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Temporal-mode measurement tomography of a quantum pulse gate
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Encoding quantum information in the photon temporal mode (TM) offers a robust platform for high-
dimensional quantum protocols. The main practical challenge, however, is to design a device that operates on
single photons in specific TMs and all coherent superpositions. The quantum pulse gate (QPG) is a mode-selective
sum-frequency generation designed for this task. Here, we perform a full modal characterization of a QPG using
weak coherent states in well-defined TMs. We reconstruct a full set of measurement operators, which show an
average fidelity of 0.85 to a theoretically ideal device when operating on a seven-dimensional space. Then we
use these characterized measurement operators of the QPG to calibrate the device. Using the calibrated device
and a tomographically complete set of measurements, we show that the QPG can perform high-dimensional TM
state tomography with 0.99 fidelity.
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I. INTRODUCTION

Optical quantum information science (QIS) covers a mul-
titude of applications ranging from quantum computing and
simulation over quantum metrology to quantum communi-
cations. Using photons to carry information in any of these
applications, we have to choose an alphabet for information
encoding. Of the four degrees of freedom—polarization,
transverse electric-field distribution (two degrees of freedom),
and time—polarization is more popular due to its experi-
mental accessibility. This comes, however, with an intrinsic
limitation to a two-dimensional Hilbert space, where we
actually would prefer an infinite-dimensional alphabet which
can increase the information capacity of each photon and can
also improve the performance of quantum protocols. For this
reason, recent years have seen increasing interest in alternative
encodings deploying either the spatial degree of freedom or
the spectral-temporal domain where the basis states are e.g.,
orbital angular momentum states or temporal modes (TMs),
respectively. The latter are particularly appealing because
they are compatible with single-mode fiber networks and are
also eigenmodes of state-of-the-art photon sources based on
parametric down-conversion and four-wave mixing. However,
the temporal shaping and detection of single-photon wave
packets in higher-dimensional spaces are challenging, as they
require time-dependant operations, such as nonlinear optical
interactions [1,2]. Regardless of this, TMs of single photons
have been identified as a promising resource for QIS and were
studied in many contexts such as high-dimensional quantum
communications [3], deterministic photonic quantum gates
[4], light-matter interaction [5,6], and enhanced-resolution
spectroscopy [7]. Any of these applications necessarily re-
quires the capability to prepare photons in specific TMs,
defined by a complex amplitude and phase distribution of
the electric field, and to perform TM-resolved measurements
in both the computational and any associated superposition
basis. This can be achieved with the quantum pulse gate
(QPG), a device that selects a single, arbitrary TM and converts
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it to a distinguishable output [1,2]. Recently, such devices
have been demonstrated by several groups by employing
dispersion-engineered frequency conversion between a strong
shaped driving pump field and a coherent signal state at
single-photon level intensities [8–12] or with heralded single
photons from a parametric down-conversion source [13]. In
these experiments, TM selectivity with reasonable efficiencies
has been shown, but the coherences between all possible TMs
have not been investigated in detail. This is, however, an
essential ingredient for the realization of any application based
on a high-dimensional alphabet rather than on simple add-
or drop-type multiplexing of information channels. An easy
example is polarization tomography, where measurements
have to be carried out in all three mutually unbiased bases
(MUBs)—horizontal or vertical, diagonal or antidiagonal,
and right-circular or left-circular—in order to retrieve full
information on the state under investigation.

In this paper, we reconstruct all measurement operators of
a QPG operating on both a five-dimensional and seven-
dimensional TM Hilbert space. Our QPG is based
on dispersion-engineered sum-frequency generation in a
titanium-indiffused lithium niobate waveguide, and we use
sets of weak coherent states which span a tomographically
complete set of MUBs to characterize the device. Afterwards,
we use the retrieved measurement operators of our QPG to
perform TM state tomography of randomly chosen TM states
in an up to seven-dimensional Hilbert space with average
fidelities of 0.99. This combines the necessary ingredients for
high-dimensional QIS with single-photon TMs and paves the
way towards future applications of this technology.

II. FREQUENCY CONVERSION AND MODE
SELECTIVE MEASUREMENTS

In this section, we present the theoretical basis behind the
QPG and the use of it for tomography of TM states. We express
our single-photon states in terms of broadband TMs:

Âi =
∫

fi(ω)â(ω)dω, (1)
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FIG. 1. Outline of QPG operation. The QPG is a beamsplitter
operating on a TM defined by the index α. For the measurement
tomography, we send coherent states |β〉 to the QPG and at the
converted (reflected) port we measure the number of converted
photons using a bucket detector, noted as nαβ .

where fi(ω) are frequency amplitudes and â(ω) are the
annihilation operators for the central frequency ω. The
spectral intensity |fi(ω)|2 can be measured with a standard
spectrometer. In the following, the modes Âi form our discrete
basis of dimension d, i.e., the functions fi(ω) are orthonormal
and 0 � i < d. In the experiment, we take d = {5,7} and fi(ω)
as Hermite-Gaussian functions of order i.

Before giving the sketch of the TM tomogra-
phy, we briefly review the underlying formalism of
the QPG as a mode-selective frequency conversion
(FC). FC in general is a beamsplitter acting on
TMs, which is described by a Hamiltonian ĤFC =
θ

∫∫
f α(ωin,ωout)â(ωin)b̂†(ωout)dωindωout + H.c., where â

and b̂ are the annihilation operators for the two beamsplitter
modes. The transfer function

f α(ωin,ωout) = α(ωpump)�(ωin,ωout) (2)

is given by the pump amplitude α(ωpump) and the phase-
matching function �(ωin,ωout) of the crystal [1,2]. We use
a superscript α to indicate that we can adjust the process by
shaping the pump spectrum. Using the Schmidt decomposi-
tion, the transfer function f α(ωin,ωout) can be decomposed
into its eigenmodes defining new TM operators Ĉα

k and D̂α
k ,

thus reducing the integral to the following sum:

Ĥ α
FC = θ

∑
k

λα
k

(
D̂α

k

)†
Ĉα

k + H.c., (3)

where λα
k are the eigenvalues of the decomposition, normalized

as
∑

k |λα
k |2 = 1, and θ is the gain of the process. The

orthogonality of the eigenmodes ensures that we can regard
the FC as independent beamsplitters with a reflectivity or
conversion efficiency of ηα

k = sin2(|θλα
k |). As sketched in

Fig. 1, we have no input in mode D and measure the mean
photon number of the converted light, which is

n =
∑

k

ηα
k

〈(
Ĉα

k

)†
Ĉα

k

〉
. (4)

To calculate what this means for a given input spectral
shape, we decompose the mode β of the input state into the
eigenmodes of the FC:

β̂ =
∑

k

v
αβ

k Ĉα
k . (5)

Then we can rewrite the mean photon number of converted
light as

nαβ = Nβ
∑

k

ηα
k

∣∣vαβ

k

∣∣2
, (6)

where Nβ is the total mean photon number of the input state
and |vαβ

k |2 is the overlap between the input mode β and the
kth eigenmode of the conversion process for a pump setting α.
Interestingly, this is valid for all photon number distributions
including the coherent states we use here.

We can also rewrite this in vector notation as

nαβ = Nβ
∑

k

ηα
k |〈β|kα〉|2 = 〈β|M̂α|β〉, (7)

where M̂α = ∑
k ηα

k |kα〉〈kα| = ∑
ij mα

ij |i〉 〈j | is our measure-
ment operator, |i〉 is the TM basis from Eq. (1), |β〉 is the
input state, and |kα〉 are the eigenvectors of the process.
The idea of measurement tomography is to probe the matrix
M̂α with different states |β〉. All we have to do is to
generate a tomographically complete set of probe states and
employ standard measurement tomography with the measured
mean photon numbers for each setting, thus determining
the elements mα

ij . Diagonalizing this matrix, we get the FC
eigenmodes |kα〉 and efficiencies ηα

k . This fully characterizes
the input-mode structure of the FC. An ideal QPG has only one
eigenmode, i.e., M̂α has only one nonzero eigenvalue, and the
shape of the eigenmode would reflect the shape of the pump
kα

0 (ω) = α(−ω). This can be achieved in a three-wave mixing
process with the group-velocity matching (GVM) condition
between the input and the pump fields [1,2].

