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A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a
microwave field that couples to the permanent dipole’s moment is presented. We focus to a situation where the
angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical
field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective
Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to
derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population
inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary
two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is
far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the
intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are
analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened
or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze
the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at
certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular
complex with high nonlinear optical response although they can also occur in other quantum systems with broken
inversion symmetry.
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I. INTRODUCTION

In the past four decades, resonance fluorescence has
attracted great attention within the quantum optics community.
Despite its conceptual simplicity, it entails a wide range of
intriguing phenomena such as the Mollow-triplet emission
spectrum [1] and photon antibunching [2,3]. Recently, renewed
interest on this topic has emerged due to potential applications
in quantum-information science [4] using systems such as
trapped atoms or ions, as well as semiconductor quantum
dots (QDs). As a matter of fact, quantum optical experiments
pioneered in atomic vapors in the 1970s have been shown to
be achievable in these systems [5–10]. Further developments
addressed the problem to determine the atomic resonance
fluorescence spectrum (RFS) under conditions of bichromatic
excitation based upon the use of two driving fields with two
slightly different angular frequencies which interact with the
atom through the transition dipole moment [11,12]. Under such
driving conditions a novel multiplet structure emerged in the
RFS [13–15] and in the absorption spectrum [14]. The analysis
of RFS in a two-level system has been recently extended to
the case of a polychromatic excitation [16].

An important nonclassical feature of the resonance fluores-
cence spectrum is the squeezing of the field quadratures of a
two-level system, which was theoretically addressed by Walls
and Zoller [17] and later experimentally verified [18]. Due to
its potential applications in high-precision measurements like
gravitational wave detection [19], quantum teleportation [20],
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and quantum computing [21], the squeezing of the fluorescent
field has been widely studied in two- and three-level atoms
driven by laser fields [22]. In connection with the development
of quantum informatics, squeezed states of the radiation field
have been recognized as crucial resources for continuous
variable quantum information processing [23–25]. Therefore,
the issue of generation of fields with enhanced squeezing is
still an interesting topic. Squeezing in resonance fluorescence
has been experimentally realized in QDs [26]. In the field
of quantum plasmonics the squeezed spectrum of a single
quantum emitter placed adjacent to a gold nanosphere [27,28]
or a graphene sheet [29] has been analyzed.

All these theoretical and experimental studies have been
developed in the framework of symmetric quantum emitters
where inversion symmetry is assumed. However, the violation
of the inversion symmetry is inherent in many quantum sys-
tems and results in nonzero permanent dipole matrix elements
(PDMs) of the ground and excited states. For example, in polar
molecules [30] the origin is the parity mixing of the molecular
states, while in asymmetric QDs it arises due to the asymmetry
of the confining potential of the dot. The existence of nonzero
PDMs has been experimentally observed in several systems
[31–37]. Furthermore, the presence of PDMs considerably
influences the optical response of a system [38–40] leading,
for example, to changes in multiphoton resonant excitation
[41–43], modifications of the saturation of absorption and
dispersion [44], creation of second-harmonic generation [45]
and correlated photon pairs [46], as well as the opening of
new optical transitions [47–49]. The bichromatic excitation
of quantum systems with PDMs has been studied in a wide
range of quantum systems, including electron and nuclear
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spins [50,51], QDs [52,53], and superconducting qubits [54].
The RFS of an asymmetric QD has been recently analyzed
in the regime of dissipative dynamics and weak frequency
modulation of the low-frequency (LF) field [55,56].

In this paper we develop a theoretical description of
the properties of the scattered field by a quantum emitter
with broken inversion symmetry simultaneously driven by a
transverse optical field and a longitudinal low-frequency (LF)
field with angular frequencies ωL and ωs , respectively. We
focus on a situation where the Rabi frequency �R of the
optical field is close to ωs , i.e., ωs � �R holds, a situation
which is termed as the Rabi resonance condition. In such
circumstances the optical field couples to the transition dipole
moment of the emitter, while the LF field couples the PDMs
to the population inversion. This situation differs from those
previously mentioned of bichromatic driving where the two
fields have angular frequencies within the same range and
both fields coupled to the transition dipole moment of the
quantum transition [11–15]. We derive a master equation for
the reduced density matrix by making use of a Furry-based
unitary transformation approach which includes the interaction
with PDMs nonperturbatively. By doing that we arrive at an
effective Hamiltonian which differs from the one obtained
in Ref. [24], which in turn manifests notable differences
at steady state when obtained by the two methods. The
effective Hamiltonian is obtained in the doubly dressed basis
allowing one to derive analytical expressions for the resonance
fluorescence and the squeezing spectra. We show that the RFS
may exhibit up to nine spectral components grouped into
three triplets, a result which contrasts to the Mollow triplet
in nonpolar systems. The peak value of each spectral line is
shown to depend on how close to the Rabi resonance condition
the two driving fields are. In addition, the LF field is shown to
be a knob to tune the spectral features. Moreover, squeezing of
the scattered field in a wide spectral range is generated which
can be controlled by the LF field and the phase of the local
oscillator.

The paper is organized as follows. Section II establishes
the model, i.e., the Hamiltonian of the system and the time-
evolution equations of the quantum system operators taking
into account the counter-rotating terms introduced by the
PDMs. In order to arrive at a solvable master equation for
the reduced density operator we introduce a general treatment
based on unitary transformations and provide the key steps to
derive the master equation for the reduced density matrix. The
transformation to doubly dressed states of the quantum system
in the strong-field limit allows us to obtain the analytical
expressions for the spectra. Section III presents numerical
simulations which illustrate the effect of the LF field on
the spectra. Section IV summarizes the main findings of our
work. Finally, two Appendixes are provided with details of
intermediate calculations.

II. THEORETICAL MODEL

We consider a two-level system with ground (excited) state
|1〉(|2〉) and energy h̄ω1(h̄ω2), as the one depicted in Fig. 1.
The transition frequency is ω0 = ω2 − ω1, and the transition
electric dipole moment is �μ12. Due to the breaking of inversion
symmetry the levels |1〉 and |2〉 may exhibit unequal PDMs
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FIG. 1. (a) Energy-level diagram of the two-level system. The
external field (EL) of frequency ωL drives the electronic transition and
the LF field (Es) with frequency ωs � ωL modulates the resonance
frequency. The two-level scheme illustrates the molecule with
permanent electric dipole moments in the ground and excited states
�μ11, and �μ22, respectively. (b) Dressed states of the bichromatically
driven two-level polar system accounting for the red detuned, the
central, and the blue detuned triplets. Vertical solid lines account
for transitions contributing to the central line of each triplet, while
vertical dashed (dashed-dotted) lines indicate the transitions which
produce the red(blue) detuned line within each triplet.

( �μ11 �= �μ22). The optical transition |1〉 ↔ |2〉 is driven by a
linearly polarized laser field of frequency ωL given by

ÊL(t) = 1
2EL(e−iωLt + eiωLt )û, (1)

where EL is the electric-field amplitude and û the unit
polarization vector. We assume that û‖�μ12‖�μ11‖�μ22. The
quantum system is also driven by a monochromatic LF field
of amplitude Es and angular frequency ωs � ωL given by

Ês(t) = 1
2Es(e

−iωs t + eiωs t )û. (2)

The Hamiltonian of the system can be expressed as

H = HM
0 + HB

0 + HB−M + Hdrive, (3)

where

HM
0 = h̄

ω0

2
σ̂z,

HB
0 = h̄

∑
k

ωka
†
kak, (4)

HB−M = h̄
∑

k

gk(a†
k + ak)(σ̂+ + σ̂−).

The first term HM
0 describes a two-level system with a

transition frequency ω0, and σ̂±, σ̂z are the Pauli matrices
acting in the space spanned by the states |1〉 and |2〉. The second
term HB

0 corresponds to the free energy of the environmental
electromagnetic vacuum modes, where ak (a†

k) is the annihi-
lation (creation) operator of the kth mode of the vacuum field
with polarization �ek and angular frequency ωk . The third term
represents the interaction between the quantum system and the
vacuum modes. The parameter gk is the coupling constant of
the electronic transition |2〉 → |1〉 with the electromagnetic
vacuum mode gk =

√
ωk

2h̄ε0V
( �μ12 · êk), êk being the unit vector

of the radiation mode and V the quantization volume. Finally,
the Hamiltonian Hdrive describes the interaction of the quantum
system with the external electromagnetic field and can be
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constructed as follows. The interaction of a classical dipole
d with an external electric field E is given by the expression
Hdrive = d · E , and within the quantum-field approach we
have to replace the classical dipole d with the corresponding
operator

d = �μ22 + �μ11

2
Î + �μ22 − �μ11

2
σ̂z + �μ21σ̂

+ + �μ12σ̂
−, (5)

where Î is the identity operator. Thus the interaction Hamilto-
nian can be written as

Hdrive = h̄�(e−iωLt + eiωLt )(σ̂+ + σ̂−)

+ h̄G(e−iωs t + eiωs t )(σ̂+ + σ̂−)

+ h̄
�

2
(e−iωLt + eiωLt )σ̂z

+ h̄
G

2
(e−iωs t + eiωs t )σ̂z, (6)

� ≡ μ12EL

2h̄
being the Rabi frequency of the laser field and

G ≡ μ0Es

2h̄
standing for the Rabi frequency of the LF field. In

these expressions, μ0 = |�μ22 − �μ11|, and we have assumed
�μ12 = �μ21 (real).

Our aim is to obtain the time evolution of the density matrix.
To do that we apply a method based on a series of unitary
transformations in order to eliminate the explicit temporal
dependence introduced by the LF field in the diagonal elements
of the Hamiltonian of Eq. (6). The first unitary transformation
allows one to remove the fast oscillating terms in Eq. (6) by
moving to a frame rotating at ωL and is given by

U1 = e−i( 1
2 ωLσ̂z+

∑
k ωka

†
kak )t . (7)

In the new frame the density matrix is given by ρ(1) =
U

†
1 (t)ρ(s)(t)U1(t) and the resulting Hamiltonian is H (1)(t) =

U
†
1 (t)H (t)U1(t) − ih̄U

†
1 (t) ∂U1(t)

∂t
, yielding

H (1) = h̄
�L

2
σ̂z + h̄�(σ̂+ + σ̂−)

+ h̄G(σ̂+e−i(ωs−ωL)t + σ̂−e+i(ωs−ωL)t )

+ h̄
�

2
(e−iωLt + eiωLt )σ̂z + h̄

G

2
(e−iωs t + eiωs t )σ̂z

+ h̄
∑

k

gk(a†
kσ̂

−ei(ωk−ωL)t + σ̂+ake
−i(ωk−ωL)t ), (8)

where �L = ω0 − ωL is the detuning of the optical field with
the transition frequency.

At this point it is worth noting the difference between
the Hamiltonian in Eq. (8) and the Hamiltonian considered
in previous works [11–14]. Note that in writing Eq. (8) the
rotating wave approximation for the optical field has been
assumed. In all those previous cases the pump and probe fields
had similar angular frequencies that were tuned close to the
transition frequency (ω0), and more importantly, both fields
interact with the quantum system via transition dipole moment.
To illustrate this point, let us consider the term oscillating at
ωs − ωL in Eq. (8). A term similar to this (although changing
G to �′) is the one that was considered in previous works
concerning bichromatic driving [11–14] and when both ωs

and ωL are within the same spectral range this term must
be kept. However, in the situation addressed in this work
the angular frequency of the LF field (ωs) is more than six
orders of magnitude lower than the transition frequency (ω0),
whereas the optical field (ωL) drives the transition dipole close
to resonance. Thus the interaction of the LF field with the
transition dipole moment averages to zero. In a similar way,
the interaction of the optical field with the PDMs (the term
oscillating at ωL) averages to zero, whereas the interaction of
the LF field with the PDMs of the system (the term oscillating
at ωs) must be retained. In addition, when assuming that
ωs is a low frequency we are allowed to reach a physical
situation in which such frequency is tuned close to the Rabi
frequency of the optical pump field. Such Rabi resonance
condition is far from being reached in the case were the
two fields are within the optical range. Thus the following
conditions hold: (i) �  G and (ii) � − ωs � ωs . In view of
the previous considerations we get the same Hamiltonian as
the one considered in Ref. [57], although in what follows we
perform a series of unitary transformations some of them being
time dependent in order to obtain an effective Hamiltonian.

In the current case the strong driving field EL can be
viewed as a dressing field for the two-level system. Under these
conditions we resort to diagonalizing the quantum system part
of the Hamiltonian and the interaction of the quantum system
with the laser field

H (01) = h̄
�L

2
σ̂z + h̄�(σ̂+ + σ̂−), (9)

by means of a canonical transformation U2 = e−iθσy , with
sin(2θ ) = �L

�R
, cos(2θ ) = 2�

�R
, and �R ≡

√
�2

L + (2�)2. With
these relations in mind, the Hamiltonian H (1) in Eq. (8)
becomes

H (2) = h̄
�R

2
Rz + h̄

G

2
(e−iωs t + eiωs t )

[(
c2

1 − s2
1

)
Rz − 2c1s1(R+ + R−)

]
+ h̄

∑
k

gk

[
a
†
ke

i(ωk−ωL)t
(
c1s1Rz + c2

1R
− − s2

1R
+) + H.a.

]
, (10)

where c1 = cos(θ ) and s1 = sin(θ ), and H.a. stands for Hermitian adjoint. The operators R+, R+, and Rz appearing in Eq. (10)
refer to the eigenstates of H (01) given in Appendix A.

The next step to eliminate the explicit time dependence in Eq. (10) relies on the use of the Furry representation [58]. To this
end we make use of the unitary transformation defined as

U3(t) = e−i[ �R
2 t+ 2G cos(2θ )

ωs
sin(ωs t)]Rz . (11)
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The resulting Hamiltonian is given by

H (3) = −h̄Gc1s1

{∑
l

Jl(z)[R+ei[�R+(l−1)ωs ]t + R−e−i[�R+(l−1)ωs ]t ] +
∑

l

Jl(z)[R+ei[�R+(l+1)ωs ]t + R−e−i[�R+(l+1)ωs ]t ]

}

+ h̄U
†
3 (t)

∑
k

gk

[
a
†
ke

i(ωk−ωL)t
(
c1s1Rz + c2

1R
− − s2

1R
+) + H.a.

]
U3(t). (12)

In arriving at Eq. (12) we made use of the Jacoby-Auger iden-
tity exp(iz sin ωst) = ∑∞

n=−∞ Jn(z)enωs t , with Jn(z) being the
Bessel function of the first kind of order n [59], and z ≡
4G cos(2θ)

ωs
. Then, we assume the resonance condition: �q ≡

�R − qωs � ωs , with q being an integer. After we apply
the unitary transformation U4 = ei �s

2 tRz (see Appendix A
for details) we remove the oscillating terms in the coherent
part of the Hamiltonian. Finally, since we are interested in
the physics in the strong-driving regime, we move to the
double-dressed picture in order to obtain analytical results.
To do this we can diagonalize the resulting Hamiltonian H (4)

in Eq. (A5) by means of a rotation operator U5 = e−iφσy where
sin(2φ) = −�q

�S
, cos(2φ) = 2�R

�S
, and �S ≡

√
�2

q + (2�R)2.

The transformed matrix density ρ(5)(t) is given by

∂ρ(5)(t)

∂t
= −i

�S

2
[Sz,ρ

(5)] + Lρ(5), (13)

where Sz, S+, and S−, are the system operators in the
double-dressed basis and �S is the frequency of the Rabi os-
cillations between the quantum states dressed simultaneously
by the optical and LF fields. In the double-dressed basis the
Liouvillian takes the form

Lρ(5) = −�0

2
[SzSzρ − SzρSz + H.a.]

− �+
2

[S+S−ρ − S−ρS+ + H.a.]

− �−
2

[S−S+ρ − S+ρS− + H.a.], (14)

and it describes the dynamics between the new dressed states
|+〉 and |−〉 of the system. The parameters �0, �± are given
by

�0 = γ+ sin2(2φ)/4 + γ− sin2(2φ)/4 + γ0 cos2(2φ),

�+ = γ+ cos4(φ) + γ− sin4(φ) + γ0 sin2(2φ), (15)

�− = γ+ sin4(φ) + γ− cos4(φ) + γ0 sin2(2φ),

where γ+, γ−, and γo are given in Appendix A. These quantities
determine the damping rates between the doubly dressed
states of the system. In deriving Eq. (14) we only kept those
terms which maintain the Linblad form, i.e., terms containing
products of spin operator pairs S± with Sz, S+ with S+, and
S− with S− were neglected. A similar approach was used in
Ref. [57] [see their Eq. (12)].

In view of Eqs. (13) and (14), the Bloch equations in the
double-dressed basis take the simple form

∂〈S+(t)〉
∂t

= −[�S − i�s]〈S+(t)〉,

∂〈S−(t)〉
∂t

= −[�S + i�s]〈S−(t)〉,
∂〈Sz(t)〉

∂t
= −γ2〈Sz(t)〉 + γs0, (16)

where �S = 2�0 + γ2/2, γs0 = �− − �+, and γ2 = �+ + �−.
It becomes evident from Eq. (16) that we have to deal with
easily solvable equations of motion and determining the initial
conditions 〈S+(0)〉, 〈S−(0)〉, and 〈Sz(0)〉 is the only remaining
problem. This task requires establishing the initial condition
in the bare basis and transforming it to the double-dressed
basis by making the unitary transformations used to arrive
at Eq. (13). To this end we assume that in the bare basis
ρ(0) = 1

2 − 1
2ρD(0) and ρD(0) = −1, i.e., the quantum system

is initially in the ground state and there is no initial coherence.
In view of that we get

ρ(5)(0) = U †(0)ρ(0)U (0)

= U
†
5U

†
2 (t)ρ(0)U2U5

= 1
2 + 1

2ρ
(0)
D (0)[cos(2θ ) cos(2φ)

− sin(2θ ) sin(2φ)]〈Sz(0)〉
− 1

2ρ
(0)
D (0)[cos(2θ ) sin(2φ)

+ sin(2θ ) cos(2φ)][〈S+(0)〉 + 〈S−(0)〉]. (17)

The integration of Eqs. (16) yields a simple analytical
solution

〈S+(t)〉 = (〈S−(t)〉)∗

= cos(2θ ) sin(2φ) + sin(2θ ) cos(2φ)

2
e−(�S−i�s )t ,

〈Sz(t)〉 = γs0

γ2

(
1 − e−γ2τ

) − [cos(2θ ) cos(2φ)

− sin(2θ ) sin(2φ)]e−γ2t . (18)

III. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the influence of PDMs on the optical
response of a polar two-level system we use parameters
suitable for a zinc-phthalocyanine molecular complex shown
in Fig. 2, which has been recently synthesized and has shown
large nonlinear optical response [60]; the parameters are
obtained by ab initio electronic structure methods [61]. In our
calculations, the ground electronic state and the first singlet
electronic state of this complex are the states |1〉 and |2〉
according to our theoretical model, respectively. The spectro-
scopic parameters needed in the calculations are obtained after
geometry optimization of the molecular structure of state |1〉
at the DFT/B3LYP/6-311+G* level of theory [61], while for
state |2〉 the geometry optimization of the molecular structure
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FIG. 2. Zinc-phthalocyanine complex used as a prototype polar
molecule in this paper. The complex is composed of carbon (gray),
hydrogen (white), oxygen (red), nitrogen (blue), and zinc (light blue)
atoms.

was obtained at the TD-DFT/B3LYP/6-31-G* level of theory
[61]. It is worth mentioning that the analysis presented in this
work is not restricted to the specific quantum system but can
be applied to various quantum systems with broken inversion
symmetry.

From these calculations we obtain that the transition
frequency is h̄ω0 = 1.99 eV, the value of the transition
electric dipole moment is μ12 = −3.25 D, and the PDMs
are μ11 = 7.27 D and μ22 = 6.71 D. The free-space radiative
decay rate associated to the transition is about γ ≈ 13.6
MHz. The intensity of the optical field is in the order of

I0 = 9.4 × 103 W/m2, and typical values for the angular
frequency of the LF field are around ωs = 40γ ≈ 540 MHz,
i.e., they are in the microwave region. These values are
accessible with current experimental capabilities.

A. Steady-state population inversion

As a first step of our study we consider the effect of PDMs
on the steady-state population of the system. This study will
reveal the appearance of an unusual behavior near the Rabi
resonance condition. This will help us to select the point of
operation (detuning of the optical field) to analyze the spectral
properties of the scattered field.

In order to analyze the dynamics of the population inversion
it is convenient to express the physical quantities in terms of
the density-matrix elements in the doubly dressed basis. We
consider the inversion to be given as

〈σz(t)〉 = Tr[σzρ(t)]. (19)

Note that the density matrix ρ(t) in Eq. (19) is related to
ρ(5)(t) through the transformation ρ(5)(t) = U †(t)ρ(t)U (t),
where U (t) = U1(t)U2(t)U3(t)U4(t)U5(t). Thus Eq. (19) can
be rewritten in terms of ρ(5) as

〈σz(t)〉 = Tr [σzρ(t)]

= Tr [σzU (t)ρ(5)(t)U †(t)]

= Tr [U †(t)σzU (t)ρ(5)(t)]. (20)

After a series of straightforward calculations, Eq. (20) is
given in terms of S± and Sz operators with time-dependent
coefficients,

〈σz(t)〉 = 〈Sz(t)〉
[

cos 2(θ ) cos(2φ) − sin(2θ ) sin(2φ)
eiα(t) + e−iα(t)

2

]

−〈S+(t)〉
[

cos(2θ ) sin(2φ) + eiα(t)

2
[sin(2θ ) cos(2φ) + sin(2θ )] + e−iα(t)

2
[sin(2θ ) cos(2φ) − sin(2θ )]

]

−〈S−(t)〉
[

cos(2θ ) sin(2φ) + eiα(t)

2
[sin(2θ ) cos(2φ) − sin(2θ )] + e−iα(t)

2
[sin(2θ ) cos(2φ) + sin(2θ )]

]
, (21)

where we have defined

eiα(t) = ei[qωs t+z sin(ωs t)] =
∑

n

Jn(z)ei(n+q)ωs t ≡ Ynq(t). (22)

Note that after Eq. (18) we have that 〈S+(∞)〉 =
〈S−(∞)〉 = 0 and 〈Sz(∞)〉 = γs0/γ2; thus the steady-state
inversion in the bare basis can be expressed as

〈σz(∞)〉 = γs0

γ2
[cos(2θ ) cos(2φ) − sin(2θ ) sin(2φ)J−q(z)].

(23)

It is worth noting that the result obtained in Eq. (23) reduces to
the one obtained in Ref. [57] by setting J−q(z) equal to unity.
This difference arises from the different approaches followed
in Ref. [57] and in this work.

It is well known that in a nonpolar two-level system the
steady-state inversion exhibits a Lorentzian shape with a

maximum at resonance [as shown with the dashed curve in
Figs. 3(a) and 3(b)]. The effect of the LF on the steady-
state population inversion in the bare basis as a function
of the laser detuning �L is shown in Fig. 3(a). There we
observe that in the weak excitation regime (solid curve) two
symmetric ultranarrow peaks appear superimposed over a
broad Lorentzian line. This behavior is a distinctive feature
of the polar character of the system driven by the LF field.
The spectral location of these two peaks is obtained where the
Rabi resonance condition �q=1 = 0 is met. The linewidth of
these narrow peaks increases as the value of G becomes larger,
as it is shown with the dashed-dotted and dotted curves. This
power broadening is better appreciated by looking at panel
(b) where a zoom of the left Rabi resonance shown in panel
(a) is depicted. The peaks have their origin in the existence
of the pumping term h̄G sin(2θ )(−1)q+1 2qJq (z)

z
in Eq. (A5).

We finally show in Fig. 3(c) how the change of the angular
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FIG. 3. (a) Steady state of the population inversion in the bare
basis vs the detuning of the optical field �L for different values of the
Rabi frequency of the auxiliary field G: G = 0 (dashed curve), G =
0.1γ (solid curve), G = 0.5γ (dashed-dotted curve), and G = 2.5γ

(dotted curve). Other parameters: ωs = 40γ , q = 1, and � = 10γ .
(b) Zoom of panel (a) around the left Rabi resonance. (c) Steady
state of the population inversion in the bare basis vs the detuning
of the optical field �L for different values of the angular frequency
of the LF field: ωs = 35γ (dashed curve), ωs = 40γ (solid curve),
and ωs = 45γ (dashed-dotted curve). Other parameters used are G =
0.5γ and the rest of the parameters as in panel (a). (d) Steady state
of the population inversion in the bare basis vs the detuning of the
optical field �L for different values of the Rabi frequency of the
auxiliary field G: G = 0 (dashed curve), G = 0.1γ (solid curve),
G = 0.5γ (dashed-dotted curve), and G = 2.5γ (dotted curve). Other
parameters: ωs = 40γ , q = 1, and � = 20γ .

frequency ωs of the LF field can be used to tune the spectral
location of the Rabi resonance.

Up to now we have considered a situation where Rabi
resonance is obtained at �L �= 0. However, the Rabi resonance
condition (�q=1 = 0) can be also achieved when driving the
system on resonance; let us consider the case with �L = 0,
which in turn requires the increase of the Rabi frequency �

while �q=1 = 0 still holds. In the current situation this happens
when � = 20γ . Here, the influence of PDMs on population
inversion manifests itself in the emergence of a broad range
of frequencies where saturation takes place, as it is shown in
Fig. 3(d).

B. Resonance fluorescence spectrum

In view of the previous results, the control of the Rabi
resonance condition could be used as a knob for tailoring the
spectral properties of the scattered photons. As a first step we
consider the RFS. It is well known that the RFS can be written
as a sum of two parts [62],

S(ω) = Scoh(ω) + S0(ω), (24)
where Scoh(ω) stands for the coherent (elastic) part of the
spectrum, and

S0(ω) = 2 Re

[
lim
t→∞

∫ ∞

0
〈δσ+(t + τ ) · δσ−(t)〉e−iωτ dτ

]
(25)

is the incoherent (noise) part of the spectrum. Here, δσ+(t) =
σ+(t) − 〈σ+(t)〉 stands for the deviation of the dipole polariza-
tion operator from its mean steady-state value and Re denotes
the real part. For the fluorescence spectrum, it is sufficient to
evaluate the integral (25) in the steady-state limit. In this limit,
due to the time-dependent unitary transformations Uj (t), the
correlation function can be expressed as

〈δσ+(t + τ ) · δσ−(t)〉 = Tr
[
U+(t)δσ+(t)U (t)e−i H (5)

h̄
τU+(t)δσ−(t)U (t)ρ(5)(t)ei H (5)

h̄
τ
]

= Tr
[
ei H (5)

h̄
τU+(t)δσ+(t)U (t)e−i H (5)

h̄
τU+(t)δσ−(t)U (t)ρ(5)(t)

]
. (26)

The transform U+(t)σ±(t)U (t) in the correlation function can be expressed in terms of δS± and δSz with time-dependent
coefficients (see Appendix B) and results in

U+(t)δσ±(t)U (t) = f0

[
Ynq(t)

cos 2θ ± 1

2
sin 2φ + Y ∗

nq(t)
cos 2θ ∓ 1

2
sin 2φ + sin 2θ cos 2φ

]
δSz(t)

+ f0

[
Ynq(t)

(cos 2θ ± 1)(cos 2φ + 1)

2
+ Y ∗

nq(t)
(cos 2θ ∓ 1)(cos 2φ − 1)

2
− sin 2θ sin 2φ

]
δS+(t)

+ f0

[
Ynq(t)

(cos 2θ ± 1)(cos 2φ − 1)

2
+ Y ∗

nq(t)
(cos 2θ ∓ 1)(cos 2φ + 1)

2
− sin 2θ sin 2φ

]
δS−(t), (27)

where f0 = e±iωLt

2 .
Starting from Eqs. (25)–(27), invoking the quantum regression theorem [63] and using the fact that 〈δS−(∞)〉 =

〈δS+(∞)〉 = 0, we reach an analytical expression for the RSF (see Appendix B), namely

S0(ω) = S(zz)(ω) + S(+−)(ω) + S(−+)(ω), (28)
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where

S(zz)(ω) = 1 − 〈Sz(∞)〉2

4

[∑
n

A1γ2

γ 2
2 + [ω − ωL − (q + n)ωs]2

+
∑

n

A2γ2

γ 2
2 + [ω − ωL + (q + n)ωs]2

+ A3γ2

γ 2
2 + (ω − ωL)2

]
, (29)

S(+−)(ω) = 1 + 〈Sz(∞)〉
8

[∑
n

B1�s

�2
s + [ω − ωL − (q + n)ωs − �s]2

+
∑

n

B2�
2
s

�2
s + [ω − ωL + (q + n)ωs − �s]2

+ B3�s

�s + (ω − ωL − �s)2

]
, (30)

S(−+)(ω) = 1 − 〈Sz(∞)〉
8

[∑
n

C1�s

�2
s + [ω − ωL − (q + n)ωs + �s]2

+
∑

n

C2�s

�2
s + [ω − ωL + (q + n)ωs + �s]2

+ C3�s

�2
s + (ω − ωL + �s)2

]
, (31)

where expressions for the coefficients Aj , Bj , and Cj are
provided in Appendix B.

The interaction of the strong field and the quantum system
creates the dressed states, with energy splitting equal to �R

as shown in Fig. 1(b). In addition, the LF field with frequency
ωs , which is close to the effective Rabi frequency �R , dresses
the quantum system giving rise to a series of new doublets
with energy splitting �s . The allowed transitions between
the doubly dressed states produce a series of triplets in the
laboratory frame with amplitudes proportional to γ2Aj , �sBj ,
and �sCj (j = 1,2,3) as indicated in Eqs. (29)–(31). The
transitions from adjacent manifolds of dressed states indicated
in Fig. 1(b) give rise to such series of triplets. We note that
Eqs. (29)–(31) show that the positions, the widths, and the
intensities of the nine peaks of the spectrum are all associated
with the decay rate γ2 and �s which depend on the LF field
parameters and the Rabi resonance condition.

We proceed to analyze the role of the interaction between
the LF field and the PDMs on the RFS. Using the numerically
calculated formal spectrum S0(ω), given in Eqs. (28)–(31) we
can now illustrate new spectral features caused by the presence
of permanent dipole moments coupled to the LF field. In what
follows we restrict ourselves to showing the RFS for the case
with q = 1 and n = 0.

We start by considering the strong driving regime in the case
that the optical field is at exact resonance with the transition
frequency (�L = 0), � = 20γ , and the angular frequency of
the LF field is ωs = 40γ . Under this condition we achieve the
Rabi resonance condition �q = 0. This situation corresponds
to the case studied in Fig. 3(d). The spectra obtained for
different values of the coupling with PDMs (G) are shown
in Figs. 4(a)–4(c). Note that for the case of G = 0 we recover
the Mollow triplet consisting of a central line around ω = 0
and two outer sidebands located at ±2�R . However, when
the LF is present the central line starts to split into two lines
and the outer sidebands begin to broaden but their structure
is unresolved as shown in panel 4(b). A further increase of
G [panel 4(c)] results in the full development of the outer
sidebands into spectrally resolved triplets while the central
line develops into a doublet and the cancellation of the central

component at ω = 0. This behavior clearly departs from the
one of the nonpolar case shown in Fig. 4(a). The three terms
contributing to the RFS in Eq. (28) are shown for the case with
G = 2.5γ in panel 4(d) where the central line is absent [the
term proportional to A3 in Eq. (29)] and two peaks centered at
ω = ±�s together with a blue detuned triplet and a red detuned
triplet appear. The spectral lines corresponding to the centers
of the triplets are given by the terms proportional to A1 and A2

in Eq. (29), whereas the spectral separation between the two
peaks of the blue or red detuned triplet is 2�s . For low values
of the parameter G the triplets collapse into a single line and
the two central peaks into a single line, as it can be observed for
the limiting case shown in Fig. 4(a). It is worth noting that the
spectral components of the scattered field display a symmetric
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FIG. 4. RFS of the system driven by an optical field with � =
20γ , �L = 0, and ωs = 40γ for different values of the parameter G.
(a) G = 0, (b) G = 0.5γ , and (c) G = 2.5γ . (d) Components of the
RFS as given in Eq. (28) for the case with G = 2.5γ .
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FIG. 5. RFS of the system driven by an optical field with � =
10γ , �0

L = −34.6γ , and the angular frequency of the LF field is ωs =
40γ . The values of the parameter G are (a) G = 0, (b) G = 0.1γ ,
(c) G = γ , and (d) G = 2.5γ .

behavior whose ultimate origin lies in the fact that at �L = 0
saturation is achieved for whatever value of G [see Fig. 3(d)].

Next, we consider the changes in the RFS obtained when the
optical field is detuned from the transition frequency (�L �= 0)
but close to the Rabi resonance condition (�q ≈ 0). We have
seen in Fig. 3(a) that the Rabi resonance condition is achieved
for two different values of �L. Let us consider, for example,
the case in which the optical field is tuned at the red detuned
Rabi resonance (�0

L = −34.6γ ). The results of the numerical
calculations for different values of G are shown in Figs. 5(a)–
5(d). As for the nonpolar system we recover a Mollow triplet
where the central line is depleted with regard to the sidebands.
As long as G is different from zero we get an asymmetric
spectrum which develops its full structure for the largest value
of G. It is worth noting that the level of fluorescent intensity
increases up to two orders of magnitude with respect to the
nonpolar system. The relevant transitions which produce the
red detuned triplet are indicated in Fig. 1(b).

Let us now drive the system slightly out of the Rabi
resonance condition. An example of such a situation can be
achieved by setting �L = �0

L + 2γ , such that �q ≈ +1.7γ ;
the resulting spectra are shown in Fig. 6. Here, we can devise
that the spectrum acquires a high degree of asymmetry; the
central line now exhibits a triplet, the red detuned triplet has
different peak values for its components, and the blue detuned
triplet acquires vanishing components at the largest value of G

[see Fig. 6(c)]. As for lower values of G, the different spectral
features become spectrally unresolved. This behavior can be
understood by taking a closer look at Fig. 3(b). There we can
see that for the lowest non-null value of G the system is driven
out of the Rabi resonance condition [see the dashed curve in
Fig. 3(b)], and population inversion is dramatically reduced
with respect to the case with �0

L; thus the peak value of the
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FIG. 6. RFS of the system driven by an optical field with
� = 10γ , �L = �0

L + 2γ , and the angular frequency of the LF
field is ωs = 40γ . The values of the parameter G are (a) G = 0.1γ ,
(b) G = γ , and (c) G = 2.5γ .

scattered signal of the red detuned spectral feature is strongly
suppressed. For the other two values of G, the Rabi resonance
depicted in panel 3(b) broadens, resulting in the recovery of
the fully resolved red detuned triplet for the largest value of
G. Here, the asymmetry arises from the unequal redistribution
of populations among the doubly dressed states.

Another way to drive the system out of the Rabi resonance
is by changing the angular frequency of the LF field. We have
seen in Fig. 3(c) that the change of ωs shifts the position
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FIG. 7. RFS of the system driven by an optical field with � =
10γ , �0

L = −34.6γ , and G = 2.5γ . The angular frequency of the LF
field is (a) ωs = 38γ and (b) ωs = 42γ .

at which the Rabi resonance condition is achieved. Now we
consider how the tuning of ωs allows us to change the RFS
of the system. The results of the numerical calculations are
depicted in Fig. 7. There we can see that the red detuned triplet,
which was originally symmetrical for ωs = 40γ , turns into an

asymmetrical triplet when setting ωs = 42γ and keeping the
rest of the parameters fixed; the original doublet at the center
turns into a triplet.

C. Phase-dependent spectrum

In this subsection, we will focus on the influence of the
amplitude and frequency of the LF field on the squeezing
properties of the quantum system. Usually, the squeezing prop-
erties of the fluorescent field in steady state are investigated by
analyzing the normally ordered variance 〈: (� �Eθ )2 :〉, where
�Eθ is the slowly varying electric-field operator modified due

to the beating of the scattered field under study with a local
oscillator with phase θ , which is given by

�Eθ (�r,t) = 1
2

�E+
θ (�r,t)ei(ωLt+θ) + 1

2
�E−

θ (�r,t)e−i(ωLt+θ)

= �E1(�r,t) cos θ + �E2(�r,t) sin θ, (32)

where

�E1(�r,t) = 1

2
�E+

θ (�r,t)eiωLt + 1

2
�E−

θ (�r,t)e−iωLt , (33)

�E2(�r,t) = i

2
�E+

θ (�r,t)eiωLt − i

2
�E−

θ (�r,t)e−iωLt (34)

are the in-phase and out-of-phase quadratures of the fluorescent field relative to the local oscillator, respectively. In our case the
positive frequency part of the fluorescent light emitted by the quantum system takes the form [64]

�E+
θ (�r,t) = f (r)

[
�μ12σ

−
(

t − r

c

)]
e−iωL(t− r

c
), (35)

where f (r) = ω2
21/c

2r and we assume that the detection direction is perpendicular to the dipole moment �μ12.
Squeezing is characterized by the condition that the normally ordered variance 〈: (�Eθ )2:〉 of the electric-field quadrature

component Eθ is negative. For a two-level system, the normally ordered variance of Eθ was defined in Ref. [17] as

〈:(�Eθ (�r,t))2:〉 = 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dτ e−iωτ T 〈: �Eθ (�r,t), �Eθ (�r,t + τ ):〉, (36)

where 〈A,B〉 = 〈AB〉 − 〈A〉〈B〉 and T is the time-ordering operator. Following Collet et al. [65], we introduce the
squeezed spectral density

〈:S(�r,t,θ ):〉 = 1

2π

∫ ∞

−∞
dτ e−iωτ T 〈: �Eθ (�r,t), �Eθ (�r,t + τ ):〉. (37)

Inserting the positive and negative parts of the fluorescent field (35) into Eq. (37), we can express the spectrum as

〈:S(�r,t,θ ):〉 = μ2
12

f 2(r)

4π
Re

∫ ∞

0
dτ (eiωτ + e−iωτ )[〈δσ−(t + τ ),δσ−(t)〉ei(2θ+ωLr/c) + 〈δσ+(t + τ ),δσ−(t)〉]. (38)

As in the case of the RFS, for the squeezing spectrum, it is necessary to evaluate two correlation functions, namely,
〈δσ+(t + τ ) · δσ−(t)〉, which has already been evaluated in Eq. (26), and a new correlation term given by 〈δσ−(t + τ ) · δσ−(t)〉,
which is essential for squeezing. After a lengthy but straightforward calculation we can arrive at an analytical expression for the
squeezing spectrum, Sθ (ω):

Sθ (ω) = Re
[(

Sθ
(zz) + Sθ

(+−) + Sθ
(−+)

)
e2iθ + S0(ω) + S0(−ω)

]
, (39)

where

Sθ
(zz)(ω) = S00

[∑
n

(
1

γ2 − i[ω − ωL + (q + n)ωs]
+ 1

γ2 + i[ω − ωL − (q + n)ωs]

)
D1 +

∑
n

(
1

γ2 − i[ω − ωL − (q + n)ωs]

+ 1

γ2 + i[ω − ωL + (q + n)ωs]

)
D2 +

(
1

γ2 − i(ω − ωL)
+ 1

γ2 + i(ω − ωL)

)
D3

]
, (40)
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Sθ
(+−)(ω) = S0+

[∑
n

(
1

�s − i[ω − ωL + (q + n)ωs + �s]
+ 1

�s + i[ω − ωL − (q + n)ωs − �s]

)
E1

+
∑

n

(
1

�s − i[ω − ωL − (q + n)ωs + �s]
+ 1

�s + i[ω − ωL + (q + n)ωs − �s]

)
E2

+
(

1

�s − i(ω − ωL + �s)
+ 1

�s + i(ω − ωL − �s)

)
E3

]
, (41)

Sθ
(−+)(ω) = S0−

[∑
n

(
1

�s − i[ω − ωL + (q + n)ωs − �s]
+ 1

�s + i[ω − ωL − (q + n)ωs + �s]

)
F1

+
∑

n

(
1

�s − i[ω − ωL − (q + n)ωs − �s]
+ 1

�s + i[ω − ωL + (q + n)ωs + �s]

)
F2

+
(

1

�s − i(ω − ωL − �s)
+ 1

�s + i(ω − ωL + �s)

)
F3

]
, (42)

where S00 = 1−〈Sz(∞)〉2

4 and S0± = 1±〈Sz(∞)〉
8 . Note that S0(±ω)

has been defined in Eq. (28), and the coefficients Dj , Ej , and
Fj are explicitly given in Appendix B.

We assume that e−iωL(t− r
c

) = 1 and scale the spectrum in
Eq. (38) to μ2

12
f 2(r)

4π
. We consider the case of moderate driving

close to the condition of Rabi resonance such that the Rabi
frequency of the control field is � = 10γ and the optical
field is assumed to be far detuned �0

L = −34.6γ . The angular
frequency of the LF field is set to ωs = 40γ [in Figs. 8(a)
and 8(b)], where the Rabi resonance condition is met, or to
ωs = 42γ [in Figs. 8(c) and 8(d)], which is slightly out of the
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FIG. 8. Squeezing spectrum of the fluorescent field for the
in-phase [(a)–(c)] and out-of-phase [(b)–(d)] quadratures when the
system is driven such that � = 10γ , �0

L = −34.6γ , G = 2.5γ with
ωs = 40γ [(a),(b)] and ωs = 42γ [(c),(d)]. The dashed curves in
(a),(b) correspond to the results obtained in a nonpolar two-level
atom.

Rabi resonance. The value of the parameter G is selected to be
G = 2.5γ . Solid curves in Figs. 8(a) and 8(b) show the results
for the in-phase and out-of-phase quadratures when the system
is at the Rabi resonance condition. Here, we can devise that
the level of fluctuations is always positive for all the range of
frequencies in contrast to the case of a nonpolar two-level
atom shown with dashed curves. This result can be understood
if we realize that in the nonpolar case the level of population
in the excited state is vanishingly small [as indicated with
dashed curve in Fig. 3(b)] at �0

L = −34.6γ , in contrast to
the case of the polar system driven by a LF field where at
such value of the optical detuning we get the Rabi resonance
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FIG. 9. Squeezing spectrum of the fluorescent field for different
quadratures: θ = −π/4 [(a)–(c)]; θ = +π/4 [(b)–(d)]. The system
is driven such that � = 10γ , �0

L = −34.6γ , G = 2.5γ ; ωs = 45γ

in (a),(b) and ωs = 35γ in (c),(d). The dashed curves in (a),(b)
correspond to the results obtained in a nonpolar two-level atom.
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peak and the system is close to saturation [dotted curve in
Fig. 3(b)]. This in turn manifests in a high level of noise due to
spontaneous emission in the latter case. However, the situation
changes when ωs = 42γ while keeping constant the rest of the
parameters as shown in Figs. 8(c) and 8(d). Here, we obtain
squeezing at the sidebands of the central triplet located at ±�s ,
a situation which differs from the one found in a conventional
two-level system without PDMs.

A wide variety of features can be obtained when considering
other quadratures of the fluorescent field. We present the results
obtained for two different values of ωs as solid curves in Fig. 9
and with θ = π/4, whereas the dashed curves correspond to
the non-polar case. There we clearly see that a reduced level
of fluctuations is produced at other frequencies compared to
the case analyzed in Fig. 8. Note that, in all cases in Fig. 9,
the strong driven-laser detuning �L is kept constant and it
is solely the change in the frequency of the LF field that is
responsible for the significant squeezing spectrum tuning. In
summary, we can control the spectral region where squeezing
is obtained through the changes in the intensity and frequency
of the LF field in a nonpolar system.

IV. CONCLUSIONS

In this work we presented a theoretical description of the
interaction of a polar quantum system with an optical field,
which drives the electronic transition, and is simultaneously
subjected to a second LF field that couples to the PDMs.
Using a series of unitary transformations we have derived a
master equation for the reduced density matrix which is valid
for the case of weak modulation near the Rabi resonance.
Using parameters for a specific molecular system, we have
analyzed the steady-state population inversion in the strong
and moderate regimes for the optical field. When the angular
frequency of the LF field is chosen close to the Rabi frequency
of the optical field the system reaches a resonance condition
close to saturation in spite of the optical field being far
detuned. New features in the RFS have been obtained with
the emergence of a series of Mollow triplets. In addition,

we have analyzed the squeezing spectrum of the fluorescent
field where a reduced level of fluctuations is found at certain
sidebands. The spectral location and the height of the different
sidebands can be tailored through the intensity and angular
frequency of the LF field. It is worth mentioning that the
theoretical description presented in this work is not restricted
to the particular type of molecular complex used to illustrate
the optical behavior of the polar system but can be applied
to various quantum systems with broken inversion symmetry
such as asymmetric QDs and superconducting qubits. These
studies are of interest due to their potential applications in
quantum information technologies [66–68], as well as in
quantum amplifiers and attenuators [69].

ACKNOWLEDGMENTS

M.A.A. and F.C. acknowledge the support of UCM-Banco
de Santander Research Project No. PR41/17-21033. E.P.
acknowledges the support of Research Projects for Excellence
IKY/Siemens (Contract No. 23343).

APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The eigenstates of H (01) are the so-called dressed states of
the combined quantum system–strong laser field and are given
by

|α〉 = cos(θ )|2〉 + sin(θ )|1〉,
|β〉 = − sin(θ )|2〉 + cos(θ )|1〉. (A1)

The operators R+, R+, and Rz appearing in Eq. (10) are related
with the bare operators through

σ̂+ = 1
2 sin(2θ )Rz + cos2(θ )R+ − sin2(θ )R−,

σ̂− = 1
2 sin(2θ )Rz + cos2(θ )R− − sin2(θ )R+, (A2)

σ̂z = cos(2θ )Rz − sin(2θ )(R+ + R−).

Then, we assume the resonance condition: �q ≡ �R −
qωs � ωs , with q being an integer. This allows one to rewrite
Eq. (12) as

H (3) = −h̄Gc1s1

{∑
l

Jl(z)[R+ei[�q+(l+q−1)ωs ]t + R−e−i[�q+(l+q−1)ωs ]t ]

+
∑

l

Jl(z)[R+ei[�q+(l+q+1)ωs ]t + R−e−i[�q+(l+q+1)ωs ]t ]

}

+ h̄U
†
3 (t)

∑
k

gk

[
a
†
ke

i(ωk−ωL)t
(
c1s1Rz + c2

1R
− − s2

1R
+) + H.a.

]
U3(t). (A3)

In the spirit of the RWA we only keep the slow oscillating terms, i.e., we consider l + q − 1 = 0 in the first sum and l + q + 1 = 0
in the second sum. Therefore, Eq. (A3) simplifies to

H (3) = −h̄G sin(2θ )(−1)q+1 2qJq (z)

z
(R+ei�q t + R−e−i�q t )

+ h̄U
†
3 (t)

∑
k

gk

[
a
†
ke

i(ωk−ωL)t
(
c1s1Rz + c2

1R
− − s2

1R
+) + H.a.

]
U3(t). (A4)
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In the following we remove the oscillating terms in the coherent part of the Hamiltonian in Eq. (A4) by using the following
unitary transformation: U4 = ei �s

2 tRz . The new Hamiltonian reads H (4) = H
(4)
ext + V (4), and it is given by

H
(4)
ext = h̄�q

2
Rz − h̄G sin(2θ )(−1)q+1 2qJq (z)

z
(R+ + R−), V (4) = h̄

∑
k

[a†
kFk(t) + F

†
k ak], (A5)

where

Fk(t) = gkc1s1e
i(ωk−ωL)tRz +

∑
l

gkJl(z)
[
c2

1R
−ei(ωk+�q−ωL−�R−l ωs )t − s2

1R
+ei(ωk−�q−ωL+�R+l ωs )t

]
. (A6)

The first line in Eq. (A5) contains the interaction of the quantum system with the driving laser fields while the second term
accounts for the interaction of the quantum system with the vacuum reservoir.

Having derived the effective interaction Hamiltonian, we now turn to obtaining the effective Lindblad master equation for
the reduced density operator of the quantum system. To this end we trace the density matrix of the total system over the bath
variables which is assumed to be a standard reservoir at null temperature. The density matrix of the quantum system to second
order of perturbation and assuming the Born-Markoff approximation [63] results in

∂ρ(4)

∂t
= − i

h̄

[
H

(4)
ext ,ρ

(4)
] − 1

h̄2 TrB

∫ t

0
dt ′[V (4)(t)V (4)(t ′)ρ(4)�B − V (4)(t)ρ(4)�BV (4)(t ′) + H.a.]. (A7)

We finally obtain the following master equation:

∂ρ(4)(t)

∂t
= −i

�q

2
[Rz,ρ

(4)] + i

(
G sin(2θ )(−1)q+1 2qJq (z)

z

)
[R+ + R−,ρ(4)] + Lρ(4), (A8)

with the Liouvillian Lρ(4) given by

Lρ(4) = −γ0

2
[RzRzρ − RzρRz + H.a.]

− γ+
2

[R+R−ρ − R−ρR+ + H.a.]

− γ−
2

[R−R+ρ − R+ρR− + H.a.]. (A9)

The effective decay rates are given by

γ0 = s2
1c

2
1γ (ωL),

γ+ = c4
1

∑
l

γ (ωL + �R + lωs)J
2
l (z), (A10)

γ− = s4
1

∑
l

γ (ωL − �R − lωs)J
2
l (z),

where γ (ωL) = 2π
∑

k g2
k δ(ωk − ωL). Here γ+ represents the

transition rate from the upper dressed state |α〉 to the lower
dressed state |β〉, and γ− denotes the transition rate from |β〉
to |α〉. In the regime where ωs,�R � ωL, we can assume that
γ [ωL ± (�R + lωs)] ≈ γ (ωL) ≡ γ .

