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We study the statistics of the lasing output from a single-atom quantum heat engine, which was originally
proposed by Scovil and Schulz-DuBois [H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2, 262
(1959)]. In this heat engine model, a single three-level atom is coupled with an optical cavity and is in contact
with a hot and a cold heat bath together. We derive a fully quantum laser equation for this heat engine model and
obtain the photon number distribution both below and above the lasing threshold. With the increase of the hot
bath temperature, the population is inverted and lasing light comes out. However, we notice that if the hot bath
temperature keeps increasing, the atomic decay rate is also enhanced, which weakens the lasing gain. As a result,
another critical point appears at a very high temperature of the hot bath, after which the output light become
thermal radiation again. To avoid this double-threshold behavior, we introduce a four-level heat engine model,
where the atomic decay rate does not depend on the hot bath temperature. In this case, the lasing threshold is
much easier to achieve and the double-threshold behavior disappears.
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I. INTRODUCTION

In 1959, Scovil and Schulz-DuBois introduced a quantum
heat engine model (the SSDB heat engine) [1,2], where a single
three-level atom is in contact with two heat baths together
(Fig. 1) and the population inversion between the levels
|e1〉 and |e2〉 can be created by a large enough temperature
difference giving rise to laser output. During one working
cycle, one hot photon h̄ωh is absorbed, one cold photon h̄ωc

is emitted, and one laser photon h̄�l is produced. Thus, they
obtain the efficiency of the heat engine as ηSSDB := �l/ωh. To
guarantee the laser output, a population inversion condition is
required exp(−ωh

Th
) � exp(−ωc

Tc
), which is obtained from the

consideration of counting the Boltzmann factors. That simply
leads to an upper bound for the SSDB efficiency ηSSDB � 1 −
Tc/Th, which is just the Carnot limit. It turns out that the SSDB
heat engine is deeply connected with many other quantum
heat engine models, e.g., the quantum absorption refrigerator
[3–6] and the electromagnetically induced transