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Optical and atomic stochastic resonances in the driven dissipative Jaynes-Cummings model
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In this paper, we study the stochastic resonance (SR) effect in a driven dissipative Jaynes-Cummings model. The
SR effect is systematically investigated in the semiclassical and full quantum frameworks, and in both cases we
find that SRs simultaneously occur for optical and atomic degrees of freedom. In particular, at zero temperature,
quantum SR can be induced merely by vacuum fluctuations. Although the qualitative features of semiclassical
SR and quantum SR are similar, their mechanisms are completely different: semiclassical SR is induced by
thermal activation while quantum SR is induced by quantum-tunneling-assisted transitions. Our results provide a
theoretical basis for experimentally observing and studying the SR phenomenon of the Jaynes-Cummings model
in the quantum regime.
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I. INTRODUCTION

Stochastic resonance (SR) [1–4] is a phenomenon in which
a suitable level of noise in a nonlinear system can induce
coherent amplification of the system response to an external
weak signal. A typical SR example is a bistable model subject
to a subthreshold periodic signal and a noisy environment.
When the time scales of the noise and the signal satisfy
a certain matching condition, the system dynamics can be
switched from small-amplitude intrawell oscillations to large-
amplitude interwell oscillations, resulting in significant signal
amplification. In the classical world, SR has been extensively
studied in a variety of research fields [3,4] and has been widely
applied in weak signal detection [5,6] and amplification [7–9].

Recently, increasing interest has been directed toward
studying SR in the quantum domain, such as in the quantum
nonlinear oscillator system [10], the maser system [11], the
Dicke model [12], the spin-boson model [13], the quantum
many-body system [14], the four-level atomic system [15],
and the cavity optomechanical system [16]. However, most
work on quantum SR has been at low but nonzero temperature,
where thermal noise and quantum noise coexist. Work on SR
induced by purely quantum fluctuations at zero temperature
has been very rare [10,17]. The investigation of the interplay
between purely quantum fluctuations and nonlinearity in the
context of SR may help to further understand the quantum
nature of the SR effect.

In this paper, we aim to study the SR phenomenon induced
by quantum fluctuations in the Jaynes-Cummings (JC) model
[18,19] at zero temperature. The JC model is one of most
important and fundamental models in quantum optics, and this
model and its generalizations describe many of the interactions
between fields and natural atoms [20] or artificial matter (such
as the superconducting circuit system [21] and the quantum
dot system [22]). Therefore, theoretical study of SR in the JC
model has great potential to be realized in various practical
quantum systems.

Through systematic study of the SR phenomenon in the JC
model in both the semiclassical and full quantum frames, we
find that in both cases the optical and atomic modes can exhibit
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SR behavior. In particular, in the full quantum description
we use the quantum trajectory theory [23] to mimic the
system stochastic dynamics conditioned on noisy homodyne
detection records. We show that, at zero temperature, vacuum
fluctuations can induce periodic quantum switching between
two metastable states with the same period as that of the
input weak signal, which is known as the synchronization
effect in SR. Quantum SR is qualitatively similar to SR
in the semiclassical framework, but their noise sources,
required parameter regimes, and optimal signal frequencies
are different. Moreover, we present an approach for searching
for conditions that favor SR in a general nonlinear system. The
system parameters we use are feasible for current experiment
conditions, i.e., the single-Cs-atom QED system [20] and the
superconducting circuit system [21]. Therefore, our analysis
lays the theoretical basis for experimental observation of SR
phenomena in the JC model. Furthermore, there are potential
applications in quantum signal detection based on the SR
mechanism in this fundamental quantum optics model.

The paper is organized as follows. In Sec. II, we intro-
duce the model, find the bistability region for the cavity
field and the atom, and present noise-activated stochastic
bistable transitions. In Sec. III, we show the SR features
with their semiclassical description, including residence time
distributions, synchronization between the input signal and
the system responses, and the resonancelike effect of the
signal-to-noise ratio (RSN) curve. In Sec. IV, the SR effect
in the full quantum-mechanical framework is studied and
the differences between quantum and semiclassical SR are
discussed. Finally, we conclude our paper in Sec. V.

