and nonreciprocal photon transmission [26], have been
achieved by introducing a specific (Gaussian) state for the
reservoir. While these examples correspond to inducing a
specific state for the system by manipulating the state of the
reservoir, in Refs. [27] and [28] it is shown that by designing a
specific nonlinear coupling between system and environment,
it is possible to protect certain quantum states (cat states)
against decoherence.

If the coupling between the system and the environment
is described by a linear Hamiltonian, the effects of noise and
dissipation on the dynamics of the system can be described
in terms of linear quantum Langevin equations (QLEs)
[11]. These equations represent an extension to the quantum
regime of the classical Langevin equations and, in analogy to
their classical counterpart, include in the description of the
dynamics of the system the role played by the environment,
including dissipative and noise effects. However, the case of a
linear system-environment coupling is not the most general
situation that can arise. For instance, for nanomechanical
resonators [29–33] and for circuit-QED setups [34–39], the
experimental evidence of nonlinear phenomena related to the
coupling between system and environment has emerged and,
more importantly for our analysis, the relevance of impurities
in this phenomenon has been discussed. For both setups, it has
been shown (see, e.g., [29,34]) that the impurities naturally
arising in the material composing the devices, its supports,
and/or substrate represent a source of dissipation. These
defects can be modeled in terms of two-level systems (TLSs).
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The reason behind the possibility of modeling impurities in
these terms is represented by the fact that each impurity can be
construed as quantum systems which exhibit two local energy
minima. For instance, as a charged impurity that can hop
between two defects in the crystal structure, or a dangling
bond with two possible configurations.

More specifically, these TLSs exist primarily due to the
disordered potential landscape of amorphous materials, e.g.,
in surface oxides of thin-film circuit electrodes [38], in the
tunnel barrier of Josephson junctions [34], and at disordered
interfaces [40,41], coupling with the bosonic degrees of
freedom of the system, either through a purely electromagnetic
interaction (optical and circuit-QED setups) or a phononic one
in the context of nanomechanical systems [42].

II. MODEL

In this article we show under what conditions, considering
a nonlinear coupling between system and a bath of TLSs,
it is possible to derive a nonlinear QLE for the dynamics
of the degrees of freedom of the system, having in mind a
circuit-QED setup. In addition, we show how the nonlinear
QLEs derived here can represent an explanation to some of
the phenomena recently observed in the context of microwave
quantum optomechanics [22].

The starting point for our analysis is represented by a
bosonic system (S) coupled to an environment (E). The total
Hamiltonian of the bipartite system (S + E) is given by

H = HS + HE + HS−E , (1)

where HS = HS (c,c†) is the Hamiltonian of the isolated
system, exhibiting a generic dependence on the annihilation
(creation) operators c (c†) associated with the system, and HE
is the Hamiltonian for the bath.

We assume here that the environment Hamiltonian can be
decomposed into two terms, H B

E = ∑
k ωkb

†
kbk and H TLS

E ,
corresponding to a bath of free bosonic modes and to a
bath of TLSs, respectively (see Fig. 1). The bosonic bath
describes, for instance, the modes of the electromagnetic field
of the environment. In our analysis we assume that these

FIG. 1. Cartoon picture of the setup. The system S is coupled to
an environment E , which is constituted by a bosonic bath EB and a
bath of TLSs ETLS. The coupling between the two baths and the system
is mediated by the Hamiltonians HS−B and HS−TLS, respectively.

modes, while being associated with the noise properties and
dissipation of the system, encompass also the external coherent
fields driving the system whose properties are encoded in the
state of the bath for the modes bk (see, e.g., [11]). Our choice
is equivalent to considering a coherent driving term for the
system Hamiltonian and a purely thermal bath.

In this scenario, we describe the coupling between these
modes and the degrees of freedom of the system by the
following Hamiltonian:

HS−B =
∑

k

gB
k (c†bk + cb

†
k). (2)

In addition, we model the bath of TLSs as a collection of
spins Jk. In this scenario we have that H TLS

E = ∑
k �kJ

k
z .

