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Mutual transformations of fractional-order and integer-order optical vortices
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In this paper we studied the shaping and evolution of singular beams bearing optical vortices with fractional
topological charges both in uniform and nonuniform anisotropic media. Starting from representation of the
fractional-order vortex states as a superposition of an infinite number of integer-order vortices with certain
energy distributions (the vortex spectra) we showed that the smooth wave front of the fractional vortex beam can
either decay into an asymmetric array of integer-order vortices or, vice versa, the array of optical vortices can form
a smooth helicoid-shaped wave front. We showed that by superimposing a finite number of the fractional-order
vortex beams one can shape symmetric singular beams with arbitrary valued topological charges. We demonstrated
that in biaxial crystals under the condition of the conical diffraction the fractional-order vortices are unstable. We
also demonstrated that the circular fiber array with a space-variant birefringence is an appropriate medium for
fractional-order vortex beams. In such arrays the supermodes may bear the half-integer-order vortices in circular
components. Forming such supermodes plays a decisive role in evanescent-coupling assisted phase locking of
individual fiber modes combined with tunneling of polarization states between anisotropic fibers in the array.
We showed that the integer-charge phase increment in a fractional-order supermode consists of two half-integer-
charge phase contributions. The explicit phase contribution is connected with the Pancharatnam-Berry phase
that arises due to the phenomenon of nonadiabatic following. The implicit half-integer-charge phase contribution
(or the “hidden phase”) happens due to the sign alteration of the amplitude factors in the field components
that corresponds to the wave-front cuts. We have also made the comparison of the hidden and hydrodynamic
phases in superfluidic fractional-charge vortices with analogous phases in fractional-order supermodes. We have
established that in the optical case the hidden phase corresponds to the hydrodynamic phase in superfluids,
whereas the hidden superfluidic phase is the analog of the optical Pancharatnam-Berry phase in supermodes.
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I. INTRODUCTION

The past recent years of singular optics development [1]
have been marked by a surge of interest in optical vortices with
fractional topological charges [2–13]. The first announcement
of the fractional-order vortex propagation instability in princi-
ple was reported by Soskin et al. [2,3] for the vortices produced
by a computer-generated hologram. The authors observed
experimentally the evolution of vortex beams with different
half-integer-order topological charges. If the vortex beam at the
hologram has a nearly C-shaped form, far from the hologram
the beam breaks into a great number of integer-order vortices.

Later, starting from an analogy with the Aharonov-Bohm
effect in quantum mechanics and hydrodynamics [4], Berry
et al., theoretically showed the splitting of an optical vortex
of the fractional order into an infinite chain of integer-order
vortices [5]. Berry and co-workers noted a deep analogy
between the quantum and the optical singularities. In addition,
they observed that fractional-order vortex propagation results
inevitably in the decay of the initial phase structure in free
space; i.e., the fractional-order vortex beams are structurally
unstable under propagation. Fractional-order vortex states
have been observed also in superfluid 3He [6], in mesoscopic
rings of superconductors [7], and in other condensed-matter
systems, ranging from Bose-Einstein condensates to spin-
triplet superconductors [8–10].

These reports stimulated a new chain of theoretical and
experimental investigations [11–15] that confirmed the decay
of fractional-order vortices into an infinite number of integer-
order vortices. Although most of the mathematical models
of the fractional vortices are based on the Bessel-Gaussian

(BG) beam representation (see, e.g., [13,14]), the authors of
Ref. [15] supplemented the analysis with Laguerre-Gaussian
(LG) beams. The fact is that BG and LG beam representations
make different contributions to vortex spectra of fractional
vortex beams that should be taken into account for experimen-
tal implementations [16]. On the other hand, the authors of
Ref. [17] found a peculiar behavior of the vortex beam with
a half-order topological charge for the erf-Gaussian (erf−G)
beams. The smooth wave front of the fractional vortex beam
can either decay into an asymmetric array of integer-order
vortices or, vice versa, the array of optical vortices can form a
smooth wave front with a helicoid-shaped phase distribution.
This is possible only if the Gouy phases of all integer-order
vortex beams in the vortex array are matched with each other.

The authors of Ref. [18] also remarked on an unusual
behavior of the specific orbital angular momentum (OAM)
lz. At first sight it seems that a topological charge value p

follows the value of the specific OAM lz ≈ p. In some papers
[14,19] the authors observed small oscillations of OAM near
the line lz = p. However, the computer simulation of the
process and the physical analysis [18] revealed a complex
behavior of the function lz(p). For larger values of p (p > 10)
the amplitude starts to oscillate between minimum values
lz, min ≈ 0 and maximum values lz = p = m, where the index
m is the integer-order topological charge of the vortex. The
presented results are the evidence of a complex interference
coupling between a great number of integer-order vortices in
a fractional-order vortex beam.

Another unexpected property of the fractional-order vortex
beams was revealed in Ref. [20]. The authors experimentally
answered the question: Can the fractional-order vortex beams
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control the states of the integer-order ones? They got a positive
answer using two beams: the pump and the probe beams. The
pump beam is of a topological dipole field consisting of two
half-order vortices with charges of opposite sign. The pump
beam creates appropriate conditions in a nonlinear medium
for propagation of the probe singular beam with a smaller
intensity. Changing parameters of the dipole they could steer
the state of the probe beam. In fact, the fractional-order
topological dipole was not destroyed inside the nonlinear
medium forming the waveguide channel for the probe beam.

However, the above example of the structural stability of
the fractional-order beams in nonlinear media is not the only
way to preserve a vortex structure of such complex fields. The
authors of Ref. [21] considered the properties of the complex
fields in a discrete birefringent fiber array and revealed that
half-integer-order vortices are the supermodes of such a linear
optical system; i.e., the fractional-order vortex beams could
propagate without destroying their structure.

Thus the fractional-order vortex beams possess a fertile
potential of useful properties that call for implementation.
The prior problems that should be considered, from our
point of view, can be outlined as follows: (1) studying the
physical properties of the field propagating in free space
that are responsible for decaying and recovery of the initial
structure of the beam wave front inside the fractional-order
vortex beams; (2) shaping the singular beams with preassigned
properties on the base of a finite superposition of fractional-
order vortex beams; (3) search for optical media where the
fraction-order vortex beams are eigenmodes (i.e., structurally
propagation-stable wave constructions); (4) development of
the measurement technique and the study of vortex spectra of
the singular beam scattered by different linear and nonlinear
media. We will focus our attention only on the first three
interrelated problems of the above items.

The aim of our paper is to consider the key features of the
fractional-order vortex beams in free space and space-variant
anisotropic media—namely, to study (i) the properties of the
beams with half-integer-charge vortices; (ii) the shaping of
integer-order beams and their stability under propagation as a
superposition of fractional-order vortex beams; (iii) structural
stability of the beams in biaxial crystals under the condition
of the conical diffraction; (iiii) the properties of the beams in
a circular fiber array with a space-variant birefringence.

The paper is organized as follows. In Sec. II we will treat
the propagation of fractional-order vortices in free space and
uniform media. Our special interest is optical beams with half-
integer-order vortices. In addition, we will focus our attention
on the mutual transformations of integer- and fractional-order
vortex beams and their structural stability. Eigenstates of the
conical diffraction process in the form of the fractional-order
vortices are studied in Sec. III. The consideration in Sec. IV
is accompanied by the analysis of the physical properties
of supermodes bearing half-integer vortices. We concentrate
attention on the following nonadiabatic effect responsible for
shaping the supermodes with fractional-order vortices.

II. FRACTIONAL-ORDER VORTEX BEAMS
IN FREE SPACE

As has been mentioned above, the choice of the basic
representation of a fractional optical vortex in the form of

BG or LG beam superposition plays a key part in shaping
the spectral content of integer-order vortices in the complex
field. From our point of view, the BG beams are appropriate
units for our theoretical treatment because they enable us to
present the obtained results in a compact form suitable for a
computer simulation. Besides, such a representation complies
with the techniques of experimental measurements of the
vortex spectrum [12]. In the following subsections we set
a task to uncover the basic properties of different types of
fractional-order vortex beams and to build up from them the
integer-order vortex beams on the basis of BG beams.

A. Fractional vortex states

Let us consider, at first, typical vector supermodes in free
space or a uniform isotropic medium made up of the BG
beams. We focus our attention on monochromatic wave beams
with the carrier frequency ω that enables us to exploit the
vector Helmholtz equation for the vector potential A under
the condition of the Lorentz gauge [17]. The electric E and
magnetic H fields can be defined as

E = ik

[
A + 1

k2
∇(∇ · A)

]
, H = ∇ × A, (1)

where k is the wave number.
Our interest is in the paraxial approximation where |∂2

z A| �
|k2A| so that the longitudinal components Ez and Hz can be
expressed in terms of the transverse E⊥ and H⊥ ones as

Ez ≈ i

k
∇⊥ · E⊥, Hz ≈ i

k
∇⊥ · H⊥, ∇⊥ ≡ ex∂x + ey∂y.

