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Nonlinearities in reservoir engineering: Enhancing quantum correlations
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There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly
reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov
modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective
dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise
these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic
ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are
more advantageous for applications in quantum networks associated with reservoir engineering.
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I. INTRODUCTION

The squeezed and entangled states of atomic ensembles and
optical fields are of considerable theoretical and experimental
interest to the quantum optics and quantum information
communities [1–4]. The atomic ensembles, which are ideal
nodes in quantum networks for storing and processing local
quantum information, have collectively enhanced interactions
with electromagnetic fields, provide one with efficient and
controllable coupling to nonclassical light fields [5–10]. The
optical fields are known to be the most suitable carriers to
transmit quantum information from one node to another. Of
particular interest is the creation of squeezed and entangled
states, which behave as indispensable resources in quantum
information and quantum communication networks.

Reservoir dissipation is normally regarded as the worst
enemy for preparation and preservation of quantum coherence.
However, an appropriately engineered reservoir dissipation is
a very efficient and robust way to make a system into a desired
state. On one hand, vacuum fields mediate Raman transitions
between stable atomic ground states and induce collective
dissipation of the ground state spin atomic ensembles [11–14].
Krauter et al. [15] reported the experimental realization of one
such scheme. On the other hand, atoms act as an engineered
dissipative reservoir in high-Q resonators for driving two
optical fields to squeezed and entangled states [16–19]. In
addition, a great number of related schemes have been
proposed, which involve squeezed states of atomic ensembles
[20–23], the engineered dissipation for entanglement of single
atoms [24–28], engineered dissipation for other quantum states
of atoms [29–32], different ways for entanglement of distant
atomic ensembles [33–35], entanglement of distant mechan-
ical oscillators [36–41], and entanglement of Bose-Einstein
condensates [42].

In the reservoir engineering for two-mode squeezing and
entanglement, two factors combine to determine the two-mode
quantum correlations and depend strongly on nonlinearities
or saturations. One is the squeezing parameter r by which
the two individual modes σ1,2 (e.g., spins) combine into
the Bogoliubov-like modes and interact collectively with the
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vacuum modes [43]

π1 = σ1 cosh r − σ+
2 sinh r,

π2 = σ2 cosh r − σ+
1 sinh r. (1)

The other is the dissipative rates A1,2, by which these
Bogoliubov modes relax under adiabatic condition according
to the master equation of the density operator ρa like [44]

ρ̇a =
2∑

l=1

Al

2
(2πlρaπ

+
l − π+

l πlρa − ρaπ
+
l πl). (2)

The ideal case is r → ∞ and A1,2 � �1,2, where �1,2 are the
damping rates for the atoms due to the environment vacuum.
When these conditions are satisfied, the two-mode variance
tends to vanish, that is, the Einstein-Podolsky-Rosen entangled
state is obtainable [45]. If the squeezing parameter r is not
so large, the best achievable two-mode variance below the
standard quantum level is e−2r . The squeezing degree is finally
limited by the squeezing parameter r . The larger the squeezing
parameter the more the squeezing degree, and vice versa. The
e−2r squeezing is only possible when the π1,2 modes can
rapidly relax to the vacuum state. This also requires that the
engineered dissipation dominates over the vacuum dissipation
[11–19].

To our knowledge, two assumptions have been made
generally in previous work. One assumption, as a primary
one, is that the squeezing parameter r and the engineered
reservoir dissipation rates A1,2 can both be large [11–19].
Perhaps this is possible for some specific situations. However,
we notice that the squeezing parameter r and the dissipative
rates A1,2 depend on the nonlinearities of the atom-field
interactions in drastically different ways. There exist two
limiting cases. For weak nonlinearity, the dissipation rates
can be large while the squeezing parameter is considerably
small. For too strong nonlinearity, the squeezing parameter is
large while the dissipation rates cannot be enough to overcome
the vacuum dissipation. In both limiting cases, the squeezing
parameter and the engineered reservoir dissipation rates cannot
be simultaneously large, and thus the squeezing is either
negligibly weak or even vanishing. The other assumption,
as a secondary one, is that adiabatic conditions are satisfied
[11–19]. For interacting atomic ensembles and optical fields,
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when one is considered as a system, the other as a reservoir
is assumed to relax much more rapidly and is allowed to be
eliminated adiabatically. More often than not, however, the
interacting parties have comparable relaxation times [46,47],
and the adiabatic elimination no longer holds.

Here we would like to examine the effects of the atom-field
nonlinearities on the squeezing parameter and the dissipation
rates and to optimize the conditions for the reservoir engineer-
ing. In particular, we consider the simultaneous interactions
of two dressed two-level atomic ensembles with two cavity
quantum fields. The important purpose is to see whether it is
possible to make the squeezing parameter and the dissipative
rates as compatibly large as possible in the regime of moderate
nonlinearities. Our analysis is performed without adiabatic
elimination. As expected, we find that, with moderate non-
linearities, the squeezing parameter is remarkably enhanced
at a proper cost of decreasing the dissipative rates. The
balance between them by the moderate nonlinearities remark-
ably enhances the two-mode squeezing and entanglement of
separated spin atomic ensembles or different optical fields.
The enhanced efficiency with the moderate nonlinearities is
interesting in applications in quantum nodes based on the
reservoir engineering.

The remaining part of the present paper is organized as
follows. Given in Sec. II are the model and nonlinearities.
Section III describes the nonlinearity-induced dissipation,
and Sec. IV presents the two-mode spin squeezing and
entanglement. In Sec. V we compare with the two-mode field
squeezing and entanglement. Finally, the conclusion is given
in Sec. VI.

