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We theoretically investigate the macroscopic quantum coherence and the mechanical squeezing of a mechanical
oscillator in a hybrid optomechanical system consisting of a suspended graphene sheet and an ultracold
atomic ensemble trapped inside a Fabry-Pérot cavity. In the study the vacuum is used to mediate an effective
optomechanical coupling between the graphene oscillator and the cavity field driven by an external laser beam.
We find that in the presence of this coupling, the macroscopic quantum coherence and the mechanical squeezing
of the graphene sheet can be attained in a certain range of driving power. In particular, the quantum coherence
in the optomechanical system can be transferred from the optical field to the mechanical oscillator. We also
investigate in detail the spectrum and the squeezing of the output field and the attained results may be used to
study the mechanical squeezing of a graphene sheet.
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I. INTRODUCTION

It is well known that the internal degrees of freedom of an
atom can be coupled to a light field with a small atom-field
detuning, which implies that the propagation of a weak
light field in atom-field-coupled systems can be coherently
manipulated through another strong-coupling field. In general,
the atom in these systems is described by a three-level system
so that the quantum interference between different pathways
of excitation in the system induces a fascinating phenomenon
called the electromagnetically induced transparency [1–4],
which is important for the light control and storage as well
as the production of giant nonlinear effects [5,6]. Moreover,
the atom-light interaction inside an optical cavity has been
extended to the study of the linear optomechanical coupling
between a light field and a collection of atoms, i.e., the
Bose-Einstein condensate [7,8]. The coherent coupling of the
mechanical element with the light field in the optomechanical
system can be also used for modulating the propagation of
the light field [9,10], which is demonstrated by the adjustable
width of the transparency window.

In optomechanics, the main aim is to manipulate and
enhance the effective coupling between a light field and a
massive mechanical oscillator via radiation pressure. The
radiation pressure of the light field also influences the
interesting dynamics of macroscopic mechanical motions. In
this regard, various coupled systems, i.e., a Fabry-Pérot cavity
with a movable end mirror [11,12], a levitated nanosphere
optomechanical system [13–17], and an embedded membrane
optical cavity [18,19], have been proposed to promote the
effective optomechanical coupling. In these optomechanical
systems, the optical cavity is driven strongly by an external
laser beam which shines directly on the movable elements
so as to induce a considerable radiation pressure on these
mechanical oscillators. The optomechanical coupling has also
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been realized in other types of optomechanical systems, such
as a microresonator in a whispering-gallery cavity [20,21] and
a microwave transmission line resonator [22–24]. From the
application point of view, a strong optomechanical coupling
helps one explore the quantum-mechanical effect of the
macroscopic resonator, i.e., by optomechanical entanglement
[11,17,25–28], the optical cooling of the mechanical mode
[29,30], and the mechanical state preparation [31,32]. In
addition, a mechanical and an optomechanical coherence in
a macroscopic system are investigated in detail, which is
waiting to be probed [33]. The quantum coherence of a
mechanical oscillator requires less than one thermophonon
on each mechanical cycle to persist, which may be doable
in current experiments [34–38]. The squeezed mechanical
state is also an important characteristic of the optomechanical
system [39–43], which can be used to improve the precision of
quantum measurements at the expense of other components of
the quadrature uncertainty [44]. In particular, the detection
accuracy of the signal in the quantum resonator is only
limited by the ability to prepare the chosen quadrature in
a low uncertainty state, which is often used for quantum
measurements [45] and quantum information [46].

As opposed to the direct optomechanical interaction be-
tween a cavity field and a mechanical oscillator, an optome-
chanical coupling between a light field and a massive oscillator
can be generated by the internal state of an atomic ensemble
[47] or an electron spin accumulated in a carbon nanotube
[48], in which various quantum-mechanical properties of
mechanical motions can be discussed in detail. In this work,
by combining the mechanical system and cavity quantum
electrodynamics [49], we propose an optomechanical scheme
to realize an effective optomechanical coupling between a
graphene sheet and a cavity field, which is mediated by the
vacuum-induced interaction between the graphene sheet and
the internal states of an ultracold atomic ensemble. Further, we
focus on the study of the macroscopic quantum coherence and
the mechanical squeezing of the graphene sheet in the hybrid
optomechanical system and discuss in detail their dependence
on the distance between the atoms and the graphene sheet
and on the atom-field coupling strength. We show that the
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FIG. 1. Plot of the setup studied in the paper. An ensemble of N

two-level ultracold atoms is trapped inside an optical cavity, which
interacts with a driven cavity mode ωc and a suspended graphene
sheet. Vibration of the graphene sheet changes the internal state of
the atoms due to the vacuum fluctuation. The cavity mode is driven
by a classical laser with frequency ωp and amplitude η.

quantum coherence and the mechanical squeezing of the
graphene sheet can be greatly enhanced via the vacuum effect
and the atom-field coupling. In particular, the behavior of
quantum coherence in the optomechanical system can be
transferred from the optical field to the mechanical oscillator.
We also investigate in detail the occurrence of the normal-mode
splitting in the spectrum of the output field and its squeezing.

The paper is organized as follows. In Sec. II, we give the
model and the Hamiltonian of system. In Sec. III, we derive
the quantum Langevin equation and linearize it to obtain
the dynamics of quantum fluctuations around the steady-
state expectation values. Further, we calculate the quadrature
fluctuations of the graphene sheet and the cavity field. In
Secs. IV and V, we discuss how the macroscopic quantum
coherence and mechanical squeezing of a graphene sheet can
be realized by changing the system parameters. In Sec. VI, we
discuss the spectrum of the output field and its squeezing. Our
conclusions are given in Sec. VII.

II. MODEL

As depicted in Fig. 1, we consider an ensemble of N

two-level ultracold 87Rb atoms in a high-Q optical cavity
with generic frequency ωc, which is driven through one of
the end mirrors by a classical laser with frequency ωp and
amplitude η. The bare transition frequency between the ground
state |g〉 = |F = 1〉 and the excited state |e〉 = |F ′ = 2〉 of
the D2 line of 87Rb is denoted as ω0. We assume that the
atomic ensemble is confined in a cylindrically symmetric
trap with a transverse trapping frequency ω⊥ and negligible
longitudinal confinement along the x direction [50]. The
additional mechanical oscillator in the system is a suspended
graphene sheet placed in the x-z plane, which approaches
the ultracold atoms and changes the transition frequencies of
atoms by the vacuum fluctuation effect [51,52]. That is, the
transition frequency ωa of a two-level atom is modulated by the
distance between the atom and the graphene, i.e., ωa(d + y) =
ω0 + �ωa(d + y), where �ωa(d + y) is the frequency shift of
the atom due to the vacuum fluctuation [52], d is the distance
between the atom and the graphene in the static atom-plane

geometry, and y is the position of the graphene sheet. In
addition, it is noted that the graphene sheet placed in the x-z
plane is similar to a transverse micromechanical cantilever
such that the light radiation pressure on the graphene sheet is
negligible because light shining on the sheet is reflected back
inefficiently [53].

Further, we consider the dispersive regime with a large
atom-pump detuning and low saturation, i.e., ωp � ωa(d + y)
and �a(d + y) = ωp − ωa(d + y) � �0, so that the excited
atomic state can be eliminated adiabatically [54,55]. Here �0

is the decay rate of the atom. In the frame rotating at the pump
frequency, the many-body Hamiltonian reads

H = −h̄�ca
†a − ih̄η(a − a†) +

∫ L
2

− L
2

�†(x)

[
p2

x

2ma

+ h̄U0(d + y) cos2(kx)a†a

]
�(x)dx + p2

y

2M
+M

2
ω2

my2,

(1)

where �c = ωp − ωc is the cavity-pump detuning; k is the
wave number of the cavity field; a (a†) is the annihilation
(creation) operator of the optical field; and the amplitude of

the external driving laser |η| =
√

2Pκ
h̄ωp

, where κ is the decay

rate of the optical field and P is the laser power. M and ωm

are the effective mass and the oscillation frequency of the
graphene sheet, respectively. The position and momentum
of the graphene sheet, y and py , satisfy the commutation

relation [y,py] = ih̄. U0(d + y) = g2
0

�a (d+y) is the optical lattice
barrier height per photon, which includes the mechanical
and atomic back-actions on the field. g0 is the vacuum
Rabi frequency and ma is the mass of the single 87Rb
atom. We use a first-order approximation of the frequency
shift �ωa(d + y), i.e., �ωa(d + y) = �ωa(d) + λ0(d)y, so
that the atom-pump detuning becomes �a(d + y) � �a(d) −
λ0(d)y. Here λ0(d) = ∂�ωa (d+y)

∂y
|y=0 is the vacuum-induced

coupling between the atom and the graphene sheet [51,52],
which depends strongly on the atom-graphene distance d and
can be calculated in terms of the level shift of the atom between
its ground and excited states (see the Appendix).

�(x) is the bosonic annihilation operator for the atomic
field, which can be expanded as the following single-mode
quantum field in the weak field and Bogoliubov approximation
[8,56,57]:

�(x) =
√

N

L
+

√
2

L
cos(2kx)c, (2)

where the operator c is the bosonic annihilation operator
for the Bogoliubov mode. Substituting this expansion into
Eq. (1) and taking the position and momentum operators

nondimensionalized as
√

Mωm

h̄
y → y and

√
1

h̄Mωm
py → py ,

respectively, the Hamiltonian of the system is written as

H = −h̄

[
�c−N

2
U1(d + y)

]
a†a+h̄
cc

†c+ h̄ωm

2

(
p2

y+y2
)

− ih̄η(a − a†) + h̄

√
2N

4
U1(d + y)a†a(c + c†), (3)
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where 
c = 2h̄k2

ma
denotes the frequency of the Bogoliubov

mode. In deriving Eq. (3), we redefined the dimensionless

coupling strength, i.e., λ1 = λ0

√
h̄

Mωm
, and the corresponding

optical lattice potential, i.e., U1(d + y) = g2
0

�a (d)−λ1y
. It is found

from Eq. (3) that the optical lattice potential induces the
coupling between the atomic ensemble and the graphene as
well as the optomechanical coupling between the cavity field
and the graphene sheet. Furthermore, both the atom-graphene
and the field-graphene couplings result from the atomic
vacuum effect.