This choice for the modeling of TLSs corresponds to the idea
that, for each �k multiple TLSs are present that collectively
couple with the system S. While for �k � ωS, where ωS

corresponds to a characteristic frequency for the system,
the presence of impurities leads to a renormalization of the
linewidth associated with the linear response of the system
induced by the coupling given in Eq. (2) (see Appendix D);
for �k � nωS, nonlinear contributions appear. In our analysis,
also in light of the recent investigations concerning the
relevance of two-photon emission processes by TLSs [43,44]
when coupled to bosonic modes, we consider the case
n = 2, representing the lowest-order approximation beyond
linear coupling. This assumption appears to be compatible
with the usual experimental conditions encountered in the
context of circuit QED, where microwave cavities operate at
frequencies corresponding to few GHz [15,16,45] while the
energy separation of a TLS relevant for the physics of either of
these systems is of the order of 10 GHz [45,46]. In this case, it
is possible to write the system-TLS coupling Hamiltonian as

HS−TLS =
∑

k

gTLS
k (J k

+c2 + J k
−c†

2
). (3)

If we assume that |Jk| � 1, corresponding to the idea that
for each value of k multiple TLSs couple to the system S, by
resorting to the Holstein-Primakoff (HP) realization of spin
operators in terms of bosonic modes, we can replace the spin
operators with bosonic ones. This mapping can be performed
in two different ways, corresponding to complementary exper-
imental conditions (see Appendix A). If it is assumed that the
TLSs mostly reside in their ground state, we have that J k

3 �
−jk, where jk is the index of the representation associated
with the spin Jk and the HP mapping reads J k

3 → d
†
kdk − jk,

J k
− → dk, J k

+ → d
†
k. In this case, the coupling between the

system and the TLS bath can be approximated by

HS−HP− =
∑

k

gHP
k (d†

kc
2 + dkc

†2
), (4)

with gHP
k = √

2jkg
TLS
k . On the other hand, if the TLSs mainly

reside in their excited state (J k
3 � +jk) the mapping can be

written as J k
3 → jk − d

†
kdk, J k

− → d
†
k, J k

+ → dk, leading to
the following approximation for HS−TLS:

HS−HP+ =
∑

k

gTLS
k (dkc

2 + d
†
kc

†2
). (5)
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These two different forms of the HP mapping correspond to
two different physical situations. In the former case, the TLSs
prevalently reside in their ground state, corresponding to the
idea that the impurities mainly reside in their ground state,
implying a low-temperature regime. In this case, the bosonic
excitations described by the operators dk represent (weak)
excitations around the ground state. On the other hand, the
latter case corresponds to the situation in which the highest
excited (metastable) state of the TLSs is weakly (de-)excited,
corresponding, for instance, to the case in which an external
drive induces excitations in the TLSs bath, leading to a possible
interpretation of the linewidth narrowing observed in circuit-
QED setups under strong driving conditions [35] in terms of
nonlinear QLEs associated with the saturation of the TLSs. In
this picture, the external drive effectively heats the impurities
to their excited state, inducing the population inversion for the
ensemble of TLSs and a consequent saturation, justifying the
HP+ transformation in terms of (weak) deexcitations of the
highest excited state.

As we show in Appendix B, it is possible to derive QLEs
for the system, provided that the environment Hamiltonian is
described by a set of bosonic operators coupled linearly to
the system degrees of freedom. It is important to note that the
requirement of linearity concerning the system-environment
Hamiltonian is limited to the bath degrees of freedom, meaning
that its most general form can be expressed as

HS−E =
∑

k

gk[F †(c,c†)ek + F (c,c†)e†k], (6)

where ek and e
†
k represent generic bosonic operators associated

with the environment degrees of freedom. The form the
system-environment coupling represents a sufficient condition
for the derivation of a nonlinear QLE, along with the
assumption that the modes of the bath are noninteracting. In
other terms, it is necessary to assume a linear dependence
of the coupling Hamiltonian on the environmental degrees of
freedom, since in order to derive the QLEs for the system,
the solution of the Heisenberg equation of motion for the
environment degrees of freedom has to assume a specific form
in which the contribution of the system and the environment
operators can be represented as two separate additive terms
(see Appendix B).