It is worth noting that while the number of modes of
the FC is in principle infinite the probe space is only finite
dimensional. Despite this, the reconstruction of the FC within
the probe space is accurate. A simple example is when the TMs
of the pump and input are not perfectly matched, e.g., in their
central frequencies. This can change the overall conversion
efficiency tr(M̂α) = ∑

k ηα
k for different pump shapes α. We

therefore try to match the central frequencies and bandwidths
of the input and pump TMs to cover as much of the FC space
as possible.

III. EXPERIMENT

The outline of the experimental setup is sketched in
Fig. 2. We take ultrashort pulses from a Ti:sapphire oscillator
[14] to pump an optical parametric oscillator (OPO) [15].
With this configuration we have Gaussian pulses at central
wavelengths of 873 and 1550 nm, for the pump and signal
fields, respectively, with amplitude full width at half maximum
(FWHM) of 3.35 THz for both fields. To prepare the coherent
input state, we attenuate the OPO beam to a mean photon
number of 0.1 per pulse. We use a self-built pulse shaper to
shape the pump and a commercial pulse shaper [16] to shape
the input light pulses, with spectral resolutions of 22 and 8 pm,
respectively. The self-built pulse shaper is a folded 4f setup
consisting of a magnifying telescope, a holographic diffraction
grating with 2000 lines/mm, a cylindrical silver mirror, and
a reflective liquid crystal on a silicon spatial light modulator
(SLM) [17]. We use spectral interferometry to ensure both
pulse shapers are dispersion free. The shaping resolutions
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FIG. 2. Experimental setup. A femtosecond titanium:sapphire
(Ti:Sa) oscillator with repetition rate of 80 MHz is used to pump an
optical parametric oscillator (OPO). The pump of the QPG is obtained
from a tap-off of the Ti:Sa laser. The input signal field is prepared by
attenuating the OPO output to a mean photon number of 0.1 photon
per pulse by using neutral density (ND) filters. For spectral shaping,
we use SLMs in a folded 4f setup to shape the desired spectral
amplitude and phase for the both fields. Then pump and input fields
are combined on a dichroic mirror (DM) and coupled to an in-house
built periodically poled lithium niobate (PPLN) waveguide, held at
207 ◦C. After the PPLN waveguide, the up-converted photons with
a green color are selected by a 4f setup and coupled to a silicon
avalanche photodiode (SiAPD), through a single-mode fiber (SMF).

are better than the resolution we require in this experiment.
For example, while we could prepare the 20th-order Hermite-
Gaussian mode, we only use the first seven modes as our basis
due to other constraints that will be discussed later. For the
tomography, we choose a bandwidth of 0.4 THz (FWHM of
the amplitude of the Gaussian mode) for both fields. Finally,
the type-II sum-frequency process happens in an in-house built
17-mm LiNbO3 crystal with titanium indiffused waveguides
and a poling period of 4.4 μm. The waveguides are designed
to be spatially single mode at 1550 nm.

The key property of a QPG is the GVM between the input
and the pump [1,2]. In Fig. 3 we plot the intensity of the phase-
matching function |�(λin,λout)|2, measured with a scanning
continuous-wave input laser and adjusted pump pulses on a
high-resolution spectrometer. A perfect GVM condition results
in zero gradient of the phase-matching function in Fig. 3.
The marginal spectrum of this function, plotted on the left
side in Fig. 3, shows an asymmetric structure with decaying
side lobes. This can be explained by an inhomogeneity of the
effective refractive index along the waveguide, equivalent to
a variation of the poling period. A quadratic variation of the
poling period can introduce such asymmetric side peaks. In
the experiment, we also have a 4f setup on the sum-frequency
generation (SFG) line (with a total transmissivity of about
0.55) that allows us to filter out these side lobes.