III. QUANTUM DYNAMICS AND FLUCTUATIONS

A complete dynamical analysis of an open system should
include fluctuation-dissipation processes affecting the optical
field, the oscillating graphene sheet, and the atomic ensemble.
Using the Hamiltonian Eq. (3) and taking into account the
noise effects, the Heisenberg-Langevin equations of motion
describing the quantum dynamics of the hybrid system are
derived as

ẏ = ωmpy,

ṗy = −ωmy − λ1U1(d + y)

�a(d) − λ1y

[
N

2
+

√
2N

4
(c + c†)

]
a†a

− γmpy + ξ (t),

ċ = −i
cc − γac − i

√
2N

4
U1(d + y)a†a +

√
2γacin(t),

ȧ = i�ca − κa − iU1(d + y)

[
N

2
+

√
2N

4
(c + c†)

]
a

+ η +
√

2κain(t), (4)

where γm and γa characterize the dissipation of the
graphene sheet and the collective density excitation of the
ultracold atoms, respectively. ξ (t) is the Brownian noise
with zero mean and the correlation [58] 〈ξ (t)ξ (t

′
)〉 =

γm

ωm

∫
dω
2π

e−iω(t−t
′
)ω[coth( h̄ω

2kBT
) + 1], where kB is the Boltz-

mann constant and T is the environmental temperature.
The environmental input noise for the cavity field, ain(t),
and the thermal input noise for the Bogoliubov mode
of the atomic ensemble, cin(t), have the same correla-
tion relation, i.e., 〈ain(t)a†

in(t
′
)〉 = δ(t − t

′
), 〈cin(t)c†in(t

′
)〉 =

δ(t − t
′
) [59].

Next we investigate the linearized dynamics of the quantum
fluctuations around the steady-state expectation values of the
system by decomposing each operator in Eq. (4) as the sum of
its steady-state value and a small fluctuation, i.e., O = Os +
δO(O = a,c,y,py). By inserting this ansatz into Eq. (4) and
neglecting all the higher-order terms (δOδO), we can obtain
the steady-state values of the system and the corresponding set
of linear ordinary differential equations for the fluctuations.
For example, the steady-state expectation values of the hybrid

optomechanical system are as follows:

pys = 0,

ys = − λ1U1s

ωm�as

[
N

2
+

√
2N

4
(cs + c†s )

]
|as |2,

cs = −i

√
2N

4

U1s |as |2
γa + i
c

,

as = η

κ − i�eff
, (5)

where U1s = g2
0

�as
with �as = �a(d) − λ1ys , and �eff = �c −

N
2 U1s −

√
2N
4 U1s(cs + c

†
s ) is the effective detuning of cavity

field. Here we assume that as is a real number.
Further, we introduce the Bogoliubov mode quadratures

δXc = (δc + δc†)/
√

2, δYc = (δc − δc†)/
√

2i, the cavity field
quadratures δXa = (δa + δa†)/

√
2, δYa = (δa − δa†)/

√
2i,

and the corresponding noises δXin
c = (δcin + δc

†
in)/

√
2,

δY in
c = (δcin − δc

†
in)/

√
2i, δXin

a = (δain + δa
†
in)/

√
2, and

δY in
a = (δain − δa

†
in)/

√
2i. The quantum dynamics for these

fluctuations can be written as

δẏ = ωmδpy,

δṗy = −ωm0δy − γmδpy −
√

2GycδXc

−
√

2GyaδXa + ξ (t),

δẊc = −γaδXc + 
cδYc +
√

2γaδX
in
c ,

δẎc = −γaδYc − 
cδXc − 2GacδXa

−
√

2Gycδy +
√

2γaδY
in
c ,

δẊa = −κδXa − �effδYa +
√

2κδXin
a ,

δẎa = −κδYa + �effδXa −
√

2Gyaδy

− 2GacδXc +
√

2κδY in
a , (6)

where ωm0 = ωm + [N +
√

2N
2 (cs + c

†
s )] λ2

1U1s

(�as )2 |as |2 is the ef-
fective frequency of the oscillating graphene sheet.
Gyc =

√
2N
4 λ1

U1s

�as
|as |2 is the effective coupling between

the atomic ensemble and the graphene sheet, Gya =
[N

2 +
√

2N
4 (cs + c

†
s )]λ1

U1s

�as
|as | is the effective optomechanical

coupling between the cavity field and the graphene sheet, and
Gac =

√
2N
4 U1s |as | is the effective coupling between the cavity

field and the atomic ensemble.
In order to make the analysis easier, Eq. (6) can be written

in a more compact form:

ḟ (t) = Jf (t) + n(t), (7)

where the column vector of the fluctuation opera-
tor f T (t) = (δy(t),δpy(t),δXc(t),δYc(t),δXa(t),δYa(t)) and
the corresponding column vector of noise nT (t) =
(0,ξ (t),

√
2γaδX

in
c ,

√
2γaδY

in
c ,

√
2κδXin

a ,
√

2κδY in
a ). J is the
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drift matrix, which is given by

J =

⎛
⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0
−ωm0 −γm −χ1 0 −χ2 0

0 0 −γa 
c 0 0
−χ1 0 −
c −γa χ3 0

0 0 0 0 −κ −�eff

−χ2 0 χ3 0 �eff −κ

⎞
⎟⎟⎟⎟⎟⎠,

where χ1 = √
2Gyc, χ2 = √

2Gya , and χ3 = −2Gac. When
all the eigenvalues of the drift matrix have negative real parts,
the solutions to Eq. (7) are stable and the stability conditions
of the hybrid optomechanical system can be obtained by using
the Routh-Hurwitz criteria [60].