II. MODEL AND NONLINEARITY

Our purpose is to study the simultaneous interactions of
two atomic ensembles with two cavity quantum fields. For this
purpose, we propose a possible setup as shown in Fig. 1(a).
In this setup, two single-ended folded cavities cross at two
crossing sections, in which are placed two atomic ensembles
of different but close resonance frequencies. One common
coherent field drives the atomic ensembles and induces the
Rabi resonances with quantized cavity fields. The separated
cavities are advantageous for choosing different but close
frequencies and for interacting simultaneously with the two
atomic ensembles. The folded cavities are often used in
correlated-emission lases [17] and a system of two or more
mechanical oscillators coupling different cavity fields [36]. An
alternative setup can be based on separate, cascaded cavities
[11,24], which are coupled through the unidirectional coupling
from one cavity to the other cavity [48]. In this case the
coupling efficiency between the two cavities should be taken
into account. Here we consider the folded and crossed cavities
for the sake of simplicity. The frequencies of the involved
elements are shown in Fig. 1(b). The circular frequency of the
dressing field ω0 locates at the center, the circular frequencies
of the atoms ω1,2 lie at the inner positions, and the circular
frequencies of the cavity modes ν1,2 are seated at the outer
positions.

The master equation for the density operator ρ of the atom-
field system is derived in the dipole approximation and in an

FIG. 1. (a) Possible double-cavity setup. Two folded cavities
cross at crossing sections, where two atomic ensembles N1,2 are
driven by a strong field with Rabi frequencies �1,2 and are coupled
to each of two cavity modes a1,2. (b) The circular frequency of the
dressing field ω0 locates between the circular frequencies of the atoms
ω1,2, and the circular frequencies of the cavity modes ν1,2 lie at the
two ends.

appropriate rotating frame as [44]

ρ̇ = − i

h̄
[H,ρ] + Lρ, (3)

with the total Hamiltonian

H = H0 + HI , (4)

where

H0 = h̄

2∑
l=1

[
	lσ

+
l σl + 1

2
(�lσ

+
l + �∗

l σl)

]
(5)

describes the free terms of atoms and the interactions between
the atoms and the dressing field, and

HI = h̄

2∑
k=1

	ck
a
†
kak + h̄

2∑
k,l=1

gkl(akσ
+
l + σla

†
k) (6)

denotes the free terms of two cavity modes and the interactions
of cavity fields with the atoms. Of the above formulas, h̄ is
the Planck constant. σl = ∑Nl

μ=1 σlμ (σlμ = |1lμ〉〈2lμ|) are the
collective spin-flip operators of the lth ensemble (l = 1,2),
|1l〉 and |2l〉 are the ground and excited states respectively,
and Nl are the numbers of lth atomic ensemble. al and a

†
l are

the annihilation and creation operators for the cavity modes.
	l = ωl − ω0 and 	cl

= νl − ω0 are the detunings of the
atomic transition circular frequencies ωl and the cavity mode
resonance circular frequencies νl , respectively, with respect to
the dressing field circular frequency ω0. �l = μlEl/h̄ are Rabi
frequencies associated with the lth atomic ensemble, where μl

are the electric dipole moments and El are the electric fields
of the dressing fields. gkl are the coupling strengths between
the kth cavity field and the lth atomic ensemble. The damping
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term in the master equation (3) takes the form [44]

Lρ =
2∑

l=1

⎛
⎝γl

2

Nl∑
μ=1

Lσlμ
ρ + κl

2
Lal

ρ

⎞
⎠, (7)

where Lσlμ
ρ and Lal

ρ describe the atomic and cavity relax-
ations with rates γl and κl , respectively, and

Loρ = 2oρo† − o†oρ − ρo†o, o = σ1μ,σ2μ,a1,2. (8)

Throughout this article we assume that the cavity quantum
fields are negligibly weak compared with the classical dressing
field. It is the case because the dressed atoms are in wave-
mixing interactions with the cavity quantum fields [49]. In
principle, the cavity quantum fields can be in different vacuum
states. The susceptibility can be obtained by neglecting
the quantum cavity fields and calculating the polarizations
Pl = μl〈σl〉 for the lth atomic ensemble. The susceptibilities
induced by the dressing fields are χl = Pl/(ε0El), which are
derived as [49]

χl = |μl|2Nl

ε0h̄

−2	l + iγl

4	2
l + γ 2

l + 2|�l|2
, l = 1,2, (9)

where ε0 is the permittivity of vacuum. The imaginary and
real parts of χl describe the absorption and the dispersion,
respectively, of the atomic ensembles. The |�l|2 term in
the denominator represents the saturation or the nonlinearity
[49]. Usually, in order to avoid the absorption and the
spontaneous emission one resorts to the far-off resonance case
|	l| � (γl,|�l|), in which the dispersion dominates over the
absorption and the nonlinearity is negligibly small. It is easy
to imagine that it is difficult to induce the interaction and
correlation between the cavity quantum fields a1 and a2 for
the present two-level atomic system, unless we go beyond the
weak nonlinearity.