(2)

For the beam propagating along the z axis the complex
amplitude Ã of the vector potential A = Ã(x,y,z) eik z obeys
the paraxial wave equation,

(∇2
⊥ + 2ik∂z)Ã⊥ = 0. (3)

The choice of the vector A is defined by the type of the wave
beam. If we take, for example, the vector A to be directed along
the x axis (a linearly polarized basis), A = exÃ⊥ exp(ikz), then
the solution to the vector wave equation is reduced to the scalar
Eq. (3) for the function �(x,y,z) = Ã⊥ with the solution [22]

� = NF (X,Y ) G(x,y,z), (4)

where

G(x,y,z) = exp

(
i
k r2

2Z

)/
Z (5)

stands for the Gaussian envelope, Z = z − iz0, z0 = kw2
0/2

is the Rayleigh length with the radius of the beam waist w0,
X = x/Z, Y = y/Z, N = w0 exp(− K2

2ikZ
), r2 = x2 + y2, and

K is the arbitrary beam parameter that can take on both the
real and complex values.

At the same time the function F (X,Y ) obeys the two-
dimensional Helmholtz equation,(

∂2

∂X2
+ ∂2

∂Y 2
+ K2

)
F = 0. (6)
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In the cylindrical coordinates the solution to Eq. (6) can be
written as

Fp(R,ϕ) =
∫ 2π

0
exp{i[pϕ′ − KR cos(ϕ′ − ϕ)]}dϕ′, (7)

Here the parameter p ∈ (−∞,∞) is real valued, R2 =
X2 + Y 2. The real part of the parameter K is connected with
the half angle θ of the plane wave’s cone of the Bessel beam
as Re(K) = tan θ = k⊥/kz ≈ k⊥/k, where k⊥ and kz are the
transverse and longitudinal components of the wave vector k.

Such a representation of the beam charge p enables us to
expand any regular complex beam into the series over different
fractional-charged optical vortices just as it can be represented
as decomposition over integer-order-charged ones.

To obtain the explicit form of the function Fp in Eq. (7) let
us use the Fourier transformation,

eip φ = eiπp sin (πp)

π

∞∑
m=−∞

eim φ

p − m
. (8)

The parameter p here can be regarded as a fractional topo-
logical charge, which is responsible for the set of integer-order
vortices with topological charges m = −∞· · · − 1,0,1 · · · +
∞ and the spectral vortex density ρ(p) = (p − m)−1. When
p = m all the terms of the series vanish except for the term
eimφ . In a general case the function ρ(p) can be defined
by a preassigned way as, for example, in Ref. [15] for LG
beams, but for our purposes we restrict its dependence to
ρ(p) = (p − m)−1.

On the other hand, the definition of the Bessel function is

2πimJm(KR) =
∫ 2π

0
exp {i[mφ + K cos φ]}dφ. (9)

As a result, we find

|p〉 = �(r,ϕ,z,p) = 2NG(r,z) sin(πp)ei πp

×
∞∑

m=−∞

imeim ϕ

p − m
Jm(KR). (10)

Thus the fractional topological charge p can serve as a
global parameter of the complex optical beam. The obtained
equation implies two possible propagation processes depend-
ing on the value of the K parameter. The real K parameter
is associated with the phase front wreathed by a net of
integer-charged vortices at the initial z = 0 plane. For example,
when propagating, the vortices with p = 1/2 begin to form
a group in such a way that the vortex net vanishes. There
appears a smooth wave front looking like a helix with a phase
shift 
� = π and a C-shaped intensity distribution. For the
imaginary value of the K parameter, the process evolves in the
opposite direction [17] (see also Fig. 1). Let us consider such
a process in detail.

B. Asymmetric TE and TM mode beams

The fractional-order vortex beams permit us to construct
unusual wave structures with broken axial symmetry. In
contrast to the usual axially symmetric TE and TM modes
with a local linear polarization in each point of the beam,
the broken structure of the paraxial TE and TM mode beams

with fractional-order p = ±1/2 vortices in each polarized
component contains local elliptic polarizations. The broken
symmetry of the vector field dictates the choice of the basis in
the form of circularly polarized components.

From Eq. (2) we obtain for the TE mode (Ez = 0, Az = 0)

∂xEx = −∂yEy or ∂xAx = −∂yAy, (11)

and

∂xHx = −∂yHy or ∂xAy = −∂yAx, (12)

for the TM mode (Hz = 0, Az = 0).
It is convenient to employ the circularly polarized basis

A+ = Ax − iAy, A− = Ax + iAy (13)

and use complex coordinates,

u = x + iy = re−iϕ, v = x − iy = reiϕ, (14)

so that

∂u = ∂x − i∂y = e−iϕ

2

(
∂r − i

r
∂ϕ

)
,

∂v = ∂x + i∂y = eiϕ

2

(
∂r + i

r
∂ϕ

)
. (15)

Then we find for the TE modes A+ = ∂u�p, A− = −∂v�p

or

E+ = N
[
∂uFp + ik

v

2Z
Fp

]
G,

E− = −N
[
∂vFp + ik

u

2Z
Fp

]
G, (16)

where the function Fp obeys Eq. (7).
In the paraxial cases, where |∂u,vFp| � k|Fp|, we can use

the approximation

E+ ≈ iNk
v

2Z
FpG, E+ ≈ −iNk

u

2Z
FpG. (17)

Similarly, we obtain the TM mode beams,

E+ ≈ iNk
v

2Z
FpG, E+ ≈ iNk

u

2Z
FpG. (18)

Half-order (2n + 1)/2 vortex beams hold a special place
among the variety of fractional-charged optical fields because
they can be easily and reliably generated at the initial plane by
q plates [23], photonic crystals [24], and arrays of microchip
lasers [25]. Special types of singular beams with fractional
topological charges and fractional OAM in the closed form
(e.g., erf-G beams and others) have been recently considered
in a number of papers [16,17,18,26]. In this subsection we will
obtain the general closed form of the half-order vortex beams.

As a starting point we take Eq. (7) and rewrite it in the form

Fp(R,ϕ) = Kei 2n+1
2 ϕ

∫ π−ϕ/2

−ϕ/2
ei(2n+1)φe−iKRos2φdφ. (19)

In the following we will use the relations

cos(2n + 1)φdφ =
[n+1/2]∑

j=0

(−1)jC2j
n sin2jφcosn−2jφdφ
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FIG. 1. (a) Intensity distributions I (r,ϕ) of the of the E+ components of Gamma-Gaussian (�-G) beams with different topological charges
p at the initial plane z = 0 and at the far diffraction zone z = 1 m and (b) their phase distributions �(r,ϕ) at the initial plane z = 0.

=
[n+1/2]∑

j=0

n−j∑
m=0

(−1)n−jC
2j

2n+1C
m
n−j

× sin2(j+m) φ d(sin φ),

sin(2n + 1)φdφ =
n∑

j=0

(−1)jCj

2n+1sin2j+1φcos2(n−j )φdφ

= −
n∑

j=0

2j∑
m=0

(−1)m+jC
j

2n+1C
m
2j

× cos2(n−j+m)φd(cos φ), (20)

where Cm
n is the binomial coefficient, which, in particular,

gives

cos 3φdφ = (1 − 4sin2φ)d(sin φ),

sin 3φdφ = −(4 cos2 φ − 1)d(cos φ). (21)

Upon substitution of Eq. (20) into Eq. (19) and integration
[27] we obtain

Fp = Fn = Kei 2n+1
2 ϕ

⎧⎨
⎩

[n+1/2]∑
j=0

n−j∑
m=0

(−1)n+jC
2j

2n+1C
m
n−jF

(s)
m,j

+
n∑

j=0

2j∑
m=0

(−1)m+jC
j

2n+1C
m
2jF

(c)
m,j

⎫⎬
⎭, (22)

where

F
(s)
j,m = �

(
j + m + 1

2

)− �
(
j + m + 1

2 , − 2iKRsin2 ϕ

2

)
(−2iKR)1/2+j+m

,

F
(c)
j,m = −�

(
j + m + 1

2

)− �
(
j + m + 1

2 , 2iKRcos2 ϕ

2

)
(2iKR)1/2+j+m

.

(23)

�(n,x) stands for the incomplete Gamma function.