The time-domain dynamical equation of motion [Eq. (7)]
can be solved by Fourier-transforming it into the fre-
quency domain. Using the Fourier transform f (t) =

1
2π

∫ +∞
−∞ f (ω)eiωtdω, we obtain the position and momentum

fluctuations of the graphene sheet,

δy(ω) = A1(ω)ξy(ω) + B1(ω)δXin
c (ω) + C1(ω)δY in

c (ω)

+D1(ω)δXin
a (ω) + E1(ω)δY in

a (ω),

δpy(ω) = A2(ω)ξy(ω) + B2(ω)δXin
c (ω) + C2(ω)δY in

c (ω)

+D2(ω)δXin
a (ω) + E2(ω)δY in

a (ω), (8)

where

A1(ω) = ωm

d(ω)

[
β3(κ + iω)2 + �eff

(
β3�eff + χ2

3 
c

)]
,

B1(ω) = −
√

2γa

d(ω)
[(iω + γa)β5ωm],

C1(ω) = −
√

2γa

d(ω)
[β5ωm
c],

D1(ω) = −
√

2κ

d(ω)
[(κ + iω)ωmβ6],

E1(ω) =
√

2κ

d(ω)
(�effωmβ6),

(9)

A2(ω) = iω

d(ω)

[
β3(κ + iω)2 + �eff

(
β3�eff + χ2

3 
c

)]
,

B2(ω) = −
√

2γa

d(ω)
[iω(iω + γa)β5],

C2(ω) = −
√

2γa

d(ω)
[iωβ5
c],

D2(ω) = −
√

2κ

d(ω)
[iω(κ + iω)β6],

E2(ω) =
√

2κ

d(ω)
(iω�effβ6).

In addition, in order to analyze the quantum coherence of
the hybrid optomechanical system, we also need to derive the
expressions of the quadratures of the cavity field:

δXa(ω) = A3(ω)ξy(ω) + B3(ω)δXin
c (ω) + C3(ω)δY in

c (ω)

+D3(ω)δXin
a (ω) + E3(ω)δY in

a (ω),

δYa(ω) = A4(ω)ξy(ω) + B4(ω)δXin
c (ω) + C4(ω)δY in

c (ω)

+D4(ω)δXin
a (ω) + E4(ω)δY in

a (ω), (10)

where

A3(ω) = 1

d(ω)
(�effωmβ6),

B3(ω) = −
√

2γa

d(ω)
[(iω + γa)�effβ7],

C3(ω) = −
√

2γa

d(ω)
(�effβ7
c),

D3(ω) =
√

2κ

d(ω)
[(κ + iω)β8],

E3(ω) = −
√

2κ

d(ω)
(�effβ8),

A4(ω) = − 1

d(ω)
[(κ + iω)ωmβ6],

B4(ω) =
√

2γa

d(ω)
[(κ + iω)(iω + γa)β7],

C4(ω) =
√

2γa

d(ω)
[(κ + iω)β7
c],

D4(ω) =
√

2κ

d(ω)

[
(iω + γa)2

(
β1�eff + χ2

2 ωm

) + 
c

(
β2�eff

+β1χ
2
3 + 2χ1χ2χ3ωm + χ2

2 ωm
c

)]
,

E4(ω) =
√

2κ

d(ω)
[(κ + iω)β8]. (11)

In Eqs. (9) and (11), we define d(ω) = (κ + iω)2β8 +
�effD4(ω), β1(ω) = −ω2+iωγm+ωmωm0, β2(ω) = −χ2

1 ωm

+ β1
c, β3(ω) = (iω + γa)2 + 
2
c , β4(ω) = (κ + iω)2 +

�2
eff, β5(ω) = β4χ1 − �effχ2χ3, β6(ω) = β3χ1 + 
cχ1χ3,

β7(ω) = β1χ3 + χ1χ2ωm, and β8(ω) = β1(iω + γa)2 + β2
c.
In Eqs. (8) and (10), the first term in δz(ω) with z =
y,py,Xa,Ya is from the thermal noise, the second and third
terms are from the dissipation of the Bogoliubov mode, and the
last two terms are from the radiation pressure of the cavity field.
Further, using Eqs. (8) and (10), the spectra of fluctuations in
the position and momentum of the graphene sheet and the
quadrature of the cavity field are defined by

Szz(ω) =
∫ ∞

−∞

d


4π
e−i(ω+
)t [〈δz(ω)δz(
) + δz(
)δz(ω)〉].

(12)

In order to obtain the power spectrum, we also calculate the
nonzero correlation functions of all the noise sources in the
frequency domain, which are defined by

〈ξ (ω)ξ (
)〉 = 2π
γm

ωm

ω

[
coth

(
h̄ω

2kBT

)
+1

]
δ(ω+
),

〈
δXin

a,c(ω)δXin
a,c(
)

〉 = 〈δY in
a,c(ω)δY in

a,c(
)〉 = πδ(ω + 
).

(13)

Substituting Eqs. (8) and (10) into Eq. (12) and using the
above correlation functions, the spectra of fluctuations in the
position and momentum of the graphene sheet and the cavity

063819-4



MACROSCOPIC QUANTUM COHERENCE AND MECHANICAL . . . PHYSICAL REVIEW A 96, 063819 (2017)

field quadratures can be obtained as

Szz(ω) = Ai(ω)Ai(−ω)
γm

ωm

ωβ0

+ 1
2 [Bi(ω)Bi(−ω) + Ci(ω)Ci(−ω)]

+ 1
2 [Di(ω)Di(−ω) + Ei(ω)Ei(−ω)], (14)

with i = 1,2,3,4 and β0 = coth( h̄ω
2kBT

) + 1. Then, the mean-
square fluctuation 〈δz(t)2〉 in the position and momentum of
the graphene sheet and the cavity field quadratures is

〈δz(t)2〉 = 1

2π

∫ ∞

−∞
dωSzz(ω). (15)