II. MODEL AND EQUATIONS

As shown in Fig. 1, the system considered is a two-level
atom (a qubit) interacting with a single-mode cavity field, that
is, the well-known JC model. The cavity is driven by two
fields: one strong control field E1 with frequency ωd1 and one
weak signal field E2 with frequency ωd2. We assume that the
driving field E1 is exactly resonant with the atomic transition
frequency and the cavity central frequency. In the rotating
frame at the driving frequency ωd1, the Hamiltonian for the
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FIG. 1. Schematic: A two-level atom (a qubit) interacts with a
single-mode cavity field and with two driving fields E1 and E2. E1 is
a strong control field resonant with the cavity mode and E2 is a weak
signal field slightly detuned from the cavity mode. The output of the
cavity is detected by homodyne detection.

described system is given by (h̄ = 1)

Ĥs = g(σ̂+â + â†σ̂−) − iE1(â − â†) − iE2(âeiδt − â†e−iδt )

(1)

where δ = ωd2 − ωd1. g is the atom-field interaction coeffi-
cient, â (â†) is the annihilation (creation) operator for the cavity
field, and σ̂− = |g〉〈e| [σ̂+ = (σ̂−)†] is the atomic lowering
[raising] operator.

To investigate the SR effect in our system, the first step
is to find a bistable region and prepare a threshold for SR
occurrence. We first search for the steady-state solutions
and study system stability properties in the semiclassical
description. By neglecting quantum fluctuations of the field
and the atom, we write the classical Langevin equations by
replacing quantum operators with classical complex variables
â → α, σ̂− → p, and σ̂z → D0:

α̇ = −κ

2
α − igp + E1 + E2e

−iδt + ξ, (2)

ṗ = −γ

2
p + igαD0, (3)

Ḋ0 = −γ (D0 + 1) − 2ig(αp∗ − α∗p) (4)

where we have phenomenologically introduced the cavity
decay rate κ and the atomic relaxation rate γ . The stochastic
thermal noise ξ satisfies 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′) with D

being the noise strength. In the absence of the weak signal
E2e

−iδt , we have the steady-state results for the optical-field
amplitude α and the atomic population inversion D0 by setting
time derivatives in Eqs. (2)–(4) to zeros:

E1 = κα

2

(
2C

1 + |α|2/n0
+ 1

)
, (5)

4E2
1D0 = n0κ

2(1 − D0)(1 + 2CD0)2 (6)

where we have defined the cooperation coefficient as C =
2g2/(κγ ) and the saturation photon number as n0 = γ 2/(8g2).

Under the resonance condition, α is real and Eqs. (5) and
(6) are cubic equations for α and D0, which in principle
have three roots in suitable parameter regimes. Equation (5)
reproduces the familiar expressions for optical absorptive
bistability in the JC model [24], and bistability appears for
the cooperation coefficient C > 4. Here we choose C = 6 and
in Fig. 2 we plot the bistability curves for the optical-field
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FIG. 2. Simultaneous bistability in the optical (a) and atomic (b)
degrees of freedom. The stable and unstable solutions are denoted by
the solid black curves and the dashed red curves, respectively. The
parameters are g = 1, κ = g/30, γ = 10g, and E2 = 0.

amplitude α and atomic population inversion D0. It is evident
that optical and atomic bistabilities share exactly the same
region (labeled by the gray dash-dotted lines), in which α and
D0 have three solutions (two stable and one unstable solutions).
The stability properties were determined by the standard
linear analysis method [25]. Under this parameter setting,
the saturation photon number (n0 = 12.5) is far greater than
unity, indicating that the system operates beyond the quantum
regime. Therefore, quantum fluctuations can be neglected
safely and the semiclassical approximation is well satisfied.