In contrast, the essence of the reservoir engineering is
to introduce the induced absorption to the collective or
Bogoliubov modes. In order to examine the effects of the
atom-field nonlinearities on the squeezing parameter and
the dissipation rates and to optimize the conditions for
the reservoir engineering, we have to go beyond the weak
nonlinearity. As |�l|2 increases, the saturation becomes deep
and the nonlinearity is enhanced. The nonlinearities are in
divergent series of indefinitely high orders if we expand
the susceptibility in terms of (|�l|/	l)2 when |�l/	l| � 1
and 	l � γl . For the strong nonlinearities, the perturbative
expansions are no longer valid, and we have to keep all terms
of the high orders in (|�l|/	l)2. Therefore the nonlinearity
of the present two-level system due to the dressing field is
determined by the ratio of the Rabi frequency to the detuning

ηl = |�l|
	l

, (10)

which we call the nonlinear parameter for convenience. In
what follows we will consider the effects of the moderate and
even considerably strong nonlinearity induced by the dressing
field,

|ηl| � 1. (11)

III. NONLINEARITY-INDUCED DISSIPATION

Now we turn to discussing the effects of the nonlinearities
on the interactions between the dressed atoms and the cavity
quantum fields. The dressed state picture is best suitable for
this purpose. By diagonalizing the Hamiltonian H0, we obtain
the dressed states that are expressed in terms of the bare atomic
states as [50]

|+l〉 = sin θle
−iφl |1l〉 + cos θl|2l〉,

|−l〉 = cos θl|1l〉 − sin θle
iφl |2l〉, (12)

with cos2 θl = 1
2 + 	l

2�̄l
, sin2 θl = 1

2 − 	l

2�̄l
, �̄l =

√
	2

l + |�l|2,
and φl = arg �l . Because of the simultaneous interactions of
the two atomic ensembles with the two fields, the phases can be
unequal, φ1 �= φ2. The relative weights of the components |1l〉
and |2l〉 in the superposition states |±l〉 are simply determined
by the ratios η1,2 of the Rabi frequencies to the detunings. As
will be shown below, it is the parameters η1,2 that determine
the nonlinearity-induced dissipative atom-field interactions.

In the dressed states representation the Hamiltonian of the
dressed atoms H0 becomes the free form

H0 =
2∑

l=1

h̄(λ+
l σ

(l)
++ + λ−

l σ
(l)
−−), (13)

where σ
(l)
±± = ∑Nl

μ=1 |±lμ〉〈±lμ|. These dressed states |±l〉 cor-
respond respectively to the eigenvalues λ±

l = h̄(	l ± �̄l)/2,
which give the Rabi resonances at sidebands ωl± = ω0 ± �̄l .
We assume that the following conditions are well satisfied, i.e.,

�̄1,2 � (γ1,2,κ1,2), (14)

which guarantee that the dressed states are well separated from
each other. Applying the dressed states transformation to the
atomic relaxation terms (i.e., the γ ’s terms) and assuming that
the cavity fields to be in their vacuum states temporarily (as
shown below, it will be the case), we obtain the steady-state
populations N±

l = 〈σ (l)
±±〉 as

N+
l = Nl sin4 θl

cos4 θl + sin4 θl

, N−
l = Nl cos4 θl

cos4 θl + sin4 θl

. (15)

We tune the cavity fields resonant with the Rabi sidebands,
	c1 = −	c2 = �̄1 = �̄2. Making the further unitary trans-
formation and neglecting rapidly oscillating terms, we obtain
the atom-field interaction Hamiltonian

HI = h̄a
†
1(g̃11 cos2 θ1σ̃1 + g̃12 cos2 θ2σ̃

+
2 )

− h̄a
†
2(g̃22 sin2 θ2e

2iφ2 σ̃2 + g̃21 sin2 θ1e
2iφ1 σ̃+

1 )

+ H.c., (16)

where we have used H.c. to denote the Hermitian con-
jugate of the terms before it. We have also defined the
effective atom-field coupling strengths g̃kl = gkl

√
Jl , and the

spin down-flip operators σ̃1 = ∑N1
μ=1 |−1μ〉〈+1μ|/√J1, σ̃2 =∑N2

μ=1 |+2μ〉〈−2μ|/√J2 for 	1,2 > 0, respectively. Jl =
|N+

l − N−
l | are the total spins, which are assumed to be large.

Here we are dealing with the atomic ensemble spins which are
considerably excited and deviate from the Holstein-Primakoff
approximation [51]. The fluctuations due to the deviation,
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FIG. 2. Atom-field interactions in the dressed state picture (i.e., in
a rotating frame). Each spin flip-up of the dressed states is companied
with both the annihilation of one photon (blue lines) and the creation
of the other photon (red lines).

which are included in the following two sections for the
analytic and numerical calculations, are neglected temporarily
for the present qualitative analysis. For 	1,2 < 0 we exchange
σ̃l and σ̃+

l . The new spin operators have commutation relations
[σ̃l ,σ̃

+
l ]

.= 1 (l = 1,2) and [σ̃1,σ̃2] = [σ̃1,σ̃
+
2 ] = 0.

We see from Hamiltonian (16) that the nonlinearity by the
dressing field causes the characteristic features such as four
aspects as follows.

(i) The spin operators σ̃1,2 are just those orthogonal
to the total spins. For the spins, to be useful for noise
consideration in actual experiments and applications, one
generally needs to rotate the original frame of reference to
make the total spin be in one of the coordinate axes. The
fluctuations to limit the measurement precision are those of
the quadratures in a plane orthogonal to the direction of the
total spin. The mean values of the spin components in such
a plane are zero. For the present case, the dressed transform
has twofold roles. One is to describe the direct interactions
of the fields with the dressed atoms, and the other is to
perform a frame rotation and to define the total spins Jl =
|N+

l − N−
l |, l = 1,2 and the quadratures orthogonal to the to-

tal spins. These quadratures simply are the combinations of the
operators σ̃1,2.