Equation (A8) resembles the results derived in Ref. [57].
Magnitude � in Ref. [57] stands for our �q , while for
the effective Rabi frequency G in Ref. [57] we obtain
G sin(2θ )(−1)q+1 2qJq (z)

z
. In our approach, we allow the LF

field to exchange q photons with the optical field. Furthermore,
the effective decay rates in Eq. (A10) differ from the ones
derived in Ref. [57] in the weighting factors involving the
Bessel functions.

Since we are interested in the physics in the strong-driving
regime, we move to the double-dressed picture in order to
simplify the analytical results. To do this we diagonalize
the Hamiltonian H (4) in Eq. (A5) by means of a rotation
operator U5 = e−iφσy , where sin(2φ) = −�q

�S
, cos(2φ) = 2�R

�S
,

and �S ≡
√

�2
q + (2�R)2. Then, the transformed matrix

density ρ(5)(t) satisfies Eq. (13).

APPENDIX B: ANALYTICAL DERIVATION OF THE
RESONANCE FLUORESCENCE AND THE

PHASE-DEPENDENT SPECTRA SCATTERED
BY THE DOUBLE-DRESSED MOLECULE

To obtain the resonance fluorescence and squeezing spectra
we have to evaluate the integrals in Eq. (25) and in Eq. (37) in
the steady-state limit. The starting point is the result indicated
in Eq. (27). It is easy to show that the only nonzero correlations
between the operators in the doubly dressed basis are 〈δSz(t +
τ )δSz(t)〉, 〈δS+(t + τ )δS−〉, and 〈δS−(t + τ )δS+(t)〉. This is
due to the fact that 〈δS+(t)〉 = 〈δS+(t)〉 = 0 at steady state [see
Eq. (18)]. Here, 〈δSμ(τ )δSν(0)〉 = Tr[δSμ(τ )δSν(0)ρ] (μ,ν =
z,+,−). Thus the correlation function 〈δσ+(t + τ )δσ−(t)〉 can
be recast as

〈δσ+(t)δσ−(t ′)〉 = Fzz(t,t
′)〈δSz(t)δSz(t

′)〉
+F+−(t,t ′)〈δS+(t)δS−(t ′)〉
+F−+(t,t ′)〈δS−(t)δS+(t ′)〉, (B1)

where the functions Fzz(t,t ′), F+−(t,t ′), and F−+(t,t ′) are
given by

Fzz(t,t
′)

= a11Ynq(t)Ymq(t ′) + a12Ynq(t)Ymq(−t ′) + a13Ynq(t ′)

+ a21Ynq(−t)Ymq(t ′) + a22Ynq(−t)Ymq(−t ′)

+ a23Ynq(−t ′)a31Ynq(t ′) + a32Ynq(−t ′) + a33e
iωL(t−t ′),

F+−(t,t ′)

= b11Ynq(t)Ymq(t ′) + b12Ynq(t)Ymq(−t ′) + b13Ynq(t ′)
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+ b21Ynq(−t)Ymq(t ′) + b22Ynq(−t)Ymq(−t ′)

+ b23Ynq(−t ′)b31Ynq(t ′) + b32Ynq(−t ′) + b33e
iωL(t−t ′),

F−+(t,t ′)

= c11Ynq(t)Ymq(t ′) + c12Ynq(t)Ymq(−t ′) + c13Ynq(t ′)

+ c21Ynq(−t)Ymq(t ′) + c22Ynq(−t)Ymq(−t ′)

+ c23Ynq(−t ′)c31Ynq(t ′) + c32Ynq(−t ′) + c33e
iωL(t−t ′).

(B2)

The coefficients aij , bij , and cij are given by

a11 = sin2(2φ)[cos(2θ ) + 1][cos(2θ ) − 1]

4
,

a12 = sin2(2φ)[cos(2θ ) + 1]2

4
,

a13 = sin(2θ )[cos(2θ ) + 1] sin(2φ) cos(2φ)

2
,

a21 = [cos(2θ ) − 1]2 sin2(2φ)

4
,

a22 = (cos(2θ ) + 1)(cos(2θ ) − 1) sin2(2φ)

4
,

a23 = sin(2θ )[cos(2θ ) − 1] sin(2φ) cos(2φ)

2
,

a31 = sin(2θ )[cos(2θ ) − 1] sin(2φ) cos(2φ)

2
,

a32 = sin(2θ )[cos(2θ ) + 1] sin(2φ) cos(2φ)

2
,

a33 = sin2(2θ ) cos2(2φ), (B3)

b11 = [cos(2θ ) +1][cos(2θ ) −1][cos(2φ) +1][cos(2φ) −1]

4
,

b12 = [cos(2θ ) +1]2[cos(2φ) +1]2

4
,

b13 = − sin(2θ ) sin(2φ)[cos(2θ ) +1][cos(2φ) +1]

2
,

b21 = [cos(2θ ) −1]2[cos(2φ) −1]2

4
,

b22 = [cos(2θ ) −1][cos(2θ ) +1][cos(2φ) −1][cos(2φ) +1]

4
,

b23 = − sin(2θ ) sin(2φ)[cos(2θ ) −1][cos(2φ) −1]

2
,

b31 = − sin(2θ ) sin(2φ)[cos(2θ ) −1][cos(2φ) −1]

2
,

b32 = − sin(2θ ) sin(2φ)[cos(2θ ) +1][cos(2φ) +1]

2
,

b33 = sin2(2θ ) sin2(2φ), (B4)

c11 = [cos(2θ ) +1][cos(2θ ) −1][cos(2φ) +1][cos(2φ) −1]

4
,

c12 = [cos(2θ ) +1]2[cos(2φ) −1]2

4
,

c13 = − sin(2θ ) sin(2φ)[cos(2θ ) +1][cos(2φ) −1]

2
,

c21 = [cos(2θ ) −1]2[cos(2φ) +1]2

4
,

c22 = [cos(2θ ) −1][cos(2θ ) +1][cos(2φ) −1][cos(2φ) +1]

4
,

c23 = − sin(2θ ) sin(2φ)[cos(2θ ) −1][cos(2φ) +1]

2
,

c31 = − sin(2θ ) sin(2φ)[cos(2θ ) −1][cos(2φ) +1]

2
,

c32 = − sin(2θ ) sin(2φ)[cos(2θ ) +1][cos(2φ) −1]

2
,

c33 = sin2(2θ ) sin2(2φ). (B5)

Once the correlation function has been obtained, the RFS can
be determined through

S(ω) = lim
t→∞

1

T

∫ T

0
dt

∫ T

0
dt ′〈δσ+(t)δσ−(t ′)〉e−iω(t−t ′)

= S(zz)(ω) + S(+−)(ω) + S(−+)(ω), (B6)

where

S(zz)(ω) = lim
t→∞

1

T

∫ T

0
dt

∫ T

0
dt ′[Fzz(t,t

′)〈δSz(t)δSz(t
′)〉]e−iω(t−t ′),

S(+−)(ω) = lim
t→∞

1

T

∫ T

0
dt

∫ T

0
dt ′[F+−(t,t ′)〈δS+(t)δS−(t ′)〉]e−iω(t−t ′), (B7)

S(−+)(ω) = lim
t→∞

1

T

∫ T

0
dt

∫ T

0
dt ′[F−+(t,t ′)〈δS−(t)δS+(t ′)〉]e−iω(t−t ′).

