
PHYSICAL REVIEW A 96, 063825 (2017)

On-target diagnosing of few-cycle pulses by high-order-harmonic generation
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We propose an approach to determine the residual phase distortion directly in the interaction region of few-cycle
laser radiation with a gaseous target. We describe how the spectra of the generated high harmonics measured as
a function of externally introduced dispersion into the driving few-cycle laser pulse can be used to decode small
amounts of second- and third-order spectral phase, including the sign. The diagnosis is based on the analysis of
several key features in the high-harmonic spectrum: the depth of spectral modulation, the position of the cutoff,
and the symmetry of the spectrum with respect to the introduced dispersion. The approach is applicable to pulses
without carrier-envelope phase (CEP) stabilization. Surprisingly, we find that for nearly-single-cycle pulses with
nonstabilized CEP, deep spectral modulations in the harmonic spectra emerge for positively rather than negatively
chirped pulses, in contrast to the case of CEP-stabilized pulses.
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I. INTRODUCTION

High harmonic generation (HHG) is the enabling technol-
ogy for table-top sources of bright coherent extreme ultraviolet
(XUV) and soft x-ray radiation in a form of isolated attosecond
pulses and attosecond pulse trains. High temporal resolution
at the level of a few tens of attoseconds is achieved thanks to
the highly nonlinear nature of the harmonic response, which
makes it very sensitive to the sub-cycle behavior of the driving
laser field [1–5]. For few-cycle laser pulses, this sensitivity of
the harmonic response to the pulse parameters, especially the
carrier-envelope phase (CEP), is not only crucial for generation
of attosecond pulses [6], but has also been used to measure
the CEP of the driving pulse [1]. Large spectral bandwidth
of nearly single-cycle pulses makes them very susceptible to
dispersion-induced distortions during propagation, be it a few
tens of centimeters of the air or an additional mirror reflection.
However, precise information on parameters of such extremely
short pulses, directly at the micrometer-sized target, is crucial
for a correct interpretation of experimental data. Several
elegant techniques proposed to address this problem are
based on perturbation of the electron trajectory during high
harmonic generation by an additional weak field and the
analysis of the generated harmonic spectrum [7–9]. None of
these methods work for pulses without CEP stabilization.

Here we introduce what we believe is a very distinct al-
ternative and/or complementary approach, focusing on pulses
without CEP stabilization. We refer to it as high-harmonic-
generation dispersion scan (HHG D-scan). Our methodology
is based on analysis of the HHG spectra upon introduction of
a controllable amount of dispersion to the driving few-cycle
laser pulse. We demonstrate, that even for pulses without
CEP stabilization, HHG spectra can offer a very sensitive tool
for detecting small quadratic (β) and third-order (γ ) spectral
phases in situ. An attractive feature of the proposed approach
lies in the straightforward identification of quadratic and
cubic spectral phases in the dispersion-dependent harmonic
spectrum, as discussed below.

Below we demonstrate the following: First, near the
cutoff of the harmonic spectra, the relative phase between
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adjacent attosecond bursts generated by pulses with β > 0
is considerably less sensitive to variations of the carrier-
envelope phase than for the β < 0. Second, variation of the
spectral cutoff is sensitive to the sign of the third-order phase,
distinguishing negative γ from positive. Third, introducing
additional controlled variation of β and γ allows one to
characterize the sign and the amount of small second-order
and third-order spectral phases of the original incident pulse
direct in the interaction region. Our approach can be viewed
as a highly nonlinear version of the D-scan method of pulse
characterization [10,11]. However, similarities are only limited
to the working concept, since the analysis of the recorded XUV
spectra is completely different.

The high-harmonic spectrum as a function of externally
introduced dispersion forms a two-dimensional spectrogram.
Our analysis shows that second- and third-order spectral
phases are responsible for two distinct features of these spec-
trograms: the depth of the spectral modulation and the asym-
metry of the cutoff. While we expect that fourth- and higher-
order spectral phases can be also extracted based on the prop-
erties of high-harmonic spectra, the development of the corre-
sponding algorithm will be the subject of a future analysis.