For example, the fractional beam with p = 3/2 is described
by the expression

�3/2 = NG

σ
K
{
F

(s)
3/2 + iF

(c)
3/2

}
ei 3

2 ϕ,

F
(s)
3/2 = −

{
4
√

R sin
ϕ

2
e−Re sin2 ϕ

2 + √
π (R − 2)

× erf

(√
R sin

ϕ

2

)}/√
R,

F
(c)
3/2 =

{
4
√

−R cos
ϕ

2
e−Re cos2 ϕ

2 − √
π(R + 2)

× erf

(√
−R cos

ϕ

2

)}/√
−R,

R = 2iKR. (24)

It is useful to note that the function �3/2 in Eq. (24) is a
periodic one with the period 2π despite the factors cos ϕ

2 and

sin ϕ

2 in the function F
(c,s)
3/2 . In order to prove it, it is necessary

to take into account the factor ei 3
2 ϕ in the definition of the

function �3/2 and the oddness of the function erf(x).
The above presented results form a family of asymmetric

scalar vortex beams with p = ±(2n + 1)/2—the Gamma-
Gaussian (�-G) beams. The �-G beams are the natural
generalization of the erf−G beams [17] over all the set of
half- integer-order vortex beams.

Typical representatives of the �-G family of singular beams
are shown in Fig. 1. Thus the field distributions I (r,ϕ) at the
beam cross section depend essentially on the value of the
K parameter. When the K parameter has a pure real value
(see Fig. 1) the intensity distribution has a C-like profile at
z = 0 with only half-integer-order vortices near the center (see,
e.g., [17]). However, when propagating the intensity profile is
drastically transformed, turning at z � z0 into a broken Bessel
beam with integer-order vortices scattering over the beam cross
section. For the pure imaginary K parameter (|K| is constant),
the process is reversed.
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FIG. 2. The field distributions of the vector �-G beams for
different topological charges on the background of the intensity
distributions of the E+ components. Сallouts in the first two patterns
illustrate a fine structure of the field polarization in a small center
area.

The phase distributions shown in Fig. 1(b) illustrate
complex phase structures for different half-order vortex beams.
A smooth growth of the phase up to � = π/2 for p = 1/2 is
replaced by the phase oscillations in the broken second branch
of the two-sheeted helicoid for the topological charge p = 3/2.
The phase loss is 
� = π/2. The same phase construction
is observed for the topological charge p = 5/2 where the
third branch of the three-sheeted helicoid also lacks the phase

� = π/2. All phase losses are accompanied by smooth
variations. The sign alternation p → −p changes the direction
of the helicoid twist.

All the above equations enable us to build a great number
of asymmetric TE and TM beams. Some of them are shown
in Fig. 2. The fine structure of these fields changes along
the beam length, so that the beams are structurally unstable
under propagation in free space. In contrast to standard TE and
TM modes the asymmetric paraxial beam fields in Fig. 2 are
elliptically polarized at each point with distinctive orientations
of the ellipse axes. Near the optical axis the field tends to form

FIG. 3. The sketch of the topological dipole and its angular
rotation. Interference patterns are associated with fractional vortices
while the “fork” directions (upward or downward) set signs (plus or
minus) of vortex topological charges.

two polarization singularities (the star or the lemon [12]). Far
from the center the directions of the linear polarization are
wound into Archimedean (for TE mode) and logarithmic (for
TM mode) spirals.

The peculiar feature of the �-G beams is also their
ability to assemble integer-order vortices into the fractional
vortex at the far diffraction zone when the K parameter
is real. The imaginary K parameter induces the reverse
process—the fractional vortex decays into an infinite number
of integer-order vortices. Such beam behavior reflects the
inherent processes in the fractional-order vortex structures
in contrast to vortex decaying. In essence, all the types of
the above-considered fractional-order beams are structurally
unstable under propagation.

C. Shaping the integer-order vortex beams

The key question of this subsection is the following. Can
a superposition of the fractional-order vortex beams form a
singular structure with a stable centered integer-order vortex?

First, we will analyze a dipole structure consisting of two
orthogonal states |p〉 and |−p〉:

|p, − p〉 = |p〉 + |−p〉 = Q

∞∑
m=−∞

immeimϕ

p2 − m2
Jm(KR), (25)

where Q = 2NG(r,z) sin(πp)ei πp . We can regard the state in
Eq. (25) as the initial topological dipole.

After rotating the initial dipole through an angle ϕq = π
q

(see Fig. 3) so that ϕ → ϕ + π
q

we obtain

|p, − p,q〉 = Q

∞∑
m=−∞

immeimϕ

p2 − m2
Jm(KR)ei m π

q . (26)

Superposition of Eqs. (25) and (26) gives a dipole,

|p, − p,±〉 = |p, − p〉 + |p, − p,q〉

= Q

∞∑
m=−∞

immeimϕ

p2 − m2
Jm(KR)

(
1 ± e

i m π
q

)
. (27)
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If q = 1 the terms with m = 2m′ + 1 for a sign (+) vanish
while the residual terms form the state

|p,2,+〉 = i4Q

∞∑
m=0

(−1)m
(2m) sin(2mϕ)

p2 − (2m)2 J2m(KR). (28)

In turn, for a sign (−) the terms with m = 2m′ vanish and
we find the state

|p,2,−〉 = −4Q

∞∑
m=0

(−1)m
[(2m + 1)] sin[(2m + 1)ϕ]

p2 − [(2m + 1)]2

× J2m+1(KR). (29)

The first state, Eq. (28), does not contain any optical vortices
but only the set of edge dislocations of the order p = 2 as well
as Eq. (29) with p = 1.

In order to obtain higher-order beams, e.g., with p = 4,
we set a phase difference between two dipole states, Eq. (30),
equal to 
ϕn = π . As a result one obtains

|p,4,±〉 = Q

∞∑
m=−∞

(−1)m
(2m)ei2mϕ(1 ± eimπ )

p2 − (2m)2 J2m(KR),

(30)

so that the two states are

|p,4,+〉 = i2Q

∞∑
m=0

(−1)m
(4m) sin(4mϕ)

p2 − (4m)2 J4m(KR) (31)

for the sign (+), and

|p,4,+〉 = i2Q

∞∑
m=0

(−1)m
(4m + 2) sin (4m + 2)ϕ

p2 − (4m + 2)2 J4m(KR)

(32)
for the sign (−).

By means of such a recurring procedure one obtains the
general expressions

|p,2s〉 = i2Q

∞∑
m=0

(−1)m
(4sm) sin(4smϕ)

p2 − (4sm)2

× J4sm(KR), s = 1,2 . . . , (33)

|p,2s + 1〉 = −2Q

∞∑
m=0

(−1)m[2s(2m + 1) + 1]

× sin[2s(2m + 1) + 1]ϕ

p2 − [2s(2m + 1) + 1]2 J2s(2m+1)+1(KR),

(34)

where s = 0, 1, 2 . . . is a number of the recurring transforma-
tions, whereas 2s and 2s + 1 are topological indices of the
wave constructions.

The following step is to rotate the initial dipole through an
angle ϕ0 = π

2 . Such a transformation turns the sine in Eqs. (33)
and (34) into the cosine at m = 0 at arbitrary index s. As a
result we obtain the states with the centered optical vortices

FIG. 4. Intensity distributions I (r,ϕ) (a,c) and lines of the edge
dislocations (b,d) of the axially symmetric beams shaped by the
fractional-order vortex beams.

of the required integer-order topological charges l = 2s or
l = 2s + 1,

|p, ± l〉 = |p,s〉0 ± i|p,s〉π/2. (35)

Intensity I (r,ϕ) distributions of the axially symmetric fields
shown in Figs. 4(a) and 4(c) illustrate the optical constructions
built up of the broken fractional vortex beams on the basis of
Eqs. (33) and (34). An interesting feature of these structures
is that there are no optical vortices in them. Instead we see in
Figs. 4(b) and 4(d) the intricate pattern of the degenerated edge
dislocations webbing tightly around the beam pattern. Three
[see Fig. 4(b)] and six [see Fig. 4(d)] nodal lines (radial edge
dislocations) intersect at the axis.

On the other hand, expressions (35) and (36) govern the
shaping of the optical vortices shown in Fig. 5. The centered
optical vortices with the topological charges l = 3 (at the
left) and l = 6 (from the right) are framed by a necklace of
degenerated edge dislocations.

FIG. 5. Intensity beam distributions I (r,ϕ) with the centered
propagation-invariant higher-order vortices framed by a necklace of
edge dislocations for the l = 3 and l = 6 topological charges of the
centered vortices.

063807-6



MUTUAL TRANSFORMATIONS OF FRACTIONAL-ORDER . . . PHYSICAL REVIEW A 96, 063807 (2017)

Thus a simple rotation of two topological dipoles through
discrete angles (Fig. 3) enables us to form singular beams
with the required centered integer-order optical vortices. When
propagating, such a complex beam transforms its framing far
from the axis while the central part preserves the singular
structure.

At the same time, all the beam states (both with the integer-
order and fractional-order vortices) in free space or uniform
isotropic media are not degenerated; they have different Gouy
phases depending on their topological charges m. It is this
feature that makes the fractional-order beam scatter over the
integer-order vortices forming a complex field distribution
under propagation.