Using the notation of the covariance matrix V(t), Eq. (15)
corresponds to the diagonal element Vii(t) = 〈δz(t)2〉 in the
covariance matrix V(t), i.e., V11 = 〈δy(t)2〉, V22 = 〈δpy(t)2〉,
V33 = 〈δXa(t)2〉, and V44 = 〈δYa(t)2〉. The quantization of the
quantum coherence for the graphene sheet and the cavity
field requires calculation of nondiagonal matrix element
Vij (t) = 〈δz(t)δz′(t) + δz′(t)δz(t)〉/2 with i,j = 1,2,3,4 and
z,z′ = y,py,Xa,Ya in the second moments (covariance matrix)
[33,61], i.e., V12(t) = 〈δy(t)δpy(t) + δpy(t)δy(t)〉/2, V34(t) =
〈δXa(t)δYa(t) + δYa(t)δXa(t)〉/2, and V21 = V12, V43 = V34.
The nondiagonal matrix elements Vij (t) are determined by

Vij (t) = 1

2π

∫ ∞

−∞
dωSzz′ (ω), (16)

where

Szz′ (ω) =
∫ ∞

−∞

d


4π
e−i(ω+
)t [〈δz(ω)δz′(
) + δz′(
)δz(ω)〉].

(17)

Similarly, the spectra of fluctuations for the nondiagonal
elements can be derived analytically with Eqs. (8), (10), (13),
and (17):

Szz′ (ω) = 1

2
[Ai(ω)Aj (−ω) + Aj (ω)Ai(−ω)]

γm

ωm

ωβ0

+ 1

4
[Bi(ω)Bj (−ω) + Bj (ω)Bi(−ω)]

+ 1

4
[Ci(ω)Cj (−ω) + Cj (ω)Ci(−ω)]

+ 1

4
[Di(ω)Dj (−ω) + Dj (ω)Di(−ω)]

+ 1

4
[Ei(ω)Ej (−ω) + Ej (ω)Ei(−ω)]. (18)

In terms of Eqs. (15) and (16), the covariance matrix of the
graphene sheet, Vmec, and the covariance matrix of the optical
field, Vopt, can be written, respectively, as

Vmec =
(

V11 V12

V21 V22

)
, Vopt =

(
V33 V34

V43 V44

)
. (19)

IV. QUANTUM COHERENCE OF THE GRAPHENE
SHEET AND THE CAVITY FIELD

In this section, we focus mainly on the characteristics of
the coherence for the graphene sheet and the cavity field.

Using Eqs. (15), (16), and (19), the quantum coherence of the
hybrid optomechanical system can be explored. For example,
for a given bosonic mode Â with the commutation relation
[Â,Â†] = 1, we can define the quadrature operators

X̂A = Â + Â†
√

2
, ŶA = Â − Â†

√
2i

. (20)

In particular, a Gaussian state ρ denoted by the collective
operator x̂ = (X̂A,ŶA) can be fully described by its first
moment �d = (d1,d2) = Tr(ρx̂) and second moment (the so-
called covariance matrix) V = (VXX VXY

VYX VYY
). Furthermore, the

coherence of any given one-mode Gaussian state ρ(V, �d)
can be quantified in terms of the covariance matrix and the
displacement vector [61]

C[ρ(V, �d)] = −F (ν) + F (2n̄ + 1), (21)

where ν = √
Det(V), n̄ = (VXX + VYY + d2

1 + d2
2 − 2)/4,

and F (x) = x+1
2 log2( x+1

2 ) − x−1
2 log2( x−1

2 ). It is notable that
this measure is only valid for the Gaussian state under
the operation of the (incoherent) Gaussian channel [33,61].
According to the covariance matrices in Eq. (19) and the
definition in Eq. (21), the quantum coherence of the graphene
sheet and the optical field can be expressed as

C1 = C(Vmec), C2 = C(Vopt). (22)

We now numerically evaluate the quantum coherence of the
graphene sheet and the cavity field through Eq. (22). We select
the accessible parameters of the cavity, i.e, the wavelength
of the driving field, λp � 780 nm, and the cavity decay rate
κ = 2π × 2 × 105 Hz. In addition, we select the parameters of
the atom, i.e., the mass of a single atom, ma = 1.42 × 10−25

kg, the atomic number N = 1 × 104, the weak atom-field
coupling rate U1s = 2π Hz, the effective pump-atom detuning
�as = 2π × 3 × 108 Hz, the free-space spontaneous emission
rate �0 = 2π × 6.1 × 106 Hz, the bare transition frequency
ω0 � ωp, and the dissipation rate of the Bogoliubov mode,
γa = 2π × 1000 Hz [62,63]. Additional parameters included
the effective mass of the oscillating graphene, M = 2.81 ×
10−18 kg, the oscillation frequency of the graphene sheet,
ωm = 2π × 5 × 106 Hz, the damping rate γM = 2π × 30 Hz,
the temperature of the environment, T = 10 mK, the Fermi
level μ = 0.8h̄ω0, and γg = ω0 [52]. We consider that the
cavity is driven on its red sideband; i.e., �eff = −ωm.