We then include the noise ξ and study the stochastic
dynamics in the absence of the weak signal. By choosing
a driving amplitude in the middle of the bistable region
(E1 = 0.398g), we numerically show the random transitions of
the system dynamics between two metastable states activated
by the thermal noise D = 0.025 [Fig. 3(a)]. Clear, sharp
transitions between two states can be seen in both optical and
atomic modes, and the transitions are exactly simultaneous.
The corresponding distributions of two metastable states of
the field are shown in Fig. 3(b), and they exhibit the expected
bimodal structure. The distribution of the low-amplitude state
(L) features a narrow, high peak while the distribution of the
high-amplitude state (H) features a wider, lower peak. These
behaviors can be verified from the potential function. The
effective position variable for the cavity field can be defined
as x = (α + α∗)/2 = α. Under the condition of γ � κ,g, one
can adiabatically eliminate the atomic variables and obtain the
approximate equation for the optical mode alone as

α̈ + κ + γ

2
α̇ ≈ γ

2
E1 − κγ

4
α − g2α

1 + 8g2|α|2/γ 2
. (7)

The approximate effective potential function can then be
obtained by integrating the right-side expression of Eq. (7)
over α:

U (α) ≈ κγ

8
α2 − γE1

2
α + γ 2

16
ln(1 + 8g2α2/γ 2). (8)

In Fig. 3(c), we plot the potential function of the optical field
U (α) using the same parameters as shown in Fig. 3(a). There
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FIG. 3. (a) Simultaneous stochastic transitions of the optical-field amplitude α and the atomic population inversion D0 in the absence of
the signal E2. H and L denote the high- and low-amplitude states of the optical field, respectively. (b) Histogram of α using the data (the solid
blue curve) in panel (a). (c) Effective potential function U (α) as a function of α calculated from Eq. (8). (d, e) Residence time (τj , j = H,L)
distributions of the high- and low-amplitude states of the field for a long evolution time (T = 1 000 000g−1), respectively. The blue curves
show the exponential fit [1/τ̄j exp(−1/τ̄j)] (j = H,L) to the data, with τ̄H = 2600g−1 and τ̄L = 3140g−1 for the higher-amplitude state (d) and
the lower-amplitude state (e), respectively. The parameters are g = 1, κ = g/30, γ = 10g, E1 = 0.398g, and D = 0.025.

are two asymmetric wells in the potential function: a wide
well at high amplitude and a narrow well at low amplitude.
This is consistent with the distribution in Fig. 3(b). From
Figs. 3(a)–3(c), one may note that there is a correlation
between the widths of the potential wells and the variances
of the amplitude fluctuations. The wider the potential well,
the larger the variance of the dynamics for the corresponding
metastable state.

Figures 3(d) and 3(e) show the residence time distributions,
that is, the distributions of time intervals of the system dwelling
in the high-amplitude state [Fig. 3(d)] or the low-amplitude
state [Fig. 3(e)]. In order to estimate the average residence
time, we use the exponential decay function 1/τ̄exp(−1/τ̄ )
to fit the data in Figs. 3(d) and 3(e); the fitting results are
¯τH = 1/2600g−1 and τ̄L = 1/3100g−1. The difference in the

average resident times of the high- and low-amplitude states
results from the asymmetry of potential wells.

III. SR PHENOMENA IN THE SEMICLASSICAL FRAME

In the previous section, we found the bistable region
and studied the thermal-noise-activated random transitions
between two metastable states of the system in the absence
of the weak modulation signal E2e

−iδt . In this section we add
this signal to the system and study the SR phenomena using
the semiclassical description [Eqs. (2)–(4)].

Before simulating the system dynamics, we need to fix
two signal parameters in order to observe SR: a subthreshold
amplitude E2 and a suitable modulation frequency δ. The
first is easy to determine by switching off the noise (D =
0): if the system experiences interwell transitions with this
signal, then the signal exceeds the threshold; otherwise, the
signal is below the threshold. Here we choose an amplitude
slightly below the threshold, that is, E2 = 0.02g. To determine
a suitable modulation frequency δ, we recall the average
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FIG. 4. Residence time distributions (a–c), optical responses (d–f), and atomic responses (g–i) for a system subjected to a weak signal and
the noise for three values of modulation frequency δ in the semiclassical description: δ = 7f0 (a, d, g), δ = f0 (b, e, h), and δ = f0/7 (c, f, i).
The parameters are E2 = 0.02g and f0 = 0.001g, and other system parameters are the same as in Fig. 3.
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transition time τ̄ obtained in the last section. The matching
condition for SR is that the average transition time of the
noise-induced random transitions is equal to half of the period
of the external signal [3,26], that is, τ̄ = TE2/2. Then we
can compute the optimal frequency under these parameters
as f0 = 2π/TE2 = π/τ̄L ≈ 0.001g. Note that if we choose
τ̄H the optimal frequency is f0 ≈ 0.0012g, which makes no
significant difference. Therefore, below, we use f0 = 0.001g

as the optimal modulation frequency for simulating SR effect
in the semiclassical regime.