We revealed that appropriate compositions of fractional-
order beams can preserve their structure (at least near the axis)
under propagation. Despite the complex behavior of the frac-
tional vortex beam in free space, the above presented results
enable us to originate alternative vortex-beam constructions
that can uncover their extraordinary properties in a nonuniform
anisotropic media as we will see later.

However, the exclusion is the �-G vector beams that
can either break down the fractional vortex into a set of
integer-order vortices or, vice versa, assemble them into one
fractional vortex at the far diffraction zone. The control for
these opposing processes brings into effect the modulation of
the beam parameter K .

Further, we consider two examples of the possible mani-
festations of the fractional-order vortex beams in the uniform
and nonuniform anisotropic media with the distinctive intrinsic
symmetry.

III. CONICAL REFRACTION IN BIAXIAL CRYSTALS

A. General remarks

The fractional-charged beams propagating in uniaxial crys-
tals have been partially considered in Ref. [26] for the vortex
beams in states |±1/2〉 (the so-called erf-G beams). Authors
showed conversion between the states |±1/2〉 →← |1/2 ± 2〉 in
circular polarized components. It is easy to generalize this rule
to arbitrary states |p〉 →← |p ± 2〉. However, fractional-order
vortices are not degenerated in the Gouy phases and are
scattered over all possible states of integer-order vortices.

At the same time, biaxial crystals have one interesting
type of dielectric tensor property that yields a singularity
of wave normals—Hamilton’s diabolical point [28]—that
induces a space-variant birefringence with typical distribution
of birefringent axes [see Fig. 6(b)]. The fact is that there are
two types of waves in a biaxial crystal with wave-front braches
of slow (s) and fast (f) velocity as is shown in Fig. 6(a).
The wave fronts intersect each other at four points (e.g., the
point DP) defining two directions of optical axes. The wave
surfaces at the vicinity of the point DP take the form of a
double wave cone that looks like a “diabolo” [28]. According
to Hamilton the normals to the wave surface are not defined
at the DP point but originate, in turn, a new cone of the
energy flux—the ray cone [see the callout in Fig. 6(a)]. The
singular point DP was called the diabolical point (the detailed
review is presented in the papers [28,29], and references
therein). As a result an optical beam propagating along one

FIG. 6. (a) The shaping of a diabolic point (DP) in a biaxial crystal
as intersection of two wave surfaces. The callout illustrates places of
the ray and wave cones of the conical refraction (b) Space-variant
directions of the biaxial crystal birefringence under the conditions of
the conical refraction on the background of the beam intensity.

of the crystal’s optical axes transforms into a conical one
inside the crystal. The phenomenon was called the conical
refraction. The initial circular polarization of the beam splits
into a cone of local linear polarizations in such a way that
the electric vector E rotates though an angle π after a full
path tracing around the cone’s axis as shown in Fig. 6(b).
Generalization of Hamilton’s approach onto Gaussian beams
introduces corrections into the propagation and distribution
of the field [28]. This phenomenon is called the conical
diffraction. The conical form of the beam suggested the
solutions of the problem in the form of Bessel beams. At the
same time, the polarization distribution in Fig. 6 has also much
in common with that of erf−G and �-G beams in Fig. 4 [17].
Little misalignments of the field patterns far from the optical
axis are due to a complex structure of the fractional-charged
vortex beams.

The results presented in the papers [29–32] have shown
that the uniaxial crystal exhibits a tendency to turn into a
biaxial one after its twisting around the optical axis. The space-
variant symmetric field of TE or TM eigenmodes inherent to
a uniaxial crystal [33] at the initial plane z = 0 transforms
into the asymmetric field distribution similar to that shown in
Fig. 6. In contrast to the standard conical diffraction in the
typical biaxial crystals, the intensity distribution in the twisted
uniaxial crystal has not the pronounced C-shaped form or the
circular form with Poggendorff rings [29] but the pattern gets
smeared over the cross section with a singular point at the axis.
Nevertheless, the fine structure of the pattern can be controlled
by means of either mechanical or electrical devices.

The presented results point out the fact that eigenmode
beams of the conical diffraction and adjoining phenomena are
worth searching for among the fractional-order vortex-beams.
Thus the aim of the following subsection is to study the
propagation and conversion of the fractional-order vortex
beams of the Bessel type along one of the optical axes
of the biaxial crystal. We will focus our attention on the
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FIG. 7. Sketch of the surface of normals of the slow (s) and fast
(f) wave fronts in the optical axis direction. The crystal optical axis
is directed along the z axis.

following question: Could the input field with a space-variant
polarization identical to that of the crystal birefringence
in Fig. 6 (say, the state |p〉) propagate without structural
perturbation? If yes, then we can expect the fractional-order
mode beam to be an eigenmode of the medium.

B. Theoretical treatment

The underlying idea of our treatment is grounded on
the constitutive papers [34–37] where the authors consider
evolution of the electric field E (rather than the electric
displacement D) of Bessel beams in biaxial crystals under
the condition of conical diffraction. The fact is that in a
biaxial crystal the wave normal is not directed along the beam
propagation so that there appear additional terms in the vector
wave equation because of changes in the permittivity tensor.
In our case we can use this tensor in the form [37]

ε̂ =
⎛
⎝ εa 0 −ε13

0 ε2 0
−ε13 0 εb

⎞
⎠, (36)

where εa = ε1 + ε3 − ε1ε3/ε2, εb = ε1ε3/ε2, ε13 =√
ε1ε3(ε2 − ε1)(ε3 − ε2)/ε2, n2

1 = ε1, n2
2 = ε2, n2

3 = ε3

are the principal refractive indices of the crystal along the
axes x ′, y ′, z′.

The optical axis directed at the angle θ to the axis z′

tan θ =
√

ε3(ε2−ε1)
ε1(ε3−ε2) , ε1 < ε2 < ε3 passes through a diabolical

point where slow (s) and fast (f) wave fronts are tangent to
each other as shown in Fig. 7.

The authors of the papers [35,38] showed that the circularly
polarized beam components with the spectral function at the
crystal input A(k⊥) (k⊥ is the transverse wave number of the
initial beam), are

E+(r,ϕ,z) =
∞∑

m′=−∞
eim′ ϕ

∫
im

′
k⊥Am′(k⊥)Jm′ (k⊥r)

× exp

(
−i

k2
⊥

2kb

z

)
cos (γ0k⊥z)dk⊥eiβz,

E−(r,ϕ,z) = −
∞∑

m′=−∞
im

′
ei(m′+1)ϕ

∫
k⊥Am′(k⊥)Jm′+1(k⊥r)

× exp

(
−i

k2
⊥

2kb

z

)
sin (γ0k⊥z)dk⊥eiβz. (37)

It means that the right-hand circularly polarized beam
bearing a series of the vortex beams of the mth order and a
complex angular spectral distribution A(k⊥) at the crystal input
excites a series of vortex beams of the (m + 1)th order with
the same angular spectrum A(k⊥) in the left-hand circularly
polarized component.

Similarly, it can be shown that the composition of the vortex
beams of the (m + 1)th order with the spectral distribution
A(k⊥) in the left circularly polarized component at the crystal
input excites a series of vortex beams of the mth order with
the same angular spectrum A(k⊥) in the right-hand circularly
polarized component, i.e.,

E+(r,ϕ,z) =
∞∑

m′=−∞
eim′ ϕim

′
∫

k⊥Am′(k⊥)Jm′(k⊥r) exp

(
−i

k2
⊥

2kb

z

)
sin (γ0k⊥z)dk⊥eiβz,

E−(r,ϕ,z) =
∞∑

m′=−∞
im

′
ei(m′+1) ϕ

∫
k⊥Am′(k⊥)Jm′+1(k⊥r) exp

(
−i

k2
⊥

2kb

z

)
cos(γ0k⊥z)dk⊥eiβz. (38)

The circularly polarized single Bessel beam Ein
+ = Jm(k⊥r) exp(imϕ)ei kzz with an integer-order topological charge m, directed

along the crystal optical axis (axis z in Fig. 7), has the conical spectral distribution A(k⊥ = k
(0)
⊥ ) = const. In order to obtain the

beam propagation of such a beam it is sufficient to multiply Eq. (37) by the factor δ(k⊥ − k
(0)
⊥ ), and making the substitution

m′ → m we find

E1 =
(

E+
E−

)
=
(

Jm(k⊥r) exp (imϕ) cos (γ0k⊥z)
−Jm+1(k⊥r) exp [i(m + 1)ϕ] sin (γ0k⊥z)

)
exp

(
−i

k2
⊥

2kb

z

)
eiβz, (39)

where β = n2z, kb = kn2/2(1 + ε2/εb), γ0 = ε13/2εb.
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Similar to that we can obtain from Eq. (38) for the initial field in the form Ein
− = −Jm+1(k⊥r) exp[i(m + 1)ϕ]ei kzz the

expression

E2 =
(

E+
E−

)
=
(

Jm(k⊥r) exp (imϕ) sin (γ0k⊥z)
Jm+1(k⊥r) exp [i(m + 1)ϕ] cos (γ0k⊥z)

)
exp

(
−i

k2
⊥

2kb

z

)
eiβz. (40)

Combination E1 ± iE2 of Eqs. (39) and (40) gives

E = 1

2

(
Jm(k⊥r) exp (imϕ)

Jm+1(k⊥r) exp
[
i(m + 1)ϕ − i π

2

])ei (
k2⊥
2kb

+γ0k⊥+β)z

(41)

and

E = 1

2

(
Jm(k⊥r) exp (imϕ)

Jm+1(k⊥r) exp
[
i(m + 1)ϕ + π

2

])ei (
k2⊥
2kb

−γ0k⊥+β)z
.