(ii) Each spin ensemble is in a down-conversion-like
interaction with one different field and in a beam-splitter-like
interaction with the other field. As shown in Fig. 2, the
spin flip-up σ̃+

1 of the atomic ensemble 1 happens with the
annihilation of photon a1 and the creation of photon a2,
while the spin flip-up σ̃+

2 of the atomic ensemble 2 goes with
the creation of photon a1 and the annihilation of photon a2.
Each spin flip-up is accompanied with the annihilation of one
different photon and the creation of the other photon. Usu-
ally, the down-conversion-like interaction leads to two-mode
squeezing, while the beam-splitter-like interaction transfers
the quantum state from one to the other. When the cavity fields
as two engineered reservoir components decay much more
rapidly than the atoms, the two atomic spin ensembles as two
system modes will undergo the engineered dissipation effects.
The cavity mode a1 (a2) entangles with the spin σ̃2 (σ̃1) and
transfers immediately its state to σ̃1 (σ̃2). In this way the cavity
fields will possibly make the two atomic ensembles σ̃1,2 evolve
into the two-mode squeezed and entangled state.

(iii) In addition to the above two aspects, the nonlinear-
ities are also merged into the effective atom-field coupling

strengths. In principle, such nonlinearities in g1l cos2 θl and
g2l sin2 θl (l = 1,2) will determine whether the squeezing
parameter and the engineered reservoir dissipation rates are
compatibly large. If g12 cos2 θ2 and g21 sin2 θ1 are too small,
then the squeezing cannot be established due to the absence
of the down-conversion-like interactions. This corresponds to
the weak nonlinearity case. Therefore, it is necessary to go to
moderate nonlinearity for enhancing quantum correlations.

(iv) The squeezing parameter and the engineered reservoir
dissipation rates have opposite dependences on the nonlinear-
ity, and an optimization for large cross correlation exists for
the moderate nonlinearity. This can be explicitly shown for the
symmetric case: 	1 = −	2 = 	,�1,2 = � (θ1 = π

2 − θ2 =
θ ), φ1 = φ2, gkl = g, γ1,2 = γ, κ1,2 = κ,N1,2 = N (J1,2 =
J ). Under these conditions, we rewrite the Hamiltonian
(16) as

HI =
2∑

l=1

h̄Gl(alπ
+
l + πla

†
l ), (17)

where we have introduced the Bogoliubov spin modes as in
Eq. (1) for 	 > 0 as

π1 = σ̃1 cosh r + σ̃+
2 sinh r,

π2 = σ̃2 cosh r + σ̃+
1 sinh r, (18)

with the squeezing parameter tanh r = tan2 θ and the effective
coupling constants Gl = (−1)l−1g

√
J | cos(2θ )|. Without con-

fusion, now we refer to r, tanh r , or sinh(2r) as the squeezing
parameter for convenience. The new operators satisfy the
commutation relations [πl,π

+
l ]

.= 1 (l = 1,2) and [π1,π2] =
[π1,π

+
2 ] = 0. For 	 < 0, we have the similar formulas by

exchanging σ̃l with σ̃+
l and exchanging sin θ with cos θ .

Hamiltonian (17) indicates that the spin Bogoliubov modes
π1,2 are in dissipative interactions with the cavity fields a1,2.
As the cavity fields relax to the vacuum state, the collective
spin modes evolve into their steady state. Under the adiabatic
conditions (κ � γ ), we can eliminate the cavity modes a1,2

and derive the master equation for reduced density operator
ρa = Trfieldsρ of the spin atomic ensembles [44] in the same
form as Eq. (2)

ρ̇a = A

2

2∑
l=1

(2πlρaπ
+
l − π+

l πlρa − ρaπ
+
l πl), (19)

where

A = 2g2

κ
J | cos(2θ )| (20)

is the common dissipation rate by the engineered reservoirs.
This master equation indicates the dissipation of the Bogoli-
ubov operators π1,2 by the cavity fields in the usual form [44].

Expanding Eq. (19) in terms of σ̃1,2 we have the spin
interaction terms induced by the cavity fields

A sinh(2r)(σ̃1ρaσ̃2 + σ̃2ρaσ̃1 − σ̃2σ̃1ρa − ρaσ̃2σ̃1) + H.c.

(21)

It is obvious that the cross coupling strength A sinh(2r)
depends simultaneously on the collective dissipation rates A
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FIG. 3. The cross correlation R, the relative dissipation rate A/�,
and the squeezing parameter sinh(2r) versus the nonlinear parameter
η = |�|/	. Here R and A/� are scaled to unity.

and the squeezing parameter sinh(2r). The cross correlation is
obtained as [44,48]

R = A

�
sinh(2r), (22)

where � = γ + γ

2 sin2(2θ ) is the decay rates of dressed spins
σ̃1,2. We can give the dependence R on the nonlinear parameter
η = |�|/	 in an explicit form

R = 4g2N

κγ

η2(1 + η2)1/2

(2 + η2)(2 + 3η2)
. (23)

Clearly, the cross correlation depends strongly on the nonlinear
parameter η. When the nonlinear parameter |η| → 0,∞, the
cross correlation tends to vanish R → 0. Shown in Fig. 3 are
the cross correlation R, the engineered reservoir dissipation
rate relative to the environment dissipation rate A/�, and the
squeezing parameter sinh(2r) versus the nonlinear parameter
η. This figure clearly shows that A/� and sinh(2r) have the
opposite dependences on η. A/� falls monotonously while
sinh(2r) rises as |η| increases. Ideally, in order to have good
squeezing, one needs both large squeezing parameter sinh(2r)
and large dissipation rate A/�. In practice, when r is small,
squeezing is weak even if A/� is large; and conversely, when
A/� is small, squeezing is weak or nonexistent even if r is
large. Therefore one needs to compromise these two factors.
The two wide wings are a consequence of the optimization
of the two competing factors. The two wings indicate that the
cross correlation R takes a remarkably larger value within a
large range of the moderate nonlinearity η.