The influence of laser chirp on high harmonic spectra was
studied for 30–100 femtosecond pulses in Refs. [12,13]. In
particular, asymmetry in spectral broadening of individual
harmonics as a function of the sign of the chirp of the driving
pulse was analyzed, showing the compensation of the natural
negative chirp of high harmonics by the positive chirp of
the driving pulse [12–14]. The role of the incident chirp in
extending the harmonic cutoff [15] and spectral smoothing
near the cutoff region [16] were also studied. Unfortunately,
in Refs. [15,16] the chirp of the driving field was modeled
by assuming a time dependence of the carrier frequency, e.g.,
ω(t) = ω0 + βt , and thus changing the spectral content of
the pulse when changing the chirp parameters. However, in
experiments the chirp arises in the frequency domain, keeping
the spectral content the same.

II. EXPERIMENTAL RESULTS

In our experiments we used a Ti:sapphire-based laser
system with a single stage regenerative amplifier producing
30 fs pulses with up to 3 mJ energy and 795 nm central
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FIG. 1. (a) Experimentally measured HHG spectra for dispersion varying from −5 to 15 fs2 (HHG D-scan). (b)–(d) Calculated CEP-averaged
HHG spectra as a function of second-order dispersion (HHG D-scan) for pulses with uncompensated third-order dispersion: (b) γ0 = 0 fs3, (c)
γ0 = 25 fs3, and (d) γ0 = −25 fs3, and the same spectrum as in the experiment. The experimental spectrum in panel (a) was shifted in β so
that maximum cutoff occurs at β = 0. The calculated spectra in panels (b)–(d) were not shifted. Note, for γ different from zero [panels (c) and
(d)], the shortest pulse and the highest cutoff are achieved for β different from zero.

wavelength at 1 kHz repetition rate. The CEP of the pulses was
not locked. About 1.4 mJ of the output energy was directed
into a differentially pumped hollow-core-fiber (HCF) pulse
compressor filled with neon. The spectrally broadened pulses
at the output of the HCF were compressed with a set of mirrors
with negative dispersion (Layertec GmbH). A pair of fused
silica wedges (2.4 degree apex) was used to introduce and
scan the correcting dispersion, enabling systematic control
of spectral phase. The initial pulse characterization was
performed with a FC-Spider (APE, Berlin). By increasing the
pressure of the supplied gas up to 2500 Torr we were able to
compress the output pulses continuously down to 4 ± 0.2 fs,
with the Fourier limit of 3.2 fs. The presence of uncompensated
third- and higher-order spectral phase is the reason for the
deviation of the pulse length duration from its Fourier limit.
The main contribution came from the third-order phase of
about 20 fs3: its elimination would have brought the pulse
duration down to 3.5 fs.

We separated the central part of the output beam with an
energy of 0.6 mJ and focused it at f/100 into a 2.5-mm-long gas
cell containing neon. The peak intensity in the focus �3.4 ×
1014 W/cm2 was estimated from the maximum cutoff value.
The gas pressure inside the cell was kept within the 12–15 mbar
(�10 Torr) range by a PC-based gas-mass-flow controller. The
residual gas pressure in the interaction chamber was controlled

to be no larger than Prest ≈ 10−3 mbar. The sufficiently low
gas pressure and the intensity, as well as the low chromatic
dispersion of neon for the considered parameters, allowed us
to make the conclusion about the insignificance of nonlinear
propagation effects and ionization-induced contributions to
propagation and phase matching, as well as to neglect the pulse
broadening due to dispersion. This conclusion was confirmed
by systematic scans of the neon pressure: the two-dimensional
(2D) spectrograms presented here are robust with respect to
these scans. However, we do take advantage of the well-known
phase-matching selection between the long and the short
trajectories contributing to the high-harmonic signal (see, e.g.,
Ref. [17]): setting the focal position 2 mm before the gas target
we select the short trajectories in the detected on-axis radiation
(the long trajectories phase match off-axis). We also note that
the laser confocal parameter was 10 mm, significantly longer
than the interaction region.