The changes of the quantum coherence C1 and C2 as a
function of the driving power P with different distance d

(different vacuum coupling λ0) are shown in Figs. 2 and
3. From Figs. 2 and 3, it is found that, in the absence
of the external driving laser, the quantum coherence of the
mechanical mode and the cavity mode always approaches
zero with different distances. This is because the effective
optomechanical coupling Gya and the effective atom-graphene
coupling Gyc are proportional to the steady-state photon
number in the system. Therefore, when the external driving
power is zero, both couplings Gya and Gyc do not exist.
Consequently, the quantum coherence of the system cannot
be generated. With the increase of the driving power, the
values of C1 and C2 increase monotonously, which means
that the quantum coherence of the optomechanical system is
gradually established. Comparing Fig. 2 with Fig. 3, we found
that, with the same parameters, the degree of coherence of
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FIG. 2. The quantum coherence of the graphene sheet as a
function of the input laser power P with different distances. The
other parameter values are λp � 780 nm, κ = 2π × 2 × 105 Hz,
ma = 1.42 × 10−25 kg, N = 104, U1s = 2π Hz, �as = 2π × 3 ×
108 Hz, �0 = 2π × 6.1 × 106 Hz, ω0 � ωp , γa = 2π × 1000 Hz,
M = 2.81 × 10−18 kg, ωm = 2π × 5 × 106 Hz, γm = 2π × 30 Hz,
T = 10 mK, μ = 0.8h̄ω0, γg = ω0, and �eff = −ωm.

the cavity field is always larger than that of the graphene; i.e.,
C2 > C1. Physically, this feature of coherence results from
the fact that the environmental incoherence of the optical
field, i.e., the zero-point fluctuation, is much less than the
incoherence of the thermal noise associated with the graphene
sheet [33]. Further, for the same driving power, Fig. 2 shows
that C1 increases with the decrease of d and therefore the
coherence of the mechanical motion in the optomechanical
system is enhanced by the increase of the vacuum-induced
coupling. In contrast, the degree of coherence in the cavity
field, C2, in Fig. 3 decreases significantly in the region of a
large driving power with the decrease of d. The increase of C1

with the decrease of d and the decrease of C2 at the same time
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FIG. 3. The quantum coherence of the optical field as a function
of the input laser power P with different distances. Other parameter
values we select are the same as in Fig. 2.
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FIG. 4. The quantum coherence of the graphene sheet as a
function of the input laser power P with different optical lattice
potentials. ω0d/c = 0.15, and other parameter values are the same as
in Fig. 2.

means that the coherence in the system can be transferred from
the optical into the mechanical mode, which results from the
effective optomechanical interaction Gya being of the form of
the beam splitter in the red-detuned regime �eff = −ωm with
the resolved sideband condition ωm > κ [33,64].

Apart from the vacuum-induced coupling, the effective
optomechanical interaction Gya is related to the optical lattice
potential U1s . In Figs. 4 and 5, we depicted the quantum
coherences C1 and C2 as a function of the driving power P

with different lattice potentials U1s . From Figs. 4 and 5, we
can see clearly that C1 increases with the increase of U1s while
C2 decreases at the same time in the region of large driving
power. These results indicate that one could manipulate the
quantum coherence of an optomechanical system by adjusting
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FIG. 5. The quantum coherence of the optical field as a function
of the input laser power P with different optical lattice potentials.
Other parameter values are the same as in Fig. 4.
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FIG. 6. The mean-square fluctuation 〈δpy(t)2〉 as a function of the
input laser power P with different distances. Other parameter values
we select are the same as in Fig. 2.

the optical lattice potential U1s or the atom-field coupling
strength g0 between the atoms and the cavity field.

V. MECHANICAL SQUEEZING
OF THE GRAPHENE SHEET

In this section, we analyze the mechanical squeezing by
numerically evaluating the mean-square fluctuation in the
position and momentum of the graphene sheet. From Eq. (15),
the mean-square fluctuations in the position and momentum
of the graphene sheet, V11 = 〈δy(t)2〉 and V22 = 〈δpy(t)2〉,
satisfy the Heisenberg uncertainty principle,

〈δy(t)2〉〈δpy(t)2〉 �
∣∣ 1

2 [y,py]
∣∣2

, (23)

where [y,py] = i. If either 〈δy(t)2〉 or 〈δpy(t)2〉 is below
0.5, the state of the mechanical oscillator exhibits quadrature
squeezing. The degree of the squeezing can be evaluated to

be −10 log10
〈δpy (t)2〉

〈δpy (t)2〉vac
in decibels [65], where the momentum

variance of the vacuum state is 〈δpy(t)2〉vac = 0.5.
Through evaluating in detail the mean-square fluctuations

in the position and momentum of the graphene sheet given
by Eq. (15), we found that 〈δy(t)2〉 cannot be less than
0.5, but 〈δpy(t)2〉 can be less than 0.5. Therefore, we focus
on the discussion of the mean-square fluctuation 〈δpy(t)2〉.
The variations of the mean-square fluctuation 〈δpy(t)2〉 as a
function of the driving power P with the different distances
and different potentials U1s are shown in Figs. 6 and 7.
From Fig. 6, it is seen that 〈δpy(t)2〉 decreases monotonously
with the increase of the driving power. Further, when the
distance between the atoms and the graphene sheet is large,
i.e., ω0d/c = 0.23, the mean-square fluctuation 〈δpy(t)2〉 is
always larger than 0.5 in the selected region of driving power;
thus there is no squeezing in the momentum fluctuation of the
graphene sheet. However, when the distance d becomes small,
i.e., ω0d/c � 0.18, the mean-square fluctuation 〈δpy(t)2〉 can
be less than 0.5. Hence the vacuum-induced coupling between
the atoms and the graphene sheet in the hybrid optomechanical
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FIG. 7. The mean-square fluctuation 〈δpy(t)2〉 as a function of
the input laser power P with different optical lattice potential. The
other parameter values we select are the same as in Fig. 2.

system helps realize the momentum squeezing of the graphene
sheet. Furthermore, it is observed that the minimum values of
〈δpy(t)2〉 for different d are the same, i.e., 〈δpy(t)2〉 � 0.3,
which holds uniformly at different driving power P . The
corresponding maximum momentum squeezing is about 40%
and the degree of the squeezing is about 2.22 dB. In Fig. 6, there
is a sharp decline in the squeezing curve at a special driving
power P , which decreases with the decrease of distance d. This
is because in the region beyond the critical driving power, the
condition that all the eigenvalues of the matrix J have negative
real parts cannot be satisfied so the optomechanical system
operates in the unstable regime. In Fig. 7, the driving power P

corresponding to the minimum values of 〈δpy(t)2〉 decreases
with the increase of U1s .