IV. TWO-MODE SPIN SQUEEZING

Since the squeezing parameter r and the ratio A/� of
engineered to environmental dissipation rates have oppo-
site dependences on the nonlinear parameter η, they have
competing effects on the quantum correlations. We are now
in a position to examine the competing effects due to the
nonlinearities. In the following discussion, an analytical
description is given for the symmetrical case while numerical
verification is presented for the general case. At the same time
we include the nonadiabatic conditions.

We define the spin quadratures orthogonal to the total spins

xo = o + o†√
2

, po = o − o†

i
√

2
, o = σ̃1,2. (24)

Then we express the two-mode quadrature operators as

δXβ = δxβ1 − δxβ2 , δPβ = δpβ1 + δpβ2 . (25)

When the variance of any quadrature is less than unity δ2Xβ <

1 or δ2Pβ < 1, the two-mode squeezing occurs [43,44]. For
simplicity, we have defined the expression δ2o ≡ 〈(δo)2〉 for
the variances. According to the criterion of Ramyer et al.
[52], entanglement for spin atomic ensembles occurs when
the inequality for the fluctuations satisfies

Vβ = δ2Xβ + δ2Pβ < 2. (26)

In order to include the dependence of quantum cor-
relations on various parameters, we derive the Langevin
equations from Hamiltonian (16). Following the standard
technique [48], selecting the operator order a

†
1,a

†
2,σ̃

+
1 ,

σ̃+
2 ,σ̃2,σ̃1,a2,a1, and defining the corresponding c num-

bers α∗
1 ,α

∗
2e

−2iφ2 ,β∗
1 ,β∗

2 ,β2,β1,α2e
2iφ2 ,α1, we derive the

Heisenberg-Langevin equations for 	1 > 0 and 	2 < 0 as
follows [48]:

α̇1 = −κ1α1/2 − g̃11β1 cos2 θ1 + g̃12β
†
2 cos2 θ2 + Fα1 ,

α̇2 = −κ2α2/2 + g̃22β2 sin2 θ2 − g̃21β
†
1 sin2 θ1e

iφ + Fα2 ,

β̇1 = −�1β1/2 + g̃11α1 cos2 θ1 − g̃21α
†
2 sin2 θ1e

iφ + Fβ1 ,

β̇2 = −�2β2/2 − g̃22α2 sin2 θ2 + g̃12α
†
1 cos2 θ1 + Fβ2 , (27)

where we have defined the relative phase φ = 2(φ1 − φ2).
The F terms are noises with zero means and correlations
〈Fx(t)Fy(t ′)〉 = Dxyδ(t − t ′),Dxy = Dyx and Dx∗y∗ = D∗

xy .
The nonzero diffusion coefficients are Dα∗

1β∗
2

= g̃12

cos2 θ2,Dα∗
2 β∗

1
= −g̃21 sin2 θ1e

−iφ,Dβ∗
1 β1 = �1N

+
1 /J1, and

Dβ∗
2 β2 = �2N

−
2 /J2.

The above equations are used to calculate the quantum
correlations without the adiabatic elimination [46,47]. Our cal-
culations and results hold for arbitrary rates of the atomic and
cavity relaxations. The characteristic features are presented as
follows.

(i) Weak squeezing for weak nonlinearity and no squeezing
for too strong nonlinearity. Using the above Langevin equa-
tions we can calculate the variances for various operators.
At steady state 〈σ̃1,2〉 = 〈a1,2〉 = 0, then δσ̃1,2 = σ̃1,2 and
δa1,2 = a1,2. For the symmetric case as in Sec. III, we can
derive analytic expressions of the variances from Eq. (27) as

δ2Xβ = δ2Pβ = 1 − κ(1 − e−2r ) − 2��
(
1 + κ+�

C�

)
(κ + �)(1 + C−1)

, (28)

where the unity next to the equality sign represents the standard
quantum level [43,44] and the second term is due to the
fluctuations under the selected operator ordering. We have
defined the cooperativity parameter C = 4g2J | cos(2θ )|/(κ�)
and the additional parameter � = N±

1 /J (“+” for 	 > 0 and
“−” for 	 < 0). The κ(1 − e−2r ) term is due to the dressed
atom-photon interaction, and the � term comes from the
atomic spontaneous emission. Since we have equal variances
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FIG. 4. Spin variance sum Vβ versus the nonlinear parameter η for
the symmetrical case. The parameters are chosen as γ = 0.5κ (dot-
ted), 0.1κ (dot-dashed), 0.02κ (dashed), 0.01κ (solid), g2N = 10κ2,
and φ = 0.

δ2Xβ = δ2Pβ , the conditions for entanglement are the same as
for the squeezing.