In Fig. 4, we plot the residence time distributions of
the high-amplitude state of the field (top row) and single
trajectories of system responses (α in the middle row and
D0 in the bottom row) in the presence of a subthreshold weak
signal E2e

−iδt for three modulation frequencies (7f0, f0, and
f0/7). For the left column, the modulation frequency is much
higher than the optimal frequency (δ = 7f0). If we consider
only the system responses (α and D0), the dynamics appear
to be random, similar to spontaneous transitions in the case
of no signal. However, the residence time distribution shows
its correlation with the input signal and its distinguishing
difference from noise-activated spontaneous transitions: sev-
eral peaks separated by almost constant distance are located
consistently according to the relation τ = (2n + 1)TE2/2 with
n = 0,1,2 . . . [3,26].

The typical trajectories of system responses to the signal
at the optimal frequency (δ = f0) are presented in the middle
column. The system dynamics (blue and green curves) are
synchronized with the input signal (gray curve). Correspond-
ingly, the peak at half the periodicity of the signal occupies
the majority of the residence time distribution, signaling the
occurrence of the SR effect.

For the case of modulation frequency much lower than
the optimal value (δ = f0/7), as shown in the right column,
the periodicity in the system responses remains good but the
system dynamics become noisier. There are two peaks in the
residence time distribution: one exponentially decaying peak
for noise-activated random transitions following Kramers’s
law [27] and the other peak for the signal, which is located
at half the signal period. Compared to the optimal case
(middle column), the proportion of the signal peak occupies
much less area. Therefore, we have confirmed that only
matched signal frequency and noise can result in the best SR
effect.

We then present another feature of SR: a single reso-
nancelike peak on the RSN curve. The RSN is defined as
the height of the signal peak (Ps) relative to the background
noise level (Pn) in the power spectrum of the output field√

κ〈â〉 in units of dB; that is, RSN(dB) = 10log10(RSN) =
10log10(Ps) − 10log10(Pn). In Fig. 5, we plot the RSN (dB)
as a function of the thermal noise strength D on a logarithmic
scale. As expected, the RSN first increases and then decreases
as the noise D increases, and the RSN peaks over a wide range
from 0.0002 to 0.7. A logarithmic scale is used for the x axis
because the RSN rises rapidly in the low-noise range and drops
very slowly in the high-noise range.

In fact, the optimal values of D and δ in Fig. 4 for achieving
the best SR effect for fixed system parameters (κ , γ , and g) are
not unique. According to Kramers’s rate rk ∝ exp(−�V/D),
the average transition rate of random transitions increases

D
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FIG. 5. The RSN (dB) as a function of the thermal noise strength
D at the modulation frequency δ = f0 = 0.001g. Every point is
averaged over ten instances. The other parameters are the same as
in Fig. 4.

as the noise strength D increases, and the signal frequency
required for satisfying the matching condition is larger.
Therefore, increasing either D or δ requires the other to
increase correspondingly in order to achieve the best SR effect.

IV. STOCHASTIC RESONANCE IN THE FULL
QUANTUM FRAMEWORK

In the preceding sections, we studied stochastic bistable
dynamics and the SR phenomenon in the semiclassical
framework. In that case, to safely neglect quantum fluctuations
and obtain the semiclassical equations, the system parameters
are chosen to be beyond the quantum regime, i.e., n0 � 1.
Now we turn to the search for conditions leading to SR
in the quantum regime and explore whether pure quantum
fluctuations can induce the SR effect. In order to satisfy
the high nonlinearity and quantumness of the system, we
replace old parameters with a new set of parameters with large
cooperativity C and low saturation photon number n0, i.e,
C = 7.2 and n0 = 0.3472. For n0 < 1, few photons or even
a single photon inside the cavity can induce nonlinear system
response, and quantum fluctuations play a significant role in the
system.