III. EQUATIONS OF MOTION

It is clear that since the form of HS−B and HS−HP± can be
expressed in the form given by Eq. (6), with F (c,c†) given by c,
c2, and c†

2
, and with ek = bk and ek = dk forS − B,S − HP−,

and S − HP+, respectively, we can write the dynamics of the
system in terms of a (nonlinear) QLE as

ċ = −i[c,HS ] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in ,

(7a)

ċ = −i[c,HS ] −
(

κ

2
− κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in

†
.

(7b)

Equations (7a) and (7b), obtained considering the system-
environment coupling given by HS−HP− and HS−HP+ , respec-
tively, are the main result of our analysis. The presence of
a TLS bath leads to the appearance of nonlinear dissipative
terms (±κNc†c c) and to purely imaginary parametric noise
terms (2

√
κNc†cTLS

in
(†)

). We stress here that these terms are
the direct result of the modeling of the bath in terms of
two separate environments (HS−B and HS − HP±) and do not
represent an ad hoc modification of the linear QLEs that can
be derived in the absence of coupling to TLSs. In particular,
while the nonlinear dissipation term possibly represents a
natural extension to the nonlinear regime of linear QLEs, the
parametric noise term is a nontrivial contribution associated
with the presence of the TLS bath.

In addition, we observe here that, analogously to their
linear counterpart, Eqs. (7a) and (7b) are time local, i.e.,
the dynamics is Markovian. As detailed in Appendix B, this
property is related to the assumption that within the range of
frequencies of interest, the coupling strength between system
and environment is independent of the mode considered
(wide-band-limit approximation) [47].

If we further consider a pump probe representative of a
circuit-QED setup (e.g., a circuit optomechanical experiment),
we can assume that the dynamics given by Eq. (7) is linearized
around a strong coherent tone:

αp = αin exp[−iωpt].

The frequency ωp is detuned by � = ωp − ωc from the cavity
resonant frequency. As a result of the linearization scheme,
we have that the amplitude of the cavity field oscillating at
ωp is given by the solution of a nonlinear algebraic equation.
In Fig. 2 we have plotted the stationary value of the cavity
field for the two choices of the HP mapping (HP±). As
expected, for small values of the driving field αin, the stationary
solution corresponds to the solution in the absence of nonlinear
dissipation. However, for larger values of αin the stationary
solution substantially deviates from the solution of the linear
system, with, for the parameters discussed here, a negligible
difference between HP± cases.

Furthermore, the (first-order) dynamics of the fluctuations
c = α + a around the stationary value induced by the pump
(in a frame rotating at ωp) is given by

ȧ =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a†

+√
κain + 2

√
κNα∗aTLS

in , (8a)

ȧ =
[
i� −

(
κ

2
− 2κN |α|2

)]
a + κNα2a†

+√
κain + 2

√
κNα∗aTLS

in
†
, (8b)

the HP− and HP+ case, respectively (see Appendix C). It
is possible to see that Eqs. (8a) and (8b) include a purely
imaginary parametric term on top of a nonlinear dissipation
term, implying linewidth broadening or narrowing, depending
on the state of the TLSs bath. Recently, in Ref. [22] a term of
the same form was introduced as an ad hoc parameter in order
to match the experimental results of a cavity optomechanical
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FIG. 2. Amplitude (a) and phase (b) for the stationary value (in
a frame rotating at ωp, see text) of the cavity field α in the presence
of a driving αin. Parameters: κN = 1.5×10−4, � = 20 (all quantities
expressed in units of κ).

experiment aimed at establishing squeezing below the SQL of
a nanomechanical resonator.