We note that the parameters in Eq. (28) are strongly
dependent on the nonlinear parameter η = |�|/	 through the
following explicit expressions:

C = 16g2N

κγ

1 + η2

(2 + η2)(2 + 3η2)
, (29)

e−2r = 1√
1 + η2

, (30)

� = −1

2
+

√
1 + η2

4
+ 1

4
√

1 + η2
. (31)

The cooperativity parameter C falls monotonously with the
nonlinear parameter |η|. The larger the parameter η, the
slower the decrease in C. In the limiting cases, we have
C = 4g2N/(κγ ) for |η| � 1, and C → 0 for |η| � 1. In
the weak nonlinearity region (|η| � 1,� � 1) and when
C � 1 + κ/� and γ � κ , Eq. (28) reduces to

δ2Xβ = δ2Pβ
.= e−2r = 1√

1 + η2
� 1, (32)

which shows that the squeezing degree is negligibly weak
even if it is existent. In the other limit (the strong nonlinearity,
η → ∞,C → 0,� → ∞), we have

δ2Xβ = δ2Pβ > 1, (33)

which indicates no squeezing. It is seen from the two
limiting cases that only weak squeezing happens for the
weak nonlinearity, and no squeezing exists for the too strong
nonlinearity.

(ii) Remarkable enhancement of squeezing via moderate
nonlinearity. The spin variance sum Vβ is plotted in Fig. 4
versus the nonlinear parameter η for the symmetrical case. We
take the parameters as γ = 0.5κ (dotted), 0.1κ (dot-dashed),
0.02κ (dashed), 0.01κ (solid), g2N = 10κ2, and φ = 0. The
variance displays two dips below the standard quantum level.
The variance rises close to 2 (the standard quantum noise level)
for small η and rises above 2 for too large η. Good squeezing
and entanglement appear for a comparably large range of

moderate values of η. The minimal variances δ2Xβ = δ2Pβ

(half of Vβ) approach 0.2, which corresponds to the best
squeezing of close to 80% for the Xβ and Pβ quadratures.
Physically, it is the combination of the squeezing parameter
with the engineered reservoir dissipation rates that optimizes
the squeezing. For the moderate nonlinearity, the correlation
is sensitive to the atomic decay rates. The smaller the atomic
decay rates, the smaller the minimal two-mode variance. As
the atomic decay rates decrease, the two dips become wide
and the bottoms for the best squeezing shift towards the
outside. Beyond the two dips, the overly saturation η makes
the decreased dissipation rate A not dominate over the vacuum
dissipation rates, and so the squeezing disappears.

Now we can relate the two dips of the variance Vβ in
Fig. 4 to those two peaks of the cross correlation R in Fig. 3.
Essentially, the variance dips are the competing consequence
of the nonideal dissipation rate A and the squeezing parameter
r . Good squeezing is represented by a large parameter r but
it is achievable only when the dissipation rate A is dominant
over the environmental vacuum-induced dissipation rate γ .
However, as shown in Fig. 3, the squeezing parameter r

and the dissipation rate A have opposite dependence on
the nonlinearity η. For this reason, in a sophisticated way
as shown in Eq. (28), the competing effects of the not
so ideal dissipation rate A and the squeezing parameter r

on the variances depend on the nonlinear parameter η, the
cooperation parameter C, and the ratio of atomic to cavity
decay γ /κ . This determines that the variances display two
characteristic features as follows. First, the variance dips
become deeper, wider, and further separated from each other
as the atomic decay rate falls. With increasing cooperativity
parameter and/or decreasing atomic decay rate, the engineered
dissipation is more dominant over the vacuum dissipation and
so the best achievable squeezing is enhanced. At the same
time, there exists a wider and wider range of the nonlinear
parameter η in which the engineered dissipation dominates
over the spontaneous dissipation. Second, the variance dips
are cut off at two particular points of the borderlines. This
is because the engineered reservoir dissipation rate A is no
longer enough to overcome the vacuum dissipation at the cutoff
points, though the squeezing parameter is large. Once it is the
case, squeezing is no longer existent even if the squeezing
parameter r is large. Beyond the two dips, the too strong
nonlinearity makes the engineered reservoir dissipation rate
weaker, and thus squeezing is impossible.

(iii) Phase dependence. Beyond the symmetric case, it
becomes relatively complicated to calculate the variance. We
resort to the spectral method [48]. By expressing the vari-
ables in a column vector O(t) = (α1,α2,β1,β2,α

∗
1 ,α

∗
2 ,β

∗
1 ,β∗

2 )T

and by defining δO(t) = O(t) − 〈O〉, we write the set of
Heisenberg-Langevin equations (27) in a compact form

d

dt
δO(t) = −BδO(t) + F (t), (34)

where B is the drift matrix and F (t) is the column vector for
noises. The noise correlations are expressed as 〈F (t)FT (t ′)〉 =
Dδ(t − t ′). Using the Fourier transformation δO(ω) =

1√
2π

∫ ∞
−∞ δO(t)eiωt dt , we derive the correlation spectrum as
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FIG. 5. Spin variance sum Vβ versus the nonlinear parameter η

for different phases, φ = 0 (solid), π/12 (dashed), π/9 (dot-dashed).
The other parameters are chosen to be the same for the solid line
in Fig. 4.

S(ω) = limt→∞
∫ +∞
−∞ e−iωτ 〈δO(t + τ )δOT (t)〉 dτ , where

S(ω) = (B + iωI )−1D(BT − iωI )−1, (35)

with I being a unit matrix. The spectrum exists if the steady-
state solutions are stable. The stability can be verified by
calculating the eigenvalues of the matrix B, which is performed
by using a computer. When the real parts of all eigenvalues
are positive, then the system is stable. The variance sum Vβ in
Eq. (26) is obtained as

Vβ = 2 + 1

2π

∫
Vβ(ω) dω, (36)

where 2 is the standard quantum noise level [43,44] and the
second term is due to the fluctuation spectrum under the
selected operator ordering