VI. THE SPECTRUM AND SQUEEZING
OF THE OUTPUT FIELD

In this section, we analyze the spectrum of the output field
and its squeezing. Using the quadrature fluctuation δXa and
δYa of the cavity field in Eq. (10) and the input-output relation
aout = √

2κa − ain [66], we can get the fluctuation δaout(ω) of
the output field. Correspondingly, the quadrature fluctuation
of the output field can be defined as

δZout(ω) = 1√
2

[δaout(ω)e−iφ + δaout(−ω)†eiφ], (24)

where φ is the measurement phase angle depending on the local
oscillator [65]. When φ = 0, δZout(ω) = δXaout(ω), which
denotes the amplitude fluctuation of the output field. When
φ = π

2 , δZout(ω) = δYaout(ω), which is the phase fluctuation
of the output field. Further, the expression of the quadrature
fluctuation δZout(ω) of the output field can be calculated as

δZout(ω) = AZ(ω)ξy(ω) + BZ(ω)δXin
c (ω) + CZ(ω)δY in

c (ω)

+DZ(ω)δXin
a (ω) + EZ(ω)δY in

a (ω), (25)
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where

AZ(ω) =
√

2κ[A3(ω) cos φ + A4(ω) sin φ],

BZ(ω) =
√

2κ[B3(ω) cos φ + B4(ω) sin φ],

CZ(ω) =
√

2κ[C3(ω) cos φ + C4(ω) sin φ],

DZ(ω) =
[√

2κD3(ω) − 1

d(ω)

]
cos φ +

√
2κD4(ω) sin φ,

EZ(ω) =
√

2κE3(ω) cos φ +
[√

2κE4(ω) − 1

d(ω)

]
sin φ.

(26)

It is noted that the output power spectrum of the phase
quadrature with the optical field is an interesting quantity that
is experimentally measurable by the homodyne measurement
of the light [58]. Here, we define the spectrum of the quadrature
fluctuation δZout(ω) of the output field as

SZout(ω) =
∫ ∞

−∞

d


4π
e−i(ω+
)t [〈δZout(ω)δZout(
)〉

+ 〈δZout(
)δZout(ω)〉]. (27)

Using the nonzero correlation functions of the thermal and
vacuum noises in the frequency domain [Eq. (13)], the
spectrum of the quadrature fluctuation δZout(ω) of the output
field can be written as

SZout(ω) = AZ(ω)AZ(−ω)
γm

ωm

ωβ0

+ 1

2
[BZ(ω)BZ(−ω) + CZ(ω)CZ(−ω)]

+ 1

2
[DZ(ω)DZ(−ω) + EZ(ω)EZ(−ω)]. (28)

When the value of the quadrature fluctuation is smaller than
that of the vacuum state, i.e., SZout(ω) < 1/2, the output field
is also squeezed.

In Fig. 8, we show the plot of the spectrum SZout(ω) of
the phase fluctuation of the output field as a function of the
normalized frequency ω/ωm when φ = π/2 and P = 1 mW
without the vacuum-induced coupling (d → ∞) or with the
vacuum-induced coupling (ω0d/c = 0.15). In the absence of
the vacuum-induced coupling, the spectrum of the output field,
SZout(ω), has only one peak, at ω = ωm. This situation is
changed when the vacuum-induced coupling is included. In the
presence of the vacuum-induced coupling, i.e., ω0d/c = 0.15,
the single peak is split so that the spectrum SZout(ω) displays
two discrete peaks, which corresponds to the normal-mode
splitting of the output field [67]. The normal-mode splitting
in the optomechanical system results from the effective
optomechanical coupling between the graphene sheet and
the cavity field, mediated by the atomic ensemble. Further,
we can see from Fig. 8 that the separation of the splitting
peaks increases with the decrease of the distance d, which
determines the strength of the vacuum-induced coupling λ0.
In addition, the squeezing in the phase fluctuation of the
output field exists in the presence of the vacuum-induced
coupling, i.e., SZout(ω) < 1/2 at ω = ωm. In contrast, the phase
squeezing does not exist around ω/ωm = 1 when the vacuum-
induced coupling is removed. The measurement of the phase
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FIG. 8. The spectrum SZout(ω) of the phase fluctuation of the
output field is plotted as a function of the normalized frequency
ω/ωm when φ = π/2 and P = 1 mW in the absence and presence of
the vacuum-induced coupling. Other parameter values are the same
as in Fig. 2.

squeezing of the output field around ω/ωm = 1 can be used to
characterize the signature of the mechanical squeezing [65].