(42)

Equations (41) and (42) show that such fields with space-
variant polarization can propagate through the crystal without
any structural transformations but with different propagation

constants β± = k2
⊥

2kb
± γ0k⊥ + β.

The polarization distribution in the mode beam cross
section in Eq. (41) has a complex form in contrast to that
of the standard structure shown in Fig. 6. Figure 8 illustrates
typical space-variant polarization for the mode index m = 6.
Directions of the polarization ellipse’s axes ψ are depicted
on the background of the mode intensity distribution. The
ellipticity states specified by the Stokes parameter S3 as a
function of radial position [see Fig. 8(b)] oscillate from right
circularly polarized S3 = 1 to left circularly polarized S3 = −1
states. However, the ellipticity S3 preserves its value along the
azimuth direction. Although the path tracing around the beam
axis through an angle ϕ = π is accompanied by the ellipse
rotation through an angle ψ = π/2, the full path tracing results
in reinstating both the polarization state and the beam phase.
Such a space-variant polarization of the eigenmode manifests
itself in the ring pattern of intensity distribution while the linear
space-variant polarization is in line with C-shaped distribution
in Fig. 6.

Note that the propagation constants β± do not depend
on the vortex topological charge m. Thus we can write the

FIG. 8. The polarization state distribution of the mode beam with
the index m = 6 (a), and (b) the dependence of the ellipticity degree
S3(r) on the beam radius r .

solution for a fractional-order vortex beam as a superposition
of partial solutions in Eq. (41) with the spectral vortex density
ρ(p) = (p − m)−1 [see Eq. (8)] in the form

E(+)
p = cp

⎧⎪⎪⎨
⎪⎪⎩

∞∑
m=−∞

imJm(k⊥r) exp (imϕ)
p−m

−
∞∑

m=−∞
im+1Jm+1(k⊥r) exp [i(m+1)ϕ]

p−m

⎫⎪⎪⎬
⎪⎪⎭eiβ+z,

= cp

⎧⎪⎪⎨
⎪⎪⎩

∞∑
m=−∞

imJm(k⊥r) exp (imϕ)
p−m

−
∞∑

m=−∞
im+1Jm+1(k⊥r) exp [i(m+1)ϕ]

p+1−(m+1)

⎫⎪⎪⎬
⎪⎪⎭eiβ+z

=
( |p〉

−cp+1|p + 1〉
)

exp (−iβ+z), (43)

where cp = sin πpeipπ . Similar to that we can write down the
mode field E(−)

p with the propagation constant β−:

E(−)
p =

( |p〉
icp+1|p + 1〉

)
exp (−iβ−z), (44)

with β± = k2
⊥

2kb
± γink⊥ − β.

Typical field distributions on the background of the beam
intensity are shown in Fig. 9 for |0.5〉 and |7.5〉 fractional
states. For the computer simulation we chose the potassium
gadolinium tungstate KGd[WO4]2 (KGW) biaxial crystal

FIG. 9. Field distributions of the fractional-order vortex beam in
the potassium gadolinium tungstate KGW biaxial crystal.
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with refractive indices n1 = 2.013, n2 = 2,045, n3 = 2.086,

for the wavelength λ = 0.63 μm, so that the crystal and
beam control parameters are γin ≈ 0.0087 rad, εb ≈ 4.224,
and k⊥ ≈ 1.74 × 105 m−1.

When the initial beam at the initial plane z = 0 is right-
hand circularly polarized, the field of the conical diffraction is
defined by a combination of the eigenstates Eqs. (43) and (44),

E =
( |p〉 cos (γ0k⊥z)

icp+1|p + 1〉 sin (γ0k⊥z)

)
exp(−iβ̄z). (45)

where cp+1 = sin pπ/ sin(p + 1)π . As a result we observe the
beating between the field components. The beat length in our
case equals LB = 2π/(γink⊥) ≈ 4.15 mm. It means that the
states |p〉 and |p + 1〉 appear alternately at this length while
the eigenmode states Eqs. (43) and (44) in Fig. 9 emerge at the
lengths Le,o = π (2n + 1)/(4γink⊥), n = 0,1,2 . . . .

In contrast to the integer-order vortex beams (see Fig. 8), an
azimuthal angle of the linear polarization ψ of the fractional-
order states in Fig. 9 has a complex distribution over the beam
cross section depending on both the topological charge p and
the transverse coordinate r . In addition, we found that the
greater the value of the parameter k⊥ the greater the number
of polarization variations along the radial direction r̂.

Thus the right-hand circularly polarized Bessel beam with
the p fractional-order vortex at the crystal input induces
the beam with p + 1 fractional-order vortex at the left-hand
circular polarization at some crystal length. At the beam length
z = π

2γ k⊥
(2n + 1), n = 0,1,2 . . . energy is concentrated in the

|p + 1〉 state. However, the eigenmodes E(±)
p for different

charges p have the same propagation constants (i.e., are
degenerated over p). Any superposition of the fractional-order
vortex beams obeys the same transformations Eq. (45) as the
single field states.

Thus during the conical diffraction process the energy trans-
ports from the E+ component with a fractional topological
charge p into the E− component with a charge p + 1 and
vice versa for wide types of the field structure of fractional-
order vortex beams. Since for simplicity we consider Bessel
beams without a Gaussian envelope, the fractional-order beam
maintains its structure under propagation for all the values
of p. The real BG beams with integer-order vortices have a
very cumbersome mathematical representation [38] and we
kept them out of our consideration. However, each BG beam
in the crystal gets its own Gouy phase under propagation
that depends on the topological charge m. It means that the
fractional-order vortex fields as a combination of integer-order
beams are unstable structures in biaxial crystals.

IV. NONUNIFORM BIREFRINGENT MEDIA

A. Space-variant unbounded birefringent medium

The brightest representatives of the space-variant media are
the so-called q plates [39]. The q plate is, in the first version,
a slab of a uniform birefringent medium (liquid crystal) with
different local directions of the crystal birefringence while
the slab has uniform phase retardation. The space-variant
birefringence of the q plates is set by the topological charge q

imprinted in the q plate. This imprinted charge is equal to the
number of rotations of the optical axis in a path circling around

the q plate’s center. Obviously, the value of q can be integer or
half integer. The q value can be controlled either mechanically
or electrically [40,41]. The beam turns into a new wave state
due to superimposing of a great number of plane waves with
different polarization states. In that regard, the processes of
the conical diffraction in the uniform biaxial crystal should
not much differ from the effect of the q plate. Thus there is
no appropriate physical mechanism in such media that could
ensure creation of a propagation-invariant fractional vortex
beam. These optical systems change only the field’s OAM.

At first sight it could have seemed that the only physical
mechanism of shaping the beams with the space-variant
polarization in a medium is in superimposing the uniform
propagating waves. However, the Fourier synthesis is a proper
approach only for unbounded media. Meanwhile, for the media
with boundary surfaces where along with propagating waves
the nonradiative (evanescent [42]) waves may also exist, such
an approach involves certain mathematical difficulties, which
make it unfavorable. In particular, such is the case of the
paraxial propagation.

One of such media are the photonic crystal fibers that
represent tightly compressed arrays of optical fibers. Their
total birefringence is determined by the structure of the fiber’s
stacking and their local properties [43–45]. The photonic
crystal fibers have two indefeasible advantages: the wave
guiding property and the controlled fiber coupling. The
simplest model of the photonic crystal fiber is a circular fiber
array [46]. In the following section we will try to uncover
the basic physical processes responsible for the structural
stability of vortex constructions with half-integer topological
charges in a circular fiber array with a discrete space-variant
birefringence.

B. Anisotropic fiber array: nonadiabatic
following and optical quarks

1. Supermodes of anisotropic arrays

We will focus our attention on the discrete system of single
mode birefringent fibers inserted into a transparent continuous
medium with a uniform refractive index ncl less than that of the
fiber core nco < ncl [21,46–48]. Each optical fiber is located
at the vertices of a regular N-gon as shown in Fig. 10. We will
assume that the principal birefringence refractive indices ne

and no are such that ne ≈ no ≈ nco, δn = nco − ncl � 1, and

n = ne − no � δn.