Vβ(ω) = S37(ω) + S48(ω) − S34(ω) − S78(ω) + c.c., (37)

with Skl being the elements of S(ω) at the kth row and at the
l column. Plotted in Fig. 5 is the spin variance sum Vβ versus
the nonlinear parameter η for different phases φ = 0 (solid),
π/12 (dashed), π/9 (dot-dashed). The other parameters used
in the calculation are chosen to be the same as for the solid
line in Fig. 4. In order to show the equivalence between the
spectrum integration method and the direct analytic calculation
method, we also plot in Fig. 5 the solid line for exactly the same
parameters as for the solid line in Fig. 4. It is clearly shown
that these two curves are exactly the same. Therefore, both
methods are valid for the calculation of the variances. It is
clearly seen from Fig. 5 that the two wings for the variance
sum shift up and remarkably shrink as the phase increases.
This indicates that the deviation of the phase from zero always
weakens the squeezing. Further increase in the phase leads to
disappearance of the squeezing. For not too large deviation
from φ = 0, however, two wide dips still exist, which indicate
a wide range of the moderate nonlinearity for good squeezing.

(iv) Effects of asymmetrical detunings. So far we have
assumed the symmetric nonlinearities. Now we pay attention
to the asymmetric detunings. In Fig. 6 we plot the spin variance
sum Vβ versus the nonlinear parameter η1 = |�1|/	1 for
asymmetrical case (η2 �= η1). This also requires �1 �= �2 to

FIG. 6. Spin variance sum Vβ versus the nonlinear parameter
η1 = |�1|/	1 for asymmetrical nonlinearities (η2 �= η1). The param-
eter ζ = −	2/	1 is set as ζ = −1 (solid), −0.7 (dashed), and −0.4
(dot-dashed). The other parameters are chosen to be the same as for
the solid line in Fig. 4.

satisfy the conditions in Eq. (14). The parameter ζ = −	2/	1

is chosen as ζ = −1 (solid), −0.7 (dashed), and −0.4 (dot-
dashed). The other parameters used for the calculation are the
same as for the solid line in Fig. 4. Note that squeezing is not
existent at η1 = 0. It is seen from Fig. 6 that the best achievable
squeezing becomes weak, and the wings for squeezing also
become narrow as the ratio 	2/	1 increases. Combining Fig. 5
with Fig. 6 we see that the deviation of the parameters from the
symmetrical case generally spoils the squeezing and narrows
the nonlinearity regime for squeezing.

So far we have shown the double-dip structure for the
moderate nonlinearity-induced enhancement of two-mode
spin squeezing. Within the double dips, the nonlinearity com-
promises the squeezing parameter and the engineered reservoir
dissipation rates and thus optimizes the spin correlations.
Beyond the two dips, there no longer are the squeezing and
entanglement due to the fact that the too strong nonlinearity
overly reduces the engineered reservoir dissipation rates.

V. TWO-MODE FIELD SQUEEZING

As a comparison, we consider the dependence of the field
correlations on the nonlinearity when we exchange the atomic
ensembles as an engineered reservoir for the cavity fields.
Similarly, for the symmetric case, we can also introduce the
Bogoliubov modes for the cavity fields [43]

b1 = a1 cosh r − a
†
2 sinh r,

b2 = a2 cosh r − a
†
1 sinh r, (38)

and rewrite the interaction Hamiltonian (16) for 	 > 0 as

HI =
2∑

l=1

h̄Gl(blσ̃
+
l + σ̃lb

†
l ). (39)

The case for 	 < 0 is treated similarly. In Eq. (39) we note
that annihilation (creation) of the new modes b1,2 is always
accompanied with the excitation (deexcitation) of the atoms,
respectively. The atomic ensembles constitute the engineered
dissipation reservoir for the Bogoliubov field modes. For the
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symmetric case as above and under the adiabatic condition
(γ � κ), we derive the master equation for the reduced density
operator ρc = Tratomsρ of the cavity fields for 	 > 0 as [44]

ρ̇c = B1

2

2∑
l=1

(2blρcb
†
l − b

†
l blρc − ρcb

†
l bl)

+ B2

2

2∑
l=1

(2b
†
l ρcbl − blb

†
l ρc − ρcblb

†
l ), (40)

where B1,2 = 2g2N∓
1 | cos(2θ )|/� are the absorption and gain

coefficients [44] of Bogoliubov field modes bl by the dressed
atoms, respectively. The difference from the spin case is the
presence of the gain terms. The net rate for the engineered
dissipation is B1 − B2. The cross correlation between the two
cavity fields is obtained as

R′ = −
(

B1 − B2

κ

)
sinh(2r), (41)

which is the same as the cross spin correlation except a
minus sign

R′ = −R. (42)

This means that the field correlation displays the similar
dependence on the nonlinearity except for the exchange of the
relative values of κ and γ . Taking into account the differences
in the plus and minus signs of the spin and field Bogoliubov
operators (18) and (38) and of the cross correlations (42), we
will have two-mode squeezing and entanglement for the same
collective quantities. It is the case indeed, as shown in what
follows.