Our description, therefore provides a potential explanation
of such parametric effects in terms of nonlinear dissipation
phenomena associated with the nonlinear coupling to a bath
of TLSs. In order to characterize the effect induced by the
presence of the nonlinear coupling to TLSs, we evaluate the
fluctuation spectrum of the cavity field Sθ

ω = 1/2〈{Xθ
ω,Xθ

−ω}〉,
with Xθ

ω = 1/
√

2(a†
−ωeiθ + aωe−iθ ), assuming thermal fluctu-

ations both for the bosonic and the TLS bath. As hinted by the
structure of Eqs. (8a) and (8b), the presence of a parametric
term induces squeezing, which can be experimentally observed
by homodyne detection of the output field, in the cavity
spectrum for both cases, as seen in Fig. 3, where the cavity fluc-
tuation spectrum exhibits a clear dependence on the phase θ .

IV. CONCLUSIONS

We have reported here how it is possible to deduce
nonlinear QLEs for the dynamics of an open quantum system
from a nonlinear system-environment coupling Hamiltonian.
Moreover, we have discussed how an effective nonlinear
system-environment coupling can emerge in the presence
of impurities modeled as TLSs. Ultimately, we have shown
that the TLS-induced nonlinearities can represent a potential
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FIG. 3. Noise spectrum for the cavity field in the presence of
an external drive αin = 700, for (a) HP− and (b) HP+ for 〈a†

inain〉 =
〈aTLS

in
†
aTLS

in 〉 = 1 (all other parameters as in Fig. 2).

explanation for the imaginary parametric terms reported in
Ref. [22].
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We discuss here the Holstein-Primakoff realization allow-
ing us to replace the spin operators Jz, J± obeying the usual
SU(2) commutation relations[

J k
z ,J k

±
] = ±J k

±, [J k
+,J k

−] = 2J k
z , (A1)

with bosonic operators dk, d
†
k, for which

[dk,d
†
k] = 1. (A2)

As discussed in the main text, in order to map the spin
operators obeying Eq. (A1) with the bosonic operators dk, d

†
k,

we have two possibilities, depending on the physical situation
we want to describe. If we assume that J k

z � −jk, this choice
is indicated in the main text as HP−, we can consider the
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following transformation:

J k
z = n̂k − jk, J k

+ = d
†
k

√
2jk − n̂k, J k

− =
√

2jk − n̂k dk,

(A3)

where n̂k = d
†
kdk. The operators J k

z , J k
± can be shown to fulfill

the SU(2) commutation relations[
J k

z ,J k
+
] = [n̂k,d

†
k]

√
2jk − n̂k = J k

+,[
J k

z ,J k
−
] =

√
2jk − n̂k[n̂k,dk] = −J k

−, (A4a)

[J k
+,J k

−] = d
†
k(

√
2jk − n̂k)2dk −

√
2jk − n̂k n̂k

√
2jk − n̂k

= n̂k
(
2jk−n̂k + 1

)−2jk+n̂k−n̂k(2jk−n̂k)=2J k
z .

(A4b)

In the limit jk → ∞, we have that

J k
+√
2jk

= d
†
k

√
2jk − n̂k

2jk
= d

†
k

(
1 − n̂k

4jk
+ · · ·

)
� d

†
k,

J k
−√
2jk

� dk,
J k

z

jk
= n̂k

jk
− 1 � −1. (A5)

Therefore the bosonic excitations described by dk and d
†
k

correspond to (small) excitations around the J k
z = −jk state.

Conversely, we can write

J k
z = jk − n̂k, J k

− = d
†
k

√
2jk − n̂k, J k

+ =
√

2jk − n̂k dk,

(A6)

so that when jk → ∞,

J k
+√
2jk

� dk,
J k

−√
2jk

� d
†
k,

J k
z

jk
= 1 − n̂k

jk
� 1, (A7)

which correspond to the description of small fluctuations
around the J k

z = j state, indicated as HP+ in main text.