To mimic reality in the model by including quantum noise
and the signal detection process, in the quantum regime we
study the system dynamics using the quantum trajectory
method [23]. For a single trajectory or a single realization,
the system dynamics conditioned on homodyne detection
can be described by the stochastic master equation (SME)
(h̄ = 1):

dρI (t) = dt{ i[ρI (t),Ĥ ] + D[
√

κâ]ρI (t) + D[
√

γ σ̂−]ρI (t)}
+ dW (t)H[

√
κâ]ρI (t) (9)

where Ĥ was given in Eq. (1) and dW is the Wiener
increment [28] satisfying 〈dW 〉 = 0 and 〈dW (t)2〉 = dt . The
superoperators D and H are defined as

D[Â]ρ = 1
2 (2ÂρÂ† − Â†Âρ − ρÂ†Â), (10)

H[Â]ρ = Âρ + ρÂ† − Tr[Âρ + ρÂ†]ρ. (11)
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FIG. 6. (a) The semiclassical solution (α) and the quantum solution (〈â〉) for the amplitude of the cavity field at steady state. The parameters
are κ = 1, g = 6κ , and γ = 10κ . (b, c) Wigner function distributions of the optical mode corresponding to points A and B in panel (a). (d, e)
Typical trajectories for the optical-field amplitude 〈â〉 and the atomic population inversion 〈σ̂z〉, respectively, obtained from the SME [Eq. (9)].
(f) Residence time distribution of the high-amplitude state of the field from long-time evolution (T = 50 000κ−1). The exponential fit function
is 1/32exp(−τ/32).

The corresponding homodyne detection record is given by

I (t) = √
κ〈â + â†〉 + dW (t)/dt. (12)

By averaging the stochastic master equation [Eq. (9)]
over all trajectories, we arrive at the unconditional master
equation:

˙ρ(t) = i[ρ(t),Ĥ ] + D[
√

κâ]ρ(t) + D[
√

γ σ̂−]ρ(t) (13)

where ρ(t) is the ensemble average of the conditional density
matrix ρI (t) in the SME [Eq. (9)], that is, ρ(t) = E[ρI (t)].
Through this unconditional master equation, we can obtain
the averaged steady-state information of the system [see the
dashed red curve in Fig. 6(a)]. To verify that this regime
is quantum and the semiclassical approximation is invalid,
we compare this quantum unconditional result with the
semiclassical result [solid black curve in Fig. 6(a)] using
the theory in Sec. II. We can see that the semiclassical
bistable region does not overlap with the sharp transition
region of the quantum curve. Unlike the classical bistable
curve, the quantum curve has no hysteresis, as the bistable
feature vanishes after averaging over all possible trajectories.
In each trajectory—calculated from the SME [Eq. (9)]—as
seen in Figs. 6(d) and 6(e), the bistable feature in the quantum
case is manifested in switches between two metastable states.
After averaging, there is only a sharply increasing region in
the quantum curve shown in Fig. 6(a), and this region is not
located in the middle of the classical bistability region; instead,
it shifts to the larger driving side. The difference between the
two curves is due to the invalidity of the factorization used in
obtaining the semiclassical Langevin equations [Eqs. (2)–(4)]
in the quantum regime. To confirm this, in Figs. 6(b) and
6(c), we plot the Wigner function distributions at two different
driving strengths E1 = 2.25κ [labeled by point A in Fig.
6(a)] and E1 = 2.55κ [labeled by point B in Fig. 6(a)]. For
E1 = 2.25κ , the system is in the region of semiclassical
bistability. However, as shown in Fig. 6(b), there is only a
single peak in the phase space, which means that at this driving
condition the system is actually monostable. For E1 = 2.55κ ,
the system operates roughly at the middle point of the quantum
curve in Fig. 6(a), while it is almost in the high-amplitude

state in terms of the semiclassical solution. At this driving
strength, the Wigner function distribution exhibits a double-
peak structure. Based on these results it is clear that, with the
new parameters (see the caption to Fig. 6), the system is in the
quantum bistable regime and the semiclassical description is
invalid.