We use the quadrature operators (24) for the fields with
o = a1,2. Then we express the two-mode quadrature operators
as δXα = δxa1 − δxa2 and δPα = δpa1 + δpa2 . If the variance
of any quadrature is less than unity, δ2Xα < 1 and/or δ2Pα <

1, the two-mode squeezing occurs for the two cavity fields
[43,44]. The cavity fields are entangled with each other if [53]

Vα = δ2Xα + δ2Pα < 2. (43)

The steady-state variances for the collective cavity fields are
calculated from the set of Heisenberg-Langevin equations (27)
for the symmetric case in an analytic form

δ2Xα = δ2Pα = 1 − �(1 − e−2r ) − 2��e−2r

(κ + �)(1 + C−1)
. (44)

After exchanging the atomic ensembles as the engineered
reservoir, we can find the similar dependence of the field
correlations on the nonlinear parameter η. We plot in Fig. 7
the field variance sum Vα versus the nonlinear parameter η for
the symmetrical situation. The parameters we used are κ = γ

(dot-dashed), 0.2γ (dashed), 0.05γ (solid), g2N = 10γ 2, and
φ = 0. It is seen from Fig. 7 that the variance sum is smaller
than the standard quantum noise level, Vα < 2, so long as
η �= 0. In the weak nonlinearity limit, η → 0, the variance
rises towards 2 and the squeezing is weak. Within a very
large range of strong nonlinearity, 0 < η < ∞, the squeezing
is considerably strong. As the cavity decay rate κ decreases,
the two wings shift down. Like the case for the spin atomic

FIG. 7. Field variance sum Vα versus the nonlinear parameter
η for the symmetrical case. The used parameters are κ = γ (dot-
dashed), 0.2γ (dashed), 0.05γ (solid), g2N = 10γ 2, and φ = 0.

ensembles, the best squeezing always appears for moderate
nonlinearity for given parameters. However, there are two
remarkably different features from the spin case. First, the
minimal variances δ2Xα = δ2Pα (half of Vα) approach 0.5,
which corresponds to squeezing of close to 50% for the Xα

and Pα quadratures. Second, squeezing is existent for the
entire regime of the nonlinearity except at η = 0, though
the squeezing is weak for strong nonlinearity. This is because
the cavity fields just reduce to their vacuum state even though
the engineered reservoir dissipation rates are not enough to
overcome the environment vacuum dissipation. Compared
with the spin case, the best field squeezing is reduced, while
the parameter range for squeezing is greatly widened.

As a possible experimental feasibility, one can employ a
cloud of cold alkali atoms prepared in a standard magneto-
optic trap, as for squeezing of an atomic ensemble [54–56]. The
cesium D2 transition hyperfine structure |6S1/2,F = 4〉 →
|6P3/2,F

′ = 5〉 (wave length 852 nm) can be used for our work-
ing transition. The σ± circularly polarized fields of the same
frequency are coupled to the σ+ transition |F = 4,mF 〉 →
|F ′ = 5,mF + 1〉 and σ− transition |F = 4,mF 〉 → |F ′ =
5,mF − 1〉, respectively. The closest sublevel is 251 MHz
below the excited state. The natural line width of the transition
is 2π×2.6 MHz. Thus the detuning and the Rabi frequency
can take the range 2π×2.6 � (�,	) � 2π×251 MHz. One
static magnetic field is used to shift the magnetic sublevels
of the different ensembles towards the opposite directions
and thus to produce the opposite detunings. The transition
|6S1/2,F = 3〉 → |6P1/2,F

′ = 3,4〉 (wave length 894 nm)
is used to initially populate and later keep the atoms in
the upper ground state. The spin entanglement of atomic
ensembles can be prepared when κ � 2π×2.6 MHz, while the
light entanglement requires κ � 2π×2.6 MHz. The mediate
nonlinearity (η = |�|/	) is controlled and kept by stabilizing
the amplitude and frequency of the dressing field under the
conditions 2π×2.6 �

√
|�|2 + 	2 � 2π×251 MHz. On the

other hand, the variance as a function of η displays two
wide dips, each of which means a wide range of moderate
nonlinearity for the enhanced squeezing. This indicates that
good squeezing can be kept even when the nonlinear parameter
η changes within a range of the mediate values.
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The present two-level scheme is scalable because the
parameters on which quantum correlations are dependent are
dimensionless quantities (C,η,γ /κ,φ), as shown above. The
interacting atoms and fields can have their frequencies from
the microwave to the optical wave, and so the two-level system
can be applied to a wide regime of frequencies. Potential
candidates include ensembles of electron spins in solid media
[57] or coupled to superconducting transmission line cavities
[58]. Superconducting circuits as single quantum devices also
are considerably advantageous for preparing squeezed and
entangled states of microwave fields due to the strong coupling
to the fields [59].

Finally, there exist similar enhancement effects of the
moderate nonlinearities in multilevel atomic or molecular
systems, in which the dissipation is engineered for the two-
mode squeezed and entangled states. Essentially, the compat-
ible increase in the squeezing parameter and the engineered
reservoir dissipation rates originates from the relative strengths
of beam-splitter-like and down-conversion-like atom-field
interactions, as shown in Eq. (16). The two kinds of interaction
strengths can be neither in too great a disparity nor too close.
It is not difficult to imagine that, in many cases, at least in
principle, the relative strengths have to be balanced for the
compatibly large values of the squeezing parameter and the
engineered reservoir dissipation rates.

VI. CONCLUSION

In conclusion, we have presented the nonlinear effects
on the quantum correlations in reservoir engineering that is
based on the simultaneous interactions of two two-level atomic
ensembles with two cavity quantum fields. The squeezing
parameter and the dissipative rates, the former of which
determines the Bogolibov-modes-like collective interactions
and the latter of which determines the engineered dissipation
of the Bogoliubov modes, are reversely dependent on the
dressing atom-field nonlinearities. It has been shown that their
optimization for an enhancement of quantum correlations is
achievable for the moderate nonlinearity. Such effects hold for
the two-mode squeezing and entanglement of separated spin
atomic ensembles or the different optical fields. This represents
an advantage of two-level systems with the moderate non-
linearities for quantum information associated with reservoir
engineering.
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