APPENDIX B: QLE FOR F(c,c†)

We discuss here the form of the QLEs generated by a
model for which, following the notation introduced in Eq. (1)
of the main text, HS is left unspecified. The environment is
given by a set of noninteracting bosonic modes described by
HE = ∑

k ωke
†
kek, where ek (e†k) are the annihilation (creation)

operators associated with mode k and the system-environment
coupling is given by the following Hamiltonian:

HS−E =
∑

k

gk[F (c,c†)e†k + F †(c,c†)ek], (B1)

where F (c,c†) is a generic function of the creation and
annihilation operators of the system. Since HS−E is a linear
operator with respect to the degrees of freedom of the bath
and e

(†)
k commutes with HS , we can follow the same strategy

employed for the derivation of the linear QLEs [11] and write
the equations of motion (EOM) for the bath field operators in
the Heisenberg picture as

ėk(t) = −iωkek(t) − igkF (c,c†). (B2)

Similarly, the EOM for the system can be written as

ċ(t) = i[HS ,c(t)] + i
∑

k

gk([F,c]e†k + [F †,c]ek). (B3)

Equation (B2) can be solved in terms of an initial condition t0,
yielding

ek(t)=e−iωk(t−t0)ek(t0) − igk

∫ t

t0

e−iωk(t−t ′)F [c(t ′),c†(t ′)] dt ′.

(B4)

By substituting Eq. (B4) and its Hermitian conjugate into
Eq. (B3) we obtain

ċ(t) = i[HS ,c(t)] + i
∑

k

gk

{
[F,c]

[
eiωk(t−t0)e

†
k(t0) + igk

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
]

+ [F †,c]

[
e−iωk(t−t0)ek(t0)−igk

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
]}

. (B5)

Like for the purely linear case, we introduce the density of states D = ∂k/∂ωk (supposing a continuum of states for the bath)
and assume that, in the relevant frequency regime, gk does not depend on the mode index k. If we define

gk =
√

κ

2πD
, (B6)

where κ is the mode-independent constant, we can write Eq. (B5) as

ċ(t) = i[HS ,c(t)] + i
∑

k

√
κ

2πD

{
[F,c]

(
eiωk(t−t0)e

†
k(t0) + i

√
κ

2πD

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
)

+ [F †,c]

(
e−iωk(t−t0)ek(t0) − i

√
κ

2πD

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
)}

= i[HS ,c(t)] + √
κ

{
[F,c]

(
−c†in(t) −

√
κ

2
F †(t)

)
+ [F †,c]

(
−cin(t) +

√
κ

2
F (t)

)}
, (B7)
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where we have defined cin(t) as

cin(t) = − i√
2πD

∑
k

e−iωk (t−t0)ek(t0). (B8)

The definition introduced in Eq. (B6) corresponds to what in the context of electronic transport is defined as “a wide-band-limit
approximation” and, allowing us to write the QLE given in Eq. (B7) in time-local form, can be considered equivalent to the
Markov approximation [47].

Let us focus on the case, discussed in the text, of two separate baths: a bosonic bath with operators bk and a bath of TLSs
with HP-transformed modes dk. We define two functions Fb and FTLS of the system operators that couple to the bosonic and TLS
baths, respectively. The QLE (B7) then reads

ċ(t) = i[HS ,c(t)] + √
κ

{
[Fb,c]

(
−c†in −

√
κ

2
F

†
b

)
+ [F †

b ,c]

(
−cin +

√
κ

2
Fb

)}

+√
κN

{
[FTLS,c]

(
−cTLS†

in −
√

κN

2
F

†
TLS

)
+ [F †

TLS,c]

(
−cTLS

in +
√

κN

2
FTLS

)}
. (B9)

Assuming a linear coupling between the system and the
bosonic bath and choosing the HP− mapping for the TLSs, one
obtains Fb = c and FTLS = c2. Substituting these into Eq. (B9)
gives

ċ = i[HS ,c(t)] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in ,

(B10)

which corresponds to Eq. (7a) of the main text. On the contrary,
if the HP+ mapping is chosen, one obtains Eq. (7b) with
FTLS = c†2.

APPENDIX C: LINEARIZATION OF THE QUANTUM
LANGEVIN EQUATIONS

Here we outline the linearization strategy that allows us, in
the presence of a strong coherent tone αp = αine

−iωpt , to recast
Eqs. (7b) of the main text in terms of equations describing the
stationary state (in a frame rotating at ωp) and the fluctuations
around this stationary state, given by Eqs. (8a) and (8b) of the
main text.