The principal point of our consideration is a distinctive
distribution of the axes’ birefringence over the optical fibers:
the birefringence directions at the j th fiber make an angle γ

p

j

with the X axis of the global frame,

γ
p

j = 2πpj

N
= 2ϕpj, ϕp = π

N
p, (46)

where j = 0,1,2 . . . N − 1 and p is a number of rotations
of the fiber birefringence axis; i.e., the index p controls the
position of the director of the anisotropic medium. The index
p = (2np + 1)/2, np = 0,1,2 . . . sets the characteristic index
of the fiber array. The angle ϕj points out the position of
the local fiber in the array. In addition, our consideration is
restricted to the case of even N .

063807-10



MUTUAL TRANSFORMATIONS OF FRACTIONAL-ORDER . . . PHYSICAL REVIEW A 96, 063807 (2017)

FIG. 10. Sketch of the birefringent fiber positions in the fiber
array. Arrows inside circles are directed along the fiber birefringent
axis.

The fibers in the array are coupled due to a mutual
penetration of the guided fields inside neighboring fibers. The
coupling coefficient a (with the dimension m−2) is general
for all arrays and depends on the radius of the core. As a
result the coupled fiber modes form stable phase-locked field
combinations (so-called supermodes) propagating with certain
propagation constants. The field structure and the spectrum of
their propagation constants are determined by the perturbation
matrix [46]:

P̂ = a cos 2ϕp

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 −1
1 0 1 0 · · · 0
0 1 0 · · · 0 · · ·

· · · 0 · · · · · · 1 0
0 · · · 0 1 0 1

−1 0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, (47)

built through averaging of a certain operator over X′,Y ′-
polarized fundamental modes located at individual fibers. The
mode spectrum Pv is found from the eigenvalue equation,

P̂ Kv = PvKv. (48)

For the components K
j
v of the eigenvector Kv one has the

following solution:

Kj
v = εj

√
N

exp (ijϕ2m+1). (49)

The composite index v in Eq. (49) consists of two elements
v = (ε,m) so that its first element assumes two values: ε =
±1, m = 0,1 . . . N/2 − 1 and the eigenvalue reads as

Pv = εa cos 2ϕp cos ϕ2m+1. (50)

The expressions for supermodes are built on the basis of
the components K

j
v and are given by

Xv =
N−1∑
j=0

Kj
v G̃j i′j , Yv =

N−1∑
j=0

Kj
v G̃j j′j , (51)

where i′j , j′j are the unit vectors directed along the X′,Y ′ axes
associated with the j fiber. For the radial function we chose

the Gaussian approximation [36],

G̃j = E exp

(
− r2

j

2w2

)
, (52)

where E is the field amplitude, w = ρ0/
√

2 ln V , ρ0 is the
radius of the fiber core, and V = kρ0

√
2δn.

The supermodes, Eq. (51), are formed of fundamental
modes of local fibers polarized along the X′,Y ′ local axes.
The propagation constant β

x,y
v of the Xv,Yv supermodes is

given by [6]

βx,y
v = β̄ + Pv

2β̄
± k
n, (53)

where β̄ stands for the scalar propagation constant of each
local fiber and the upper sign relates to βx

ν .

2. Optical quarks

It is convenient to analyze the structure of supermodes,
Eq. (51), in the circularly polarized basis. The contributions
to the j th local fiber in the right-hand circular compo-
nent are modulated at the vertices by the phase factor
exp[i2πj (m − np)/N ] and in the left-hand component by the
exp[i2πj (m + np + 1)/N] factor. When we consider the array
as a whole, the j index changes from 0 to N − 1 so that the
total increments of the phases over the vertices of the array
are 2π (m − np) and 2π (m + np + 1). As we have in detail
shown in Ref. [47], these increments in orthogonal circular
polarizations set integer-order charges of discrete vortices in
the fiber array. At first sight it seems that we can conclude
that such fiber array cannot support the propagation of vortex
modes with the fractional-order topological charges. However,
we have shown in Sec. IV A that fractional-order vortices
can be formed through superimposing the integer-order vortex
modes (although they are unstable). It proves it is also possible
to form from the supermodes, Eq. (49), their combinations that
explicitly contain, in the circularly polarized components, the
fractional-order vortices.

The basic point of our consideration lies in choosing the
eigenmodes bearing the fractional-order vortices. We can reach
the desired results through combining the degenerated modes
of the fiber array. In fact, the eigenvalues of the matrix P̂ ,
Eq. (47), are double degenerate because Pε,m = P−ε,N−2−m−1

[see Eq. (50)]. Since K∗
ε,m = K−ε,N/2−m−1 it follows that

K∗
v belongs to the same eigenvalue as Kv . Further we have

(K∗
v · Kv) = 0; i.e., these vectors are linearly independent.

Thus we choose a new set of eigenvectors in the form

e1 = Kv − K∗
v

2i
, e−1 = Kv + K∗

v

2
. (54)

The new set of the eigenvectors can be conventionally
divided into two parts: with s = +1 (e+1 eigenvector) and
ε = −1 (e−1 ones). In accordance with Eq. (47) we can obtain
the alternative representation of the eigenvector components,

�j
v = 1√

N

{
sin (jϕ2m+1), ε = 1,

εj cos (jϕ2m+1), ε = −1,
(55)

while the spectrum of the propagation constants remains intact
and is defined by Eq. (50). The new set of eigenvectors is
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recovered from Eq. (51) by the replacement K
j
v → �

j
v . We

will call the fields with ε = 1 and ε = −1 the odd Eo,m and
the even Ee,m mode beams, respectively.

For example, at ε = 1 for the amplitudes at the j th fiber
for circular components of the X̃v supermode we obtain
exp(−2iϕpj ) sin(ϕ2m+1j ) in the right circular polarization
and exp(2iϕpj ) sin(ϕ2m+1j ) in the left-hand component. For
the case ε = −1, the sines should be replaced by cosines
multiplied by the factor εj−1. In this case the total phase
increments in the components over the vertices of the array
are ∓2πp. In fact, the birefringence pattern of the fiber
array inserts the fractional-order topological charges p into
supermode fields.

Since a stable supermode X̃v turns out to be composed
of unstable fractional topological charges of opposite values
nested in orthogonal polarizations, one can regard such a state
as composed of optical quarks (predicted in [49]) similar to
that in the Standard Model of particle physics, in particular,
in the Gell-Mann quark model of the hadrons [50]. (By
convention, we apply the term “optical quark” only to the
vector supermode rather than to its components.) The optical
quarks can exist in coupled states only inside the media with
the inherent symmetry of the permittivity tensor. Outside the
medium the optical quark pairs break up into a set of the guided
modes of the outer optical structure.

To study the properties of optical quarks, we use the
expressions for the electric field components E±

v of the
supermodes [17]:

E±
v (r,ϕ,z) = G

√
N

N−1∑
j=0

�j
v exp

×
[
rr0

w2
cos(ϕ − 2ϕj ) ∓ 2ipϕj − iβvz

]
, (56)

where G = E exp[−(r2 + r2
0 )/(2w2)]; r0 is the array radius.

Typical field patterns on the background of the intensity
distributions of the supermodes are shown in Fig. 11. The
pattern in Fig. 11(a) has the C-shaped form, where the electric
field is directed along the X′ direction of the birefringence
axis in each local fiber (see also Fig. 10). In the pattern in
Fig. 11(b) the intensity distribution is the mirror-reflected
intensity in Fig. 11(a). However, the electric fields in each
local fiber are directed along the Y′ under the condition
that the fiber array index p remains the same (the local
birefringent directions do not change). In accordance with
Eq. (53) the propagation constants differ from each other by
the value 
β = β1 − β−1 = 2k
n [see Eq. (53)]. The patterns
in Figs. 11(c) and 11(d) have the mirror-reflected positions of
the field zeros (m = 1) but the fields in each local fiber are
directed along the X′ axes, correspondingly.

One should note that the point x = y = 0, around which
the full path tracing is carried out, is not a singular point
in any sense. The fact is that although the field has a
space-variant linear polarization over all cross sections, the
central point x = y = 0 cannot be related to any well-known
polarization singularities. Typical polarization singularities
[star, lemon, or (le)monstar] imply the presence of the circular
polarization at the center [51], whereas supermodes are locally

FIG. 11. The intensity I (r,ϕ) and polarization distributions for
the supermodes with different parameters p and ε.

linearly polarized. Indeed, since E+
ν = (E−

ν )∗, the third Stokes
parameter S3 = |E+

ν |2 − |E−
ν |2 = 0 proves this statement.