The generated radiation up to harmonic order 71 was
detected with the XUV-spectrometer based on a 1 m toroidal
mirror and a 600 grooves/mm plane grating. Since the optical
paths from the output of the pulse compressor to the FC-Spider
and to the HHG interaction region are different, the input
pulse shape at the position of the gas cell differs from that
measured by Spider and is not known exactly. Additionally,
systematic errors and uncertainty of few-cycle FC-Spider
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[18,19], together with dispersion introduced by the FC-Spider
setup, will contribute to this difference.

We measured and analyzed the XUV spectra as a function of
the dispersion introduced by inserting the fused silica wedges,
performing a high-harmonic dispersion scan with the step
corresponding to β ∼ 1 fs2. In Fig. 1(a) we plot the result
of the HHG D-scan as a two-dimensional trace. One can make
the following key observations:

First, the harmonic cutoff decreases as the wedges are
moved out of their optimal position. Indeed, stretching the
pulse due to extra dispersion reduces its peak intensity and
hence the HHG cutoff. Second, the decrease in the cutoff is
strongly asymmetric relative to the sign of β, with a sharper
fall for negative β. This behavior is counterintuitive since,
for CEP-stable pulses, negative chirps extend the cutoff, in
contrast to the present observation. Third, for random CEP,
the spectrum is strongly modulated for β > 0 but remains
smooth for β < 0. This behavior is also counterintuitive, since
for CEP-stable pulses the opposite is expected. The last two
findings contradict the common wisdom for chirped few-cycle
pulses. We now confirm and explain our results below, using
theoretical analysis. We also show that the cutoff behavior and
the modulation depth allow one to retrieve the second-order
and third-order spectral phases, with high accuracy.

III. THEORETICAL DESCRIPTION AND ANALYSIS

A. Assymetry in cutoff of HHG spectrum

To interpret the measurements, we calculate the CEP-
averaged harmonic spectra by using the standard method
Ref. [20] for hydrogen-like atoms. The electric field of the
pulse in the interaction region is described as

F (t) ∝
∫

dω exp [−iωt + iφ(ω)]F (ω) + c.c.,
(1)

φ(ω) = 1

2
β(ω − ω0)2 + 1

6
γ (ω − ω0)3,

where F (ω) is the real-valued spectral amplitude, ω0 is
the central frequency, β = β(z) is the second-order phase
coefficient, and third-order phase coefficient γ = γ0 + γ (z)
is parameterized by the initial value γ0 as well as the
wedge contribution γ (z), where z is the wedge position.
For the driving laser field, we have used the experimentally
measured spectrum and systematically added quadratic and
cubic spectral phases by changing β and γ (z).

We computed the HHG D-scan for different values of γ0 to
obtain the best fit to the experiment. Figures 1(b)–1(d) show
the calculated HHG D-scans. The experimentally observed
asymmetry in the modulation depth of the HHG spectra is
well reproduced. Importantly, we find that this counterintuitive
behavior of the modulation depth is associated with CEP
averaging. For each individual CEP value, negatively chirped
few-cycle pulses have somewhat stronger modulation than
positively chirped few-cycle pulses. However, the position of
the modulation minima is strongly CEP sensitive, in contrast
to positively chirped pulses. As a consequence, CEP-averaged
results display the counterintuitive behavior.

Hence, the observed modulation strength and asymmetry
are determined by the sign and the value of β. However, the cut-
off position for γ0 = 0 [Fig. 1(b)] is nearly symmetric for ±|β|,

FIG. 2. HHG cutoff vs β. Red, blue, and green corresponds to
γ0 = 40 fs3, 25 fs3, and 12 fs3, respectively. Experiment is the dashed
line.

in contrast with the experiment [Fig. 1(a)], and also in contrast
with standard theoretical expectations, especially in view of the
previous theoretical works [12,14]. Indeed, for nearly-single-
cycle driving pulses, ionization is favored near the pulse peak
with the electron returning after the peak. Negative chirp of
ω(t) in the time domain increases the return energy Er (t) ∝
F0(t)2/ω2(t) with the reduced instantaneous frequency ω(t)
after the peak, compensating the drop in the field amplitude
F0(t). In contrast, positive temporal chirp decreases Er (t) by
increasing ω(t) after the peak, compounding the drop in F0(t).
Thus, the cutoff should fall faster for increasing ω(t) than for
decreasing ω(t). What is wrong with this argument and why
do our results indicate the opposite behavior?