Focusing on Eq. (7a),

ċ = −i[c,HS ] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in .

(C1)

In the presence of a strong coherent pump αp = αine
−iωpt , we

seek a solution of the form c = α + a,

−iωpα + ȧ = −iωc(α + a) −
[
κ

2
+ κN (α∗ + a†)(α + a)

]

× (α + a) + √
κ(αin + ain)

+ 2
√

κN (α∗ + a†)aTLS
in , (C2)

where without loss of generality, we have assumed that
HS = ωcc

†c.
Neglecting the fluctuation terms, we obtain the equation for

the steady-state solution

0 = i�α − κ

2
α − κNα|α|2 + √

καin, (C3)

where � = ωp − ωc. From Eq. (C2) the equation for the
fluctuation around the steady-state solution value of α given
above is thus expressed as

ȧ =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a† + √

κain

+ 2
√

κNα∗aTLS
in . (C4)

With a similar procedure one can also show that Eq. (7b)
leads to Eq. (8b). Notice that the nonlinear dissipative terms
∓2κN |α|2a in Eqs. (8a) and (8b) lead to the broadening or nar-
rowing of the linewidth associated with the linearized response
of the cavity field fluctuations, respectively (see Fig. 4).

APPENDIX D: FLUCTUATION SPECTRUM
OF THE NONLINEAR MODEL

Assuming that, in addition to the strong coherent tone, the
dynamics of the system is affected by thermal fluctuations
of both the bosonic and the TLS baths degrees of freedom,

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

1.5

2

2.5

3

FIG. 4. The total effective dissipation of the linearized models
Eq. (8a) (solid red) and Eq. (8b) (dashed green) that correspond to
the cases where the majority of the TLSs are in the ground state and
excited state, respectively. They are compared to the case of pure
linear dissipation (black dots). Here we assume the system to be a
simple cavity with HS = ωcc

†c. In units of κ , the parameters are
� = ωp − ωc = 20 and κN = 1.5×10−4.
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FIG. 5. The cavity spectra related to the Holstein-Primakoff couplings (a) HP− and (b) HP+ for the largest uncertainty quadrature (θ = π/2
and θ = 0, respectively). In (a) the linewidth widens as αin becomes larger (larger values of αin correspond to smaller values of the maximum
at ω = 0), whereas in (b) the linewidth becomes narrower (larger values of αin correspond to larger values of the maximum at ω = 0).
Here the thermal populations of the bosonic and TLS baths are nth = nTLS

th = 1, and in the units of κ , the other parameters are � = 20 and
κN = 1.5×10−4.

we evaluate here the spectrum of these fluctuations focusing
on the HP− case (an analogous derivation holds for the HP+
mapping). The fluctuation spectrum

Sθ
ω = 1

2

〈{
Xθ

ω,Xθ
−ω

}〉
, (D1)

with Xθ
ω = 1/

√
2(a†

−ωeiθ + aωe−iθ ), can be obtained by
Fourier transforming the QLE given by Eq. (8a) and its
Hermitian conjugate[

−i(ω + �) + κ

2
+ 2κN |α|2

]
aω + κNα2a

†
−ω

= √
κain,ω + 2

√
κNα∗aTLS

in,ω , (D2a)

[
−i(ω − �) + κ

2
+ 2κN |α|2

]
a
†
−ω + κNα∗2aω

= √
κa

†
in,−ω + 2

√
κNαa

TLS†
in,−ω, (D2b)

with the usual convention for the Fourier transform, according

to which at
FT�−→ aω and a

†
t

FT�−→ a
†
−ω.

Defining

A = −i(ω + �) + κ

2
+ 2κN |α|2, (D3a)

B = κNα2, (D3b)

C = −i(ω − �) + κ

2
+ 2κN |α|2, (D3c)

the QLE for the system can be expressed as(
aω

a
†
−ω

)
= 1

AC − |B|2
(

C −B

−B∗ A

)

×
( √

κain,ω + 2
√

κNα∗aTLS
in,ω

√
κa

†
in,−ω + 2

√
κNαa

TLS†
in,−ω

)
, (D4)

and

aω = χd (ω)ain,ω + χx(ω)a†
in,−ω + χTLS

d (ω)aTLS
in,ω

+χTLS
x (ω)aTLS†

in,−ω, (D5a)

a
†
−ω = χ∗

x (−ω)ain,ω + χ∗
d (−ω)a†

in,−ω + χTLS∗
x (−ω)aTLS

in,ω

+χTLS∗
d (−ω)aTLS†

in,−ω, (D5b)

where

χd (ω) = √
κC(AC − |B|2)−1, (D6a)

χx(ω) = −√
κB(AC − |B|2)−1, (D6b)

χTLS
d (ω) = 2

√
κNα∗C(AC − |B|2)−1, (D6c)

χTLS
x (ω) = −2

√
κNαB(AC − |B|2)−1. (D6d)

If we assume that the thermal populations of the baths are
given by 〈ain,ωa

†
in,ω′ 〉 = (nth + 1)δ(ω − ω′) and 〈aTLS

in,ωa
TLS†
in,ω′ 〉 =

(nTLS
th + 1)δ(ω − ω′), the cavity spectrum can be written as

Sθ
ω = 1

4 [(|χd (ω)|2 + |χx(−ω)|2)〈{ain,ω,a†
in,ω}〉 + (|χd (−ω)|2 + |χx(ω)|2)〈{a†

in,−ω,ain,−ω}〉]
+ 1

4 [(χd (ω)χx(−ω)e−i2θ + χ∗
d (ω)χ∗

x (−ω)ei2θ )〈{ain,ω,a†
in,ω}〉

+ (χd (−ω)χx(ω)e−i2θ + χ∗
d (−ω)χ∗

x (ω)ei2θ )〈{a†
in,−ω,ain,−ω}〉]

+ 1
4

[(∣∣χTLS
d (ω)

∣∣2 + ∣∣χTLS
x (−ω)

∣∣2)〈{
aTLS

in,ω ,aTLS†
in,ω

}〉
+ (∣∣χTLS

d (−ω)
∣∣2 + ∣∣χTLS

x (ω)
∣∣2)〈{

a
TLS†
in,−ω,aTLS

in,−ω

}〉]
+ 1

4

[(
χTLS

d (ω)χTLS
x (−ω)e−i2θ + χTLS∗

d (ω)χTLS∗
x (−ω)ei2θ

)〈{
aTLS

in,ω ,aTLS†
in,ω

}〉
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+ (
χTLS

d (−ω)χTLS
x (ω)e−i2θ + χTLS∗

d (−ω)χTLS∗
x (ω)ei2θ

)〈{
a

TLS†
in,−ω,aTLS

in,−ω

}〉]
= 1

2 [|χd (ω)|2 + |χd (−ω)|2 + |χx(ω)|2 + |χx(−ω)|2

+ 2 cos(θ + φ)|χd (ω)χx(−ω) + χd (−ω)χx(ω)|](nth + 1
2

)
+ 1

2

[∣∣χTLS
d (ω)

∣∣2 + ∣∣χTLS
d (−ω)

∣∣2 + ∣∣χTLS
x (ω)

∣∣2 + ∣∣χTLS
x (−ω)

∣∣2

+ 2 cos(θ + φTLS)
∣∣χTLS

d (ω)χTLS
x (−ω) + χTLS

d (−ω)χTLS
x (ω)

∣∣](nTLS
th + 1

2

)
, (D7)

where φ(TLS)=Arg[χ (TLS)
d (ω)χ (TLS)

x (−ω)+χ
(TLS)
d (−ω)χ (TLS)

x (ω)]. In Fig. 5(a) we have plotted the cavity spectrum for the HP−,
and the spectrum related to HP+ coupling derived from Eq. (8b) is presented in Fig. 5(b).
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