The following point of our consideration is to study the
phase structure in the components of the fractional-order
vortex mode. Figure 12 shows the phase patterns plotted
on the basis of Eq. (56) for the components of the vortex
beams. One observes the ladderlike structure of the phase
for the topological charges p = ±1/2 for even and odd field
components where the phase jump 
� = π is present at the
cut plane ϕ = 0. In Sec. II A we argued that the fractional-order
vortex in the beam components can be composed of an infinite
sum of the integer-order ones. The situation in the array in
question seemingly illustrates this general statement. However,
there is a subtlety to it. Indeed, here we compose a mode
with the opposite fractional charges in the components from

FIG. 12. The ladderlike phase patterns of the supermodes phase
� with p = ±1/2.
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FIG. 13. The interferential patterns of the E+
o,0 component with

p = 1/2.

the modes that bear different integer charges in orthogonal
components, whose values are rigidly correlated. In this
situation it is not merely a question of Fourier decomposition
of fractional-charged scalar fields over integer-charged optical
vortices. Should the charges in the mode components be
correlated in a fashion other than prescribed by Eq. (49), it
would have been impossible to form from them fractional-
order vortex modes in the simple manner implied by Eq. (54).
We believe that, generally, this is impossible.

The obtained phase diagram shows no integer-charged vor-
tices in the components of the fractional-charged supermodes
described by Eq. (56). However, there is a possibility that the
presented plotting is too crude a tool to reveal the “hidden
vortices.” To answer this question and analyze the fine phase
structure we studied the interference of the fractional beam
with the plane and spherical waves. The interference patterns
in Fig. 13 are formed by the superposition of the odd E+

o,0
component with the topological charge p = 1/2 and the plane
(a) and spherical (b) waves. We observe the pattern that implies
a steplike behavior of the phase. There is only one broken fork
at the end of the cut of the interference fringes [see Fig. 13(a)]
and the cut of the interference spiral [see Figs. 13(a) and
13(b)] attesting to the phase jump π in the phase structure.
This indicates the presence of half-charged vortex nested in
the field component. There are no any integer-order vortices in
the patterns. Such phase distribution preserves its structure
when propagating along the fiber array in contrast to the
fractional-order vortex in free space that decays into an infinite
number of integer-order vortices [10].

Although the aforementioned results give substantial ar-
guments in favor of the absence of phase singularities in
the components of the fractional charge bearing supermodes,
it is possible to provide a rigorous analytical proof of
this statement. To this end let us introduce an auxiliary
mathematical construction known as the scalar optical current.
This quantity can be defined for a scalar field � [52] as followd:

J = i(�∇⊥�∗ − �∗∇⊥�). (57)

As such scalar field one can choose any of the circular
components, Eq. (56). For a true scalar field the current J
describes the energy density flow [as in the case of quantum
mechanics; the current equation (57) is introduced by way of
analogy]. In our case this vector has nothing to do with the
energy flow of the vectorial electromagnetic field described by

FIG. 14. Streamlines of the optical current on the background of
the fiber array N = 12. Circles show the fiber positions.

the Poynting vector. We employ this quantity just to study the
structure of phase singularities in the components. The current
vector J is helpful while searching for phase singularities
because in their vicinities it forms closed trajectories [52].
Taking into account Eqs. (56) and (57), one can obtain the
expression for the components of the current vector in the E−

v

component:

Jx = G2N

N−1∑
n,m=0

exp
[ rr0

w2
{cos (ϕ − ϕn) + cos (ϕ − ϕm)}

]

× sin [p(ϕn − ϕm)]
( r0

w2
cos ϕm − x

w2

)
sin ϕn sin ϕm,

and

Jy = G2N

N−1∑
n,m=0

exp
[ rr0

w2
{cos (ϕ − ϕn) + cos (ϕ − ϕm)}

]

× sin [p(ϕn − ϕm)]
( r0

w2
cos ϕm − y

w2

)
sin ϕn sin ϕm.

The correspondent current lines are shown in Fig. 14.
As is seen, the picture of current flow turns out to be quite
unexpectedly simple. The correctness of this numerical result
can be confirmed by an analytical consideration. Indeed, for the
difference between the transverse components of the current
vector J one can obtain the following expression:

Jx − Jy ∝
N−1∑

n,m=0

exp[2rr0 cos (ϕ − ϕm+n) cos (ϕm−n)/w2]

× sin (2pϕm−n) sin ϕn sin ϕm. (58)

Noting that the summed expression is a convolution of
symmetric and antisymmetric (in m and n indices) tensors,
one can infer that the right-hand side of Eq. (58) is zero,
which gives Jx = Jy that confirms the numerical result. In this
way, the current vector in each point of the transverse cross
section makes an angle of π/4 with the coordinate axes. The
optical current lines are the set of parallel lines, which cannot
contain any closed loops, which are the indicators of phase
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singularities. Therefore, the circularly polarized components
of the fractional-order vortex field, Eq. (56), do not contain
any phase singularities.

3. Nonadiabatic following and the hidden phase

In the continuous uniform isotropic or anisotropic medium
only the propagating plane waves participate in the trans-
mitting process. A superposition of the plane waves with
preassigned initial phases forms a fractional-order vortex
beam. This beam can also be combined with an infinite
number of integer-order vortex beams at the initial plane. When
propagating, this beam also scatters into integer-order vortex
beams with nonmatched Gouy phases.

The situation is absolutely different in a fiber array. Two
wave fields—propagating and evanescent (which arise at the
cores’ boundaries)—influence the shaping of the supermodes
of the array. Eigenmodes of each fiber get unified into a
propagating supermode, but the mode unification in our case
has some important peculiarities. One can speak in a sense
about “a mode gluing.” The “glue” plays the role of mode
coupling between individual fibers, which is implemented
through evanescent waves [53]. Such coupling in circular
arrays leads to the phenomenon of phase locking, which
underlies the forming of supermodes. Due to this effect the
phases of individual fiber fields become correlated, which leads
to establishing of supermodes. In our case this phase locking is
implemented as dictated by the perturbation matrix Eq. (47).
If we choose for eigenvector components Eq. (49) then such
locking of phases gives contribution to the continuous part of
the phase increment on the contour encompassing the array.
On the contrary, if one chooses for eigenvector components
Eq. (55), which explicitly does not contain any phase part,
such contribution is not that evident.

However, this is not the only mechanism of phase increment
shaping in arrays. In circular arrays of anisotropic fibers, in
addition to the above-mentioned way of accumulating the
phase, there is another source of the phase. This source appears
when we invoke the effect of nonadiabatic following, which
is present in such arrays. As was shown in Ref. [48], if
the anisotropy is much greater than the interfiber coupling
(k2
n � a) then when the field evanescently tunnels from
one fiber to the adjacent one it loses its initial polarization and
acquires a linear polarization directed along the birefringence
axis of the neighboring fiber. This process constitutes the
essence of nonadiabatic following, at which the field’s polar-
ization traces the direction of the anisotropy axes in the array
of anisotropic fibers. Due to this phenomenon the local linear
polarization in each supermode of the fiber array follows the
birefringence axes in the local fibers. Such optical phenomenon
has much in common with that of the adiabatic following in a
twisted birefringent medium (in particular, in liquid crystals)
[54]. In contrast to this classical effect, in our case the matching
of the field polarization and the fiber birefringence is realized
by jumps as the mode coupling in parallel strongly anisotropic
fibers implies.

Quite naturally, the phase at the vertex is not influenced
by the director’s orientation. However, the global topology
of the directors’ field comes into effect if one circles around
the array’s center, e.g., from one vertex to another. Then the
inclination angle of the linear polarization in each local fiber

accumulates, by jumps, a π increment [see Fig. 11(a)]. Such a
polarization evolution is mapped on the Poincaré sphere as a
motion along the equator. As a result, each component of the
supermode equation (56) with the topological charge p = 1/2
acquires the Pancharatnam-Berry phase [55] of φPB = π value.
This phase increment should be identified with the “hidden
phase,” the notion of which was first introduced in condensed-
matter physics [9].

The prediction of vortices with half of a quantum unit of
circulation in superfluid 3He [6] had for a long time been
considered as a mathematical misunderstanding. Indeed, a
standard superfluid such as uniform ordinary superconductors
can also be described in terms of a complex field wave function
� = |�| ei�, where |�| is an amplitude and � stands for
its phase. In a vortex state the phase can be represented as
� = mϕ with m a vortex charge. The requirement of a single-
valuedness of the wave function can be met only for integer m.
If the index m takes on a fractional value, the wave function
� loses its single-valuedness. However, another situation
occurs if the system lacks its homogeneity. For example,
it takes place on a boundary between two superconductors
(the Josephson junction) or in polycrystalline media on grain
boundaries. Pursuing this idea Jang et al. have manufactured
mesoscopic rings of superconductors (Sr2RuO4, strontium
ruthenium oxide—an unconventional superconductor that has
been proposed as the solid-state analog of the A phase of
superfluid 3He) and measured their magnetic moment [7].
As a result, they observed half-flux states with increasing
in-plane magnetic field. The following question arose: How
it is possible that the � function appears to be not single
valued? This paradox was resolved by assuming that there is a
hidden phase of π value that is not related to the spin current
[9,10]. Our example proves that in optics this hidden phase
also exists and has a topological nature.