The argument tacitly assumes that the frequency chirp is
introduced in the time domain, changing ω(t) but preserving
F0(t). This, however, is not compatible with experiments
because it changes the pulse spectrum. If the chirp is introduced
in the frequency domain, as in experiments, the pulse is also
stretched. The pulse stretching and the associated drop of
intensity play a dominant role in the behavior of Er (t), leading
to symmetry with respect to β. Figure 2 demonstrates that
the cutoff asymmetry vs β arises due to uncompensated cubic
chirp γ0. In our calculations, γ0 was varied from −50 to 50 fs3

in steps of 5 fs3. The best agreement between the calculated and
measured cutoff dependence is obtained for γ0 = 25 fs3. The
corresponding HHG D-scan is shown in Fig. 1(c). Figure 1(d)
shows the HHG D-scan for γ0 = −25 fs3, illustrating the HHG
D-scan with opposite asymmetry. Substantial deviations from
the best fit are clearly visible for ∼5 fs3 deviations from the
optimal γ value.

In our case, the shift in the wedge positions required for
the highest HHG cutoff amounts to introducing an additional
quadratic phase of 7 fs2 at the gas cell position compared with
the position where the Spider measurement is done, with a
tolerance of about 2 fs2.

What is the origin of the cutoff asymmetry? For γ0 > 10 fs3

the pulse develops a satellite, which reduces the intensity of
the main pulse and thus the HHG cutoff. The behavior of the
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FIG. 3. Modulation depth M of the CEP-averaged HHG spectra
produced by a pulse with a Gaussian envelope. Dashed white lines
shows contours of constant pulse duration vs tf and β.

satellite pulse vs β is asymmetric: its strength grows rapidly
for β < 0, but slowly for β > 0. Thus, the main pulse remains
more intense for β > 0. The inverse picture is observed for
negative γ0. Thus, the asymmetry of the cutoff behavior vs β

allows us to determine γ0, here with an accuracy of about 5 fs3.

B. Modulation depth in HHG spectrum

We now turn to the second key feature of the experimental
HHG D-scan: the spectral modulation in Fig. 1. Figures 1(b)–
1(d) show that it is independent of γ0 and is highly asymmetric
versus β. The general origin of this effect is the interplay
between the intrinsic chirp of the HHG process and the chirp of
the laser pulse [14,21]. Figure 3 shows the spectral modulation
depth M for the CEP-averaged HHG D-scans, calculated for a
pulse with a Gaussian spectrum, as a function of its transform-
limited duration tf and the spectral chirp. The modulation
depth M is defined as M = 〈1 − Smin(N )〉/Smax(N ), where
Smin(N ) and Smax(N ) correspond to the minimum and the
maximum of the HHG signal near the harmonic order N

in the vicinity of the cutoff. That is, setting for example
N = 51, we find the maximum and the minimum signal in
the window N = 50–52. To ensure the stability of the result,
additional averaging is performed over a range of harmonic
orders �N ≈ 15. Small β > 0 already leads to large M for
pulses with tf as short as 4 fs. In contrast, for β < 0 and
pulses up to tf � 10 fs, M becomes substantial only at the end
of the D-scan, in agreement with the experimental data from
Fig. 1. The strong asymmetry in the modulation depth M as
a function of β shows that it can be used to characterize the
quadratic phase chirp β0 in the HHG D-scan.