In the absence or presence of the vacuum-induced coupling,
the contour plot of the spectrum SZout(ω) of the quadrature
fluctuation of the output field versus the normalized frequency
ω/ωm and the phase φ/π is shown in Fig. 9. It is seen clearly
that in the presence of the vacuum-induced coupling, the
quadrature fluctuation SZout(ω) of the output field is always

FIG. 9. The contour spectrum SZout(ω) of the quadrature fluctu-
ation of the output field versus the normalized frequency ω/ωm and
the phase φ/π in the absence and presence of the vacuum-induced
optomechanical coupling. Other parameter values are the same as in
Fig. 8.
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squeezed around ω/ωm = 1 regardless of the value of the
phase φ. These results and the measurement of the quadrature
fluctuation of the output field may be used for demonstrating
the vacuum-induced coupling between a graphene sheet and
an atomic ensemble as well as detecting the mechanical
squeezing of a graphene oscillator. We stress that in the present
numerical examples we focus mainly on the regime of small
atom-graphene distances, i.e., the order of the several tens
of nanometers, so that the strong vacuum coupling between
them is generated. Correspondingly, the macroscopic quantum
coherence and the mechanical squeezing of the graphene
oscillator can be more easily detected. However, it is noted that
the experimental realizations may be a big challenge when the
distance between the atomic ensemble and the graphene sheet
is less than 100 nm. Even so, the generation of the macroscopic
quantum properties in the hybrid optomechanical system with
a relatively large atom-graphene distance is still possible by
controlling the driving power of the system and the atom-field
coupling strength.

VII. CONCLUSIONS

In conclusion, we analyzed a hybrid optomechanical system
consisting of a suspended graphene sheet and an ultracold
atomic ensemble trapped inside a Fabry-Pérot cavity. In the
system the graphene sheet does not couple directly with
the driven optical field. However, the ultracold atoms are
close to a graphene sheet such that the vacuum-induced
atom-graphene interaction is established, which mediates the
effective optomechanical coupling between the mechanical
oscillator and the cavity field. We showed that, in the presence
of the mediated coupling, the macroscopic quantum coherence
and mechanical squeezing of the graphene sheet in the op-
tomechanical system can be attained with a moderate driving
power. Further, the dependence on the distance between the
atoms and the graphene sheet and on the atom-field coupling
strength of the quantum coherence and mechanical squeezing
are discussed in detail. We also calculate the spectrum and the
squeezing of the output field and find that the phase fluctuation
of the output field is squeezed when the vacuum-induced
coupling between the atoms and the graphene sheet is included.
The squeezing of the output field in the regime of the parameter
ω � ωm is useful for the study of the mechanical squeezing of
the suspended graphene sheet. The splitting of the spectrum
in the output field can also be used for estimating the vacuum
coupling strength between an atom and a plane.
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APPENDIX: VACUUM-INDUCED COUPLING λ0

In order to calculate the vacuum-induced coupling λ0, we
should calculate the level shifts of the atom in its ground

and excited states [51,52,68,69]. In general, for an effective
isotropic two-level system at position r near a plane, the shift
of the transition rate is �ωa(r) = δωae(r) − δωag(r), where
δωag(r) and δωae(r) are, respectively, the frequency shifts of
the two-level system in its ground state and excited state.
In terms of the classical dyadic Green’s function G(r,r,iu)
evaluated at the imaginary frequency ω = iu [51,52], the two
frequency shifts read

δωag(r) = 3c�0

ω2
0

∫ ∞

0
du

u2

ω2
0 + u2

Tr{G(r,r,iu)} (A1)

and

δωae(r) = −δωag(r)

3
− πc�0

ω0
Tr Re{G(r,r,ω0)}, (A2)

respectively, where ω0 and �0 are the bare transition frequency
and the decay rate of the two-level atom, respectively.
For simplification, we approximate the Green’s function of
the graphene sheet by that of an infinite plane, assum-
ing that the atom sits near the center of the graphene
sheet. Moreover, the computation of the Green’s function
includes a reflection component from the plane located at
interface z = 0, which describes the interaction of the two-
level system with its own field reflected by this plane. In
the vacuum regime of z > 0, the trace of this reflected
component is Tr{G(z,z,ω) = ic2

4πω2

∫ ∞
0 dk‖

k‖
K0

e2izK0 [(ω
c

)2rs +
(k2

‖ − K2
0 )rp], where K0 =

√
(ω

c
)2 − k2

‖ and k‖ is the parallel

component of the wave vector; rs and rp are the Fresnel
reflection coefficients for the s- and p-polarized waves. Con-
sidering the vacuum-graphene interface, the Fresnel reflection
coefficients for the s- and p-polarized waves in the case of the
vacuum-graphene interface are given by rs = −(1 + 2K0

μ0σω
)−1

and rp = (1 + 2ε0ω

K0σ
)−1, which depend on the conductivity σ

[70]. For a graphene sheet, the conductivity can be expressed as
σ (ω) = e2μ

h̄π
i

ω+irg
+ e2

4h̄
[�(ω − 2μ) + i

π
ln |ω−2μ

ω+2μ
|], where μ is

the Fermi energy and rg is a phenomenological parameter
describing the intraband losses [52,71,72]. Using the derived
expression of the shift of the transition rate and the conductivity
of the graphene sheet, the coupling strength λ0 between a
two-level atom and a graphene sheet can be calculated as [73]

λ0(d) = −2c3�0

πω2
0

∫ ∞

0

u2

ω2
0 + u2

∫ ∞

0
dk‖k‖e2idK0

×
[(

ω

c

)2

rs + (
k2
‖ − K2

0

)
rp

]

+ Re
c3�0

2ω3
0

∫ ∞

0
dk‖k‖e2id

√
( ω0

c
)2−k2

‖

×
[(

ω0

c

)2

rs +
(

2k2
‖ −

(
ω0

c

)2)
rp

]
. (A3)
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