One common complication with waveguides is that differ-
ent spatial mode combinations have different phase matchings.
In our case, these do not overlap with the phase matching for
the fundamental mode shown in Fig. 3, thus we can simply
filter them out spectrally. Nevertheless, special care is taken to

FIG. 3. Phase-matching function of the QPG. Right: The zero
gradient of the phase-matching function �(ωin,ωout) is an indicator
of group-velocity matching between input signal and pump field.
The diagonal white lines are marking the orientation of the pump
amplitude α(ωout − ωin) and the bandwidth we use in this paper. The
horizontal white lines are showing the bandwidth of the 4f setup used
to filter the SFG signal. Left: Marginal distribution of the plot on the
right side. Asymmetries are due to inhomogeneity of the effective
refractive index along the waveguide.

optimize the coupling of both beams into the waveguide for
the desired process and minimize the intensity of higher-order
modes.

We shape both the pump and the input to span a complete set
of MUBs [18]. These have the property that for a dimension
d there are (d + 1) bases such that overlaps between states
from different bases are always 1/d, hence unbiased. This
ensures that the space is uniformly probed. Furthermore, the
total set is tomographically overcomplete, helping to reduce
systematic experimental errors. Since for each pump shape
we have to run the full characterization with (d + 1)d input
modes, the total number of measurements for d = 5 and 7
are 900 and 3136, respectively. For each of them, we record
counts for about 1 s at count rates up to 105 counts/s. This
corresponds to a FC efficiency of about 5%, which is solely
limited by the pump pulse energy of about 5 pJ in the current
experimental setup. Despite the relatively low conversion
efficiency, a short measurement time is possible owing to
high detection efficiency of the silicon avalanche photodiode
(SiAPD). Since the count rates are directly proportional to the
powers of the pump and the input, we record both values after
the waveguide and normalize the count rates accordingly to
account for small drifts in the setup (with the magnitude of
less than 10%). It is worth mentioning that one can also use
symmetric informationally complete POVMs (SIC-POVMs)
as the tomography bases [19]. The main advantage of the
SIC-POVMs is that, contrary to MUBs, they exist for any
arbitrary dimension [20].

IV. MEASUREMENT TOMOGRAPHY OF THE QPG

To find the measurement operators M̂α from the data we
perform a weighted least-squares fit:

min
M̂α

∑
β

|f αβ − 〈β|M̂α|β〉|2
f αβ

, (8)
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FIG. 4. The first eigenvectors of the 7×6 measurement operators. For each plot, the x axis corresponds to the frequency detuning (from
the central frequency) and the y axis to the amplitude and phase. Black and green lines are the measured amplitudes and phases, respectively;
shaded areas and blue lines correspond to the theoretical MUB modes. Note that the phase is 2π periodic, which is also the interval of the y

axis. Please note that phases are only meaningful when a significant amplitude is present.

where f αβ are normalized count rates and M̂α is constrained
to be Hermitian and positive semidefinite. Since each setting α

is an independent measurement, we do not put a constraint on
the sum of operators. In Fig. 4 we show the first eigenmodes
of all measurement operators for seven dimensions. They
closely resemble the ideal MUB states. Additionally, the
matrix of projections of MUB POVM elements which shows
the orthogonality of the basis is given in Appendix B.

To quantify how accurate the results are, we calculate
the purities Pα = tr([M̂α]2)/tr(M̂α)2 and the fidelities Fα =√

〈α| M̂α |α〉 /tr(M̂α) with the ideal operators |α〉〈α|. We
perform the characterization in five and seven dimensions,
whereas for five dimensions we also compare the two experi-
mental settings with and without a spectral filter in the output
mode. As mentioned, the spectral filter blocks the side lobes of
the phase matching. The average values with their respective
standard deviations are listed in Table I. For comparison we
also show theoretical values assuming a Gaussian horizontal

phase matching and perfect pump shaping. The imperfections
in this case originate from the fact that the phase matching is
only about five times narrower than the pump, leading to cor-
relations in the transfer function and multimode performance
of the QPG. These correlations also explain why suppressing
the side lobes of the output spectrum improves the purity from
0.72 to 0.92. A comparison of the eigenmodes for these two
cases shows that the first eigenmode hardly changes. Thus the

TABLE I. Purities and fidelities of QPG measurement operators.