In spite of such correspondence, in our case this
hidden phase is explicitly present in the expressions
exp(−2iϕpj ) sin(ϕ2m+1j ) and exp(2iϕpj ) sin(ϕ2m+1j ) for
amplitudes in circular components of the X̃v supermode
in a global Cartesian system [see Eqs. (49)–(51)]. Indeed,
the multipliers exp(±2iϕpj ) comprise only the information
of the array type (through the index p) and not of the
specific supermode (whose number is indicated by the index
m). The explicit phase increment of the ∓2πp value [that
appears only in the global coordinate system (51)] is exactly
the Pancharatnam-Berry phase, which has been “hidden” in
Ref. [56]. In our case it is the “hydrodynamic” part of the
total phase increment that turns out to be hidden. At p = 1/2
and m = 0 the overall phase increment of 2π , which should
take place for a physically meaningful field, is composed of a
continuous Pancharatnam-Berry phase increment of π value
(which we attribute to a half-vortex charge) and of a phase π

jump at the cut of the wave front. The “missing phase” π in
our case is nothing else than the π jump that originates due to
changing of the sign of the sin(ϕ1j ) multiplier while j changes
from 0 to N – 1.

4. Transmission of fractional and integer-order vortices

In the above sections we focused our attention mainly on
a representation of fractional-order vortices through integer-
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FIG. 15. Diagram of the conversion of |TM〉 (the upper line) and
|TE〉 (the lower line) states in the fiber array N = 20.

order ones. In this subsection we consider an inverse transfor-
mation, namely, the representation of the integer-order vortices
in terms of half-integer-order ones to standard optical fiber.
Let us write the field at the initial z plane as a superposition
of supermodes with half-integer-order indices [47]. If we
denote the projections of the electric field onto X′ and Y ′
local axes (see Fig. 10) at the j th vertex at z = 0 as Ij and
Lj , respectively, then the amplitudes A±

α in the right-hand
circularly polarized (RCP) and left-hand circularly polarized
(LCP) components at the αth fiber at arbitrary length z are
written as

A±
α =
∑
v,j

Kj∗
v Kα

v (Ij e
iφ ∓ iLj e

−iφ) exp

(
i
Pv

β̄
z ∓ iγ p

α

)
,

(59)
where φ = k
n

2 z.
For example, for the input RCP beam at the initial plane z =

0 with the amplitude sin(nϕj ) exp(−2ijϕq) at the j th vertex
(n is odd; q is half integer) we obtain the amplitudes at the αth
vertex in the form

A±
α ∼ sin

(
αϕn − a

β̃
z cos ϕ2p sin ϕ2p−2q sin ϕn

)

×
{

cos φ exp(−iαϕ2q)
i sin φ exp(−iαϕ4q−2q ) . (60)

Let us consider the two typical cases.
Case 1. The field of the TM beam is shaped at the z = 0

plane of the array with p = 1/2. Then the evolution of the
|TM〉 state can be obtained using Eq. (59) as

|TM〉 =
(

E+
E−

)
∼
{

[cos (ϕα + �) − i sin (ϕα − �)]e−i ϕα

[cos (ϕα − �) + i sin (ϕα + �)]ei ϕα

=
(

e−2iϕa

e2iϕa

)
cos

(
k
nz

2

)
+ i

(
1
1

)
sin

(
k
nz

2

)
. (61)

The upper line of the diagram in Fig. 15 illustrates
transformations of the TM mode. When propagating, the |TM〉
state is transformed into the |TM〉 mode itself [the first term
in Eq. (61)] and a linearly polarized nonvortex beam with the
polarization direction along the ray ψ = 3π/4 (the second
term). At the beating lengths �TM = 2π

k
n
and �lin = π

k
n
the

TM mode and nonvortex beam are alternately recovered.

Similar to that we can find the transformation of the discrete
TE field as

|TE〉 ∼ −i

(
e−2iϕa

−e2iϕa

)
cos

(
k
nz

2

)
−
(

1
−1

)
sin

(
k
nz

2

)
.

(62)

The |TE〉 mode is transformed into the |TE〉 mode itself
and a linearly polarized nonvortex beam with the polarization
direction along the ray ψ = π/4 (see the lower line in Fig. 15).

However, the obtained results also show that the nonvortex
beam with linear polarization along the ray ψ = 3π/4 changes
into the |TM〉 mode at the distance � = 2π

k
n
. A simple rotation

of the polarizer through an angle π/2 at the array input turns
the |TM〉 mode into the |TE〉 one.

Case 2. The RCP vortex beam with the topological charge
l = −1 is shaped at the z = 0 plane. By superposing Eqs. (61)
and (62) we obtain the evolution of the discrete integer-order
vortex beam as

|TM〉 + i|TE〉 =
(

e−i2ϕα

0

)
→ 1

2

(
cos φe−i2ϕα + i sin φ

cos φei2ϕα + i sin φ

)

+ 1

2

(
cos φe−i2ϕα − i sin φ

− cos φei2ϕα + i sin φ

)

=
(

e−i2ϕα

0

)
cos

k
nz

2
+ i

(
0
1

)
sin

k
nz

2
.

(63)

We can also find the evolution of the LCP integer-order
vortex,

|TM〉 − i|TE〉 =
(

0
ei2ϕα

)
→
(

0
ei2ϕα

)
cos

k
nz

2

+ i

(
1
0

)
sin

k
nz

2
. (64)

The discrete RCP integer-order vortex (e
−i2ϕα

0 ) goes into
itself and a LCP nonvortex beam while the LCP integer-order
vortex ( 0

ei2ϕα ) goes into itself and a RCP nonvortex beam. In
essence, the fiber array with p = 1/2 transforms the RCP
beam with topological charge l < 0 and the LCP beam with
p > 0 into itself and the vortex beam with the opposite circular
polarization and l − 1 charge.

V. CONCLUSION

In this paper we have considered a variety of vector
fractional-order vortex beams that could be transmitted
through free space or a uniform isotropic medium without
structural decay. Among them the Gamma-Gaussian beams
bearing half-integer-order vortices occupy a special place
because they are met not only in optical experiments but
also are the objects of unchanging attention in the physics of
superconductors. However, we revealed that all types of such
vortex beams are unstable under propagation in unbounded
uniform isotropic and birefringent media, in particular, in
biaxial crystals under the condition of conical diffraction.
A typical scenario of the beam propagation in the biaxial
crystals evolves in such a way that the topological charges
of the fractional-order vortices in the circularly polarized
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components of vector beams differ from each other by one
unit. The difference between the propagation constants of the
components is independent of the topological charge value.
The beam structure is broken down due to a mismatching
of the Gouy phases in partial singular beams in the vortex
spectrum of the fractional-order vortex beam.

On the other hand, we showed that singular beams with
the stable centered integer-order vortices but a complex
framing can be formed by four fractional-order vortices. Such
constructions remain stable under propagation for different
values of the topological charges.

An absolutely different situation occurs in the birefringent
fiber array, where fractional-order vortices are supermodes.
The shaping of the array supermode is mediated by evanescent
coupling between the modes of the neighboring fibers that
leads to the phase-locking process over the array.

Special attention is paid to the problem of the hidden
phase in the fiber array first introduced in the physics of
superconductivity to explain the origin of fractional vortices
in superconductors. We showed that the integer-charge phase
increment in a fractional-order supermode consists of two
half-integer-charge phase contributions. The explicit phase
contribution is connected with the Pancharatnam-Berry phase
that arises due to the phenomenon of nonadiabatic following.
The implicit half-integer-charge phase contribution (or the

“hidden phase”) comes due to the sign alteration of the
amplitude factors in the field components that corresponds to
the wave-front cuts. We have also made the comparison of the
hidden and hydrodynamic phases in superfluidic fractional-
charge vortices with analogous phases in fractional-order
supermodes. We have established that in the optical case the
hidden phase corresponds to the hydrodynamic phase in su-
perfluids, whereas the hidden superfluidic phase is the analog
of the optical Pancharatnam-Berry phase in supermodes.

We showed also that the vector field bearing integer-order
vortices cannot propagate through the fiber array without the
periodical decay and recovery of its inner structure. In this
sense we can speak of optical quarks introduced in the Standard
Model of particle physics. The optical quarks can exist only
inside the medium with an appropriate structural symmetry.
Outside the medium, the optical quarks are transformed into a
set of integer-order vortices.
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