When evaluating the spectrum S(ω), we have to carry out integrals of the type

Inm(ω) ≡ lim
t→∞

1

T

∫ T

0
dt

∫ T

0
dt ′Ynq(t)Ymq(t ′)〈Sμ(t)Sν(t ′)〉e−iω(t−t ′)

= lim
t→∞

1

T

∑
n

∑
m

∫ T

0
dt

∫ T

0
dt ′Jn(z)ei(n+q)ωs tJm(z)ei(m+q)ωs t

′ 〈δSμ(t)δSν(t ′)〉e−i(ω−ωL)(t−t ′). (B8)
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When making the substitution t − t ′ = τ , the integral becomes

Inm(ω) = lim
t→∞

1

T

∑
n

∑
m

∫ T

0
dt ′Jn(z)Jm(z)ei(n+m+2q)ωs t

′
∫ T

0
dτ 〈Sμ(t)Sν(t ′)〉e−i[ω−ωL−(q+n)ωs ]τ

=
∑

n

∑
m

Jn(z)Jm(z)δn,−(m+2q)

∫ T

0
dτ 〈δSμ(τ )δSν(0)〉e−i[ω−ωL−(q+n)ωs ]τ

=
∑

n

Jn(z)J−(n+2q)(z)
∫ T

0
dτ 〈δSμ(τ )δSν(0)〉e−i[ω−ωL−(q+n)ωs ]τ . (B9)

Using this result, one can easily show that the first term in Eq. (B7) is given by

Szz(ω) = Re
∫ ∞

0
dτ

[
a11

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)ei(q+n)ωsτ + a12

∑
n

J 2
n (z)ei(q+n)ωsτ e−i(ω−ωL)τ a13J−q(z)

+ a21

∑
n

J 2
n (z)e−i(q+n)ωsτ + a22

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)e−i(q+n)ωsτ a23J−q(z)

+ a31J−q(z) + a32J−q(z) + a33

]
e−i(ω−ωL)τ 〈δSz(τ )δSz(0)〉, (B10)

and similar expressions for S+−(ω) and S−+(ω), namely

S+−(ω) = Re
∫ ∞

0
dτ

[
b11

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)ei(q+n)ωsτ + b12

∑
n

J 2
n (z)ei(q+n)ωsτ e−i(ω−ωL)τ b13J−q(z)

+ b21

∑
n

J 2
n (z)e−i(q+n)ωsτ + b22

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)e−i(q+n)ωsτ b23J−q(z)

+ b31J−q(z) + b32J−q(z) + b33

]
e−i(ω−ωL)τ 〈δS+(τ )δS−(0)〉, (B11)

S−+(ω) = Re
∫ ∞

0
dτ

[
c11

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)ei(q+n)ωsτ + c12

∑
n

J 2
n (z)ei(q+n)ωsτ e−i(ω−ωL)τ c13J−q(z)

+ c21

∑
n

J 2
n (z)e−i(q+n)ωsτ + c22

∑
n

(−1)(n+2q)Jn(z)Jn+2q(z)e−i(q+n)ωsτ c23J−q(z)

+ c31J−q(z) + c32J−q(z) + c33

]
e−i(ω−ωL)τ 〈δS−(τ )δS+(0)〉. (B12)

To obtain the explicit expression for the spectrum, it is necessary to evaluate the correlation function 〈δSμ(τ )δSν(0)〉 (μ,ν =
z,+,−). To do that it is practical to define the column vector

Û (k)(τ ) = [〈δS+(τ )δSk(0)〉,〈δS−(τ )δSk(0)〉,〈δSz(τ )δSk(0)〉]T , (B13)

where superindex T stands for transpose and k = +,−,z. According to the quantum regression theorem the vector Û k(τ ) satisfies
d

dτ
ˆU (k)(τ ) = M ˆU (k)(τ ), (B14)

where the matrix M is given by

M =
⎛
⎝−(�s − i�s) 0 0

0 −(�s + i�s) 0
0 0 −γ2

⎞
⎠. (B15)

When the solution of Eq. (B14) is introduced in Eqs. (B10)–(B12) we obtain the RFS spectrum given in Eqs. (29)–(31) in the
manuscript, where the coefficients Aj ,Bj ,Cj j = 1,2,3 are given by

A1 = a11Jn(z)Jn+2q(z) + a12J
2
n (z), A2 = a21J

2
n (z) + a12Jn(z)Jn+2q(z), A3 = (a13 + a23 + a31 + a32)J−q(z) + a33. (B16)

The expressions for Bj (Cj ) are obtained from Aj in Eq. (B16) by making the replacement aij → bij (→ cij ).
In a similar way we can obtain the squeezing spectrum. In doing that we follow Ref. [65] where the squeezed spectral density

is defined as

〈:S(�r,t,θ ):〉 = 1

2π

∫ ∞

−∞
dτ e−iωτ T 〈:Eθ (�r,t),Eθ (�r,t + τ ):〉. (B17)
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Taking into account the action of the time-ordering operator T , the integrand of Eq. (B17) reduces to

T 〈:Eθ (�r,t),Eθ (�r,t + τ ):〉 = 1
4 (〈 �E+

θ (�r,t + τ ), �E+
θ (�r,t)〉eiωL(2t+τ+2θ) + 〈 �E−

θ (�r,t + τ ), �E−
θ (�r,t)〉e−iωL(2t+τ+2θ)

+〈 �E+
θ (�r,t + τ ), �E−

θ (�r,t)〉eiωLτ + 〈 �E−
θ (�r,t + τ ), �E+

θ (�r,t)〉e−iωLτ ). (B18)

Inserting the positive and negative parts of the fluorescent field given in Eq. (35) into Eq. (B18) and the result in Eq. (B17),
the squeezing spectrum in the bare basis takes the form

〈:S(�r,t,θ ):〉 = μ2
12

f 2(r)

4π
Re

∫ ∞

0
dτ (eiωτ + e−iωτ )[〈δσ−(t + τ ),δσ−(t)〉ei(2θ+2ωLr/c) + 〈δσ+(t + τ ),δσ−(t)〉]. (B19)

Note that integrand in Eq. (B19) contains the correlation func-
tion 〈δσ+(t + τ )δσ−(t)〉 which has been already calculated,
and an additional correlation 〈δσ−(t + τ )δσ−(t)〉. For the
evaluation of the latter we follow the same steps as above
and finally arrive at the result given in Eqs. (40)–(42) of the
manuscript, where the coefficients dij , eij , and fij read

d11 = [cos(2θ ) − 1]2 sin2(2φ)

4
,

d12 = [cos(2θ ) + 1][cos(2φ) − 1] sin2(2φ)

4
,

d13 = − [cos(2θ ) − 1] sin(2θ ) sin(2φ) cos(2φ)

2
,

d21 = [cos(2θ ) + 1][cos(2θ ) − 1] sin2(2φ)

4
,

d22 = [cos(2θ ) + 1]2 sin2(2φ)

4
,

d23 = [cos(2θ ) + 1] sin(2θ ) sin(2φ) cos(2φ)

2
,

d31 = [cos(2θ ) − 1] sin(2θ ) sin(2φ) cos(2φ)

4
,

d32 = [cos(2θ ) + 1] sin(2φ) sin(2θ ) cos(2φ)

4
,

d33 = sin2(2θ ) cos2(2φ), (B20)

e11 = [cos(2θ ) − 1]2[cos(2φ) + 1][cos(2φ) − 1]

4
,

e12 = [cos(2θ ) − 1][cos(2θ ) + 1][cos(2φ) + 1]2

4
,

e13 = − [cos(2θ ) − 1][cos(2φ) + 1] sin(2θ ) sin(2φ)

2
,

e21 = [cos(2θ ) + 1][cos(2θ ) − 1][cos(2φ) − 1]2

4
,

e22 = [cos(2θ ) + 1]2[cos(2φ) − 1][cos(2φ) + 1]

4
,

e23 = − [cos(2θ ) + 1][cos(2φ) + 1] sin(2θ ) sin(2φ)

2
,

e31 = − [cos(2θ ) − 1][cos(2φ) − 1] sin(2θ ) sin(2φ)

2
,

e32 = − [cos(2θ ) + 1][cos(2φ) + 1] sin(2θ ) sin(2φ)

2
,

e33 = sin2(2θ ) sin2(2φ), (B21)

f11 = [cos(2θ ) − 1]2[cos(2φ) + 1][cos(2φ) − 1]

4
,

f12 = [cos(2θ ) − 1][cos(2θ ) + 1][cos(2φ) − 1]2

4
,

f13 = − [cos(2θ ) − 1][cos(2φ) − 1] sin(2θ ) sin(2φ)

2
,

f21 = [cos(2θ ) + 1][cos(2θ ) − 1][cos(2φ) + 1]2

4
,

f22 = [cos(2θ ) + 1]2[cos(2φ) + 1][cos(2φ) − 1]

4
,

f23 = − [cos(2θ ) + 1][cos(2φ) + 1] sin(2θ ) sin(2φ)

2
,

f31 = − [cos(2θ ) − 1][cos(2φ) + 1] sin(2θ ) sin(2φ)

2
,

f32 = − [cos(2θ ) + 1][cos(2φ) − 1] sin(2θ ) sin(2φ)

4
,

f33 = sin2(2θ ) sin2(2φ). (B22)

The expressions for Dj , Ej , and Fj in Eqs. (40)–(42) are
obtained from Aj in Eq. (B16) by making the replacement
aij → dij , aij → eij , and aij → fij , respectively.
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