d 5 (unfiltered) 5 7

Pmeasured 0.719 ± 0.064 0.920 ± 0.024 0.811 ± 0.035
Fmeasured 0.778 ± 0.086 0.912 ± 0.046 0.847 ± 0.042
Ptheory 0.939 ± 0.026 0.909 ± 0.035
Ftheory 0.979 ± 0.008 0.971 ± 0.010
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spectral filtering suppresses the higher-order spectral modes
introduced by the side lobes of the phase matching, or in other
words drives the QPG closer to single modeness. Going from
five to seven dimensions slightly lowers both the purities and
the fidelities. One reason is that the richer spectral structure
of the pump at higher dimensions, again, will introduce some
spectral correlations in the transfer function which also reduce
the theoretical values. However, the expected reduction is
smaller than what we measure. Imperfections in the pulse
shaping are a greater problem for higher dimensions. With the
increase of dimensionality, the total bandwidth both in time
and frequency increases, which requires the relative phases
and amplitudes to be accurate over a broader range in both time
and frequency. To improve the single-mode operation of the
QPG, one can use a longer waveguide which gives a narrower
phase-matching bandwidth. Furthermore, the measurement
time increases drastically, which makes the experiment more
susceptible to drifts in the setup. With the current exper-
imental setup, the seven-dimensional characterization takes
about 2 h.

The overall high fidelities we measure in this paper
demonstrate that the QPG can operate on arbitrary TMs in a
selective way. The fidelities also quantify the mode selectivity
since the normalized conversion efficiency is given by F2.
In the five-dimensional case, that means that the desired
mode gets converted with 83% efficiency and any orthogonal
mode gets converted with less than 17%. However, with the
measurement operators we have much more information than
just the mode selectivity. For a task like state tomography,
the QPG operation can be calibrated for small experimental
errors, as we have here. All we need is mode sensitivity and
the knowledge of our mode detector, which we have with the
matrices M̂α . In Appendix C we discuss the feasibility of
this tomographic method at the presence of more significant
experimental errors.

V. STATE TOMOGRAPHY WITH THE QPG

In the following we investigate the performance of the
QPG for state tomography. For this purpose, we prepare states
like ρ̂ = |β〉 〈β|, which are different from the characterization
set we use for the measurement tomography. To ensure fair
benchmarking we prepare 20 different input states where half
of them are generated randomly. Then we use the (d + 1)d
QPG settings α to reconstruct the input state. We measure the
normalized probabilities f α and minimize

min
ρ̂

∑
α

|f α − tr(ρ̂M̂α)|2
f α

, (9)

under the constraints that ρ̂ is Hermitian and positive semidef-
inite and tr(ρ̂) = 1. First, we assume a perfect QPG with ideal

TABLE II. Measured purities and fidelities of state tomography.

d 5 (unfiltered) 5 7

P 0.68 ± 0.079 0.753 ± 0.098 0.619 ± 0.052
F 0.742 ± 0.126 0.879 ± 0.041 0.813 ± 0.031

TABLE III. Measured purities and fidelities of state tomography
with calibrated QPG.

d 5 (unfiltered) 5 7

P 0.931 ± 0.038 0.972 ± 0.016 0.957 ± 0.017
F 0.971 ± 0.015 0.991 ± 0.005 0.988 ± 0.004

measurement operators and reconstruct the input states. Since
the prepared inputs are coherent states in well-defined TMs,
we expect to reconstruct pure states. The average fidelities and
their standard deviations measured for all input states are listed
in Table II, which shows a modest fidelity of the reconstructed
state with respect to the prepared state. This is because the
slight multimodeness of the QPG operation translates into the
mixedness of the reconstructed states and leads to inaccurate
tomography.

To improve the quality of the state tomography we can use
the characterized measurement operators of the QPG in Eq. (9).
Table III summarizes the outcome. The improvement is strik-
ing. We obtain fidelities of 0.99 with the actual input state. Two
examples of such states are shown in Fig. 5. The decrease in
fidelity from five to seven dimensions is almost negligible and,
even without filtering, the values are still very high. This shows
the power of proper detector calibration for state tomography.
The outstanding fidelities suggest that the state tomography
with QPG can be scaled up to higher dimensions. However,
performing a complete measurement tomography for higher
dimensions, with the current experimental configuration,
would require an impractically long measurement time. This
is primarily a technical challenge to decrease the switching
time of the SLMs and increase the count rates per second.
From the numeric point of view, measurement tomography
becomes time consuming very quickly. Here, one could switch
to pattern tomography [21], which circumvents this tedious
step by fitting the detector response pattern directly. We tested
this approach as well and obtained similar fidelities as shown
in Table III.