Note that, in order to highlight the effect of pure quantum
noise rather than thermal-noise-induced SR, here we consider
the reservoir at zero temperature and study whether stochastic
transitions can be induced by purely quantum fluctuations.
We choose a driving scenario with E1 = 2.55κ , in which the
Wigner distribution is bimodal, and we plot the conditional
dynamics of the system in Figs. 6(d) and 6(e). Clear quantum
jumps are seen in the dynamics, and the jumps in optical and
atomic modes are exactly simultaneous. Similar results can
be found in Ref. [29]. Compared to the semiclassical results,
quantum bistable dynamics have more small spikes and the
transitions are less sharp.

To observe SR, we add the signal field E2e
−iδt to the

system. Again, we need to choose a suitable subthresh-
old amplitude and a suitable frequency for the signal. In
the quantum case, we cannot judge the overthreshold or
subthreshold signal from interwell transitions or intrawell
transitions in the absence of quantum noise. When noise is
absent, the system dynamics as described by the unconditional
master equation [Eq. (13)] are an ensemble average of
the conditional dynamics, and at every time the values of
system variables are average values between two metastable
states. In this situation, we can judge an overthreshold signal
from whether the system dynamics are synchronized to the
signal for an arbitrary frequency. A subthreshold signal can
only induce good periodic system responses at a suitable
frequency, and the synchronization is destroyed, especially
at frequencies larger than the optimal value. The optimal
frequency can be determined using the same procedure as
in the semiclassical case: obtaining the average transition
time from the residence time distribution of noise-induced
spontaneous transitions and then calculating the optimal
modulation frequency using the SR matching condition. We
have shown the distributions of the residence time in the
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FIG. 7. Vacuum-fluctuation-induced SR. (a–c) Probability distributions of the residence time in the high-amplitude state of the field. (d–f)
Responses of the optical mode to the vacuum noise and signal. (g–i) Responses of the atomic mode to the vacuum noise and signal. The signal
modulation frequencies for the left, middle, and right columns are 7f0, f0, and f0/7 (f0 = 0.095κ), respectively. The parameters are the same
as in Fig. 6 except for E2 = 0.3κ .

high-amplitude state of the field in Fig. 6(f), and from the fitting
data we obtain the average transition time τ̄ ≈ 32κ−1. We then
obtain the approximate optimal signal modulation frequency
f0 = 0.095κ .

In Fig. 7, we show representative trajectories of system
responses (〈â〉 and 〈σ̂z〉) and the corresponding residence
time distributions subject to the input signal E2e

−iδt for
three values of the modulation frequency δ = 7f0,f0, and
f0/7. SR behavior in the quantum picture is qualitatively
similar to the situation in the semiclassical picture: system
responses are synchronized to the signal best at an optimal
modulation frequency f0; a larger frequency 7f0 leads to
poor periodicity, and a smaller frequency f0/7 leads to
noisier dynamics. However, there are several differences. First,
their noise sources are different. Quantum SR is induced
by quantum noise while semiclassical SR is activated by
thermal noise. Second, the required parameters are different.
Semiclassical SR works in the regime with large coopera-
tivity and large saturation photon number, while quantum
SR works in the regime with large cooperativity but small
saturation photon number. Third, their optimal modulation
frequencies are different, because different noise levels and
different system parameters require different time scale or
frequency scale of the signal to satisfy the SR matching
condition.

V. CONCLUSION

We have studied stochastic resonance phenomena in the
driven dissipative Jaynes-Cummings model in both semiclas-
sical and full quantum frameworks. Simultaneous occurrence
of SRs in the optical and atomic degrees of freedom have
been numerically observed. In particular, at zero temperature,
vacuum fluctuations can drive spontaneous bistable transitions
and the SR effect, in which the input signal is amplified
significantly. By comparing quantum SR with semiclassical
SR, we found that they are qualitatively similar. However, they
are driven by different noise sources: quantum SR is induced
by quantum noise assisted tunneling while semiclassical SR
is induced by thermal activation. Our results lay a theoretical
basis for experimentally investigating SR in the JC model and
its generalizations.
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