For few-cycle pulses, the two most important attosecond
bursts occur near the field maximum. For a given electron
return energy, the relative phase �φ(β) between these bursts
dictates the position of the maxima in the spectrum. That
is, for zero �φ(β) the maxima will be positioned at odd

FIG. 4. (a) Relative phase between the two main attosecond bursts
for the cutoff harmonics, for different β > 0 (red) and β < 0 (black).
(b) Theoretical HHG spectra vs CEP, for |β| = 7 fs2: φCEP = 0 (blue),
π/3 (green), π/2 (red), 3π/2 (purple), and 8π/9 (cyan).

harmonics, as it is typical for long pulses, while for extreme
case �φ(β) = π the maxima will be at even harmonic numbers
(see, e.g., Refs. [1,22] for early work on this subject). For a
non-CEP-stabilized pump, if the variation is strong and CEP
dependent, the modulations will be averaged out. However,
if �φ(β) remains relatively constant with varying CEP, the
modulation will persist in the CEP-averaged spectrum.

As shown in Fig. 4(a), the variation of �φ(β) with CEP is
much lower for β > 0 than for β < 0. This is manifest also
in the spectra shown in Fig. 4(b) by constructive summation
of different CEP contributions for β = 7 fs2 and smoothed
CEP-averaged spectrum for β = −7 fs2.

We can quantify the impact of the chirp and of the CEP
averaging on the spectral modulation depth with an analytical
model. The phase of the N th harmonic is [23]

φ = Re

[
1

2

∫ tr

ti

[ps + A(t ′)]2dt ′ + Ip(tr − ti) − Nω0tr

]
, (2)

where Ip is the ionization potential, ω0 is the laser frequency,
ti , tr are the ionization and recombination times, and ps is the
electron drift momentum which ensures its return to the atom.
Near the cutoff, Eq. (2) yields [24]

φcutoff(ω,I ) = −0.94
Ip

ω
− 10.17

Up

ω
. (3)
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For a short chirped pulse, for each laser cycle we use cycle-
averaged frequency ω and approximate A(t) by a sine function
with frequency ω and amplitude Fmax/ω in this laser cycle.
The CEP change can be interpreted as a temporal shift of
the bursts while assuming that the quantities Up(t) and ω(t)
are roughly CEP independent. Just after the pulse peak, where
most HHG occurs, the dominant term of the harmonics phase
in Eq. (3), 10.17Up(t)/ω(t) ∼ I (t)/ω3(t), changes rapidly,
when both I (t) and 1/ω(t)3 decrease for β > 0. In contrast,
for β < 0, the increasing 1/ω(t)3 somewhat compensates the
decrease of I (t). Therefore, while changing the CEP will shift
the temporal positions of the bursts, maintaining the constant
phase between them with β > 0 will keep the maxima and
minima in the HHG spectrum in the same place. In contrast,
for β < 0 the phase difference between adjacent attosecond
bursts changes by ≈1π , changing the position of the spectral
maxima vs CEP by ∼ω0, leading to smooth CEP-averaged
spectra as in Fig. 4(b).

IV. CONCLUSION

In conclusion, we have shown how the HHG D-scan trace
can be analyzed to separate the contributions of the second-
order and third-order spectral phase. As a part of our analysis,
we have experimentally demonstrated and theoretically ex-
plained counterintuitive behavior of the harmonic spectrum
with the chirp for few-cycle pulses. While it is commonly
assumed that negatively chirped few-cycle pulses should lead
to better-pronounced, stronger-modulated harmonic spectra,

the opposite is true for pulses with unlocked CEP. We also find
that, when the frequency chirp is introduced in the spectral
rather than the temporal domain, it does not lead to extended
cutoff spectra, in contrast with previously published results.

Whereas the asymmetry of the cutoff profiles in the HHG
D-scan is caused by the uncompensated γ0, the sign and the
value of β control the modulation in the HHG spectrum in the
vicinity of the cutoff. Our modeling confirms the universality
of these features for different pulse spectra. Strong sensitivity
of the HHG D-scan to minor changes in the dispersion at
the level of ≈2 fs2 and ≈5 fs3 open the possibility of using
such scans to characterize the pulse directly in the focal
region where highly nonlinear interaction takes place. An
important feature of HHG D-scan is that spectral phases
can be extracted without CEP stabilization, decreasing the
technical challenges associated with the implementation of
this method. While our present analysis is limited to the
second- and third-order spectral phases, we hope that a global
fit to the overall two-dimensional HHG spectrum should allow
one to extract higher-order spectral phases. Development of
the corresponding algorithm is a subject for future work.
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