VI. CONCLUSION

In conclusion, we experimentally characterized the mea-
surement operators of a temporal-mode selective device in
up to seven dimensions. We have shown that the device is
effective in superposition bases spanning a tomographically
complete set of mutually unbiased bases. Furthermore, we
have shown that characterization of the measurement opera-
tors of such a device enables accurate temporal-mode state
tomography, with fidelities in the 0.99 range. With such
characterization, the QPG can be used to fully characterize
ultrafast quantum states. Future work will focus on improving
the performance of the QPG to realize its full potential for
high-dimensional quantum information science with temporal
modes.
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FIG. 5. Two examples of state tomography with QPG in the Hermite-Gaussian basis in five (a) and seven (b) dimensions. State vectors
corresponding to each density matrix are detailed in Appendix A. For each state the theoretical density matrix (left), the reconstructed density
matrix without QPG calibration (middle), and the reconstructed density matrix with QPG calibration (right) are plotted.
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FIG. 6. Matrix of projections of MUB POVM elements for five
(a) and seven (b) dimensions.
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APPENDIX A: LIST OF STATE VECTORS

The following is the list of state vectors associated with the
density matrices presented in Fig. 5, described in the Hermite-
Gaussian basis:

|ψa〉 = |1〉 − ı |3〉 , (A1)

|ψb〉 = (0.36110833 + 0.28107443ı) |0〉
+ (0.14599764 + 0.23536858ı) |1〉
+ (0.39339517 + 0.05872998ı) |2〉
+ (0.37242591 + 0.35380667ı) |3〉
+ (0.34693250 + 0.07796563ı) |4〉
+ (0.25172264 + 0.24799887ı) |5〉
+ (0.16147789 + 0.12004762ı) |6〉 . (A2)

FIG. 7. The impact of an imperfect QPG (parametrized in σ with
arbitrary units) on fidelity and purity of (a) measurement operators,
(b) state tomography without calibration, and (c) state tomography
with calibration of the POVMs. The y-axis in all cases indicates the
purity or fidelity, scaling from zero to one.

APPENDIX B: MUB POVM ORTHOGONALITY

Figure 6 shows the matrix of projections of MUB POVM
elements | |φi〉 〈φj | |2 for five and seven dimensions, which is
used for normalizing the data.

APPENDIX C: FEASIBILITY AGAINST
EXPERIMENTAL ERRORS

In this section we briefly discuss the effectiveness of
our tomographic method against the imperfections of the
QPG’s measurement operators. To simulate the imperfect QPG
measurements, we convolve the theoretical seven-dimensional
measurement operators with a Gaussian filter with a width of
σ . This error model is chosen because from an operational
point of view the main source of errors is the imperfect
mode selectivity of the QPG. With an increasing width of
the Gaussian filter, purity and fidelity of the measurement
operators decline, as plotted in Fig. 7(a). In Fig. 7(b), we
use these imperfect measurement operators to perform a state
tomography on a pure input state in the Gaussian mode,
which, as expected, shows a reduced fidelity with increasing
values of σ . Finally, in Fig. 7(c), we use our knowledge
of imperfect POVMs and repeat the state tomography with
a calibrated QPG. For relatively small values of σ , with
the purity of the measurement operators larger than about
0.6, the state tomography works with very high fidelities.
However, our method breaks down for a larger amount of
errors, which is considerably more than the experimental
imperfections presented in this paper. With an excessive
amount of experimental errors, other tomographic methods,
such as Bayesian mean estimation [22], might be more
effective. Nonetheless, a comprehensive theoretical evaluation
of various types of error and finding the optimized tomographic
method is necessary, which is beyond the scope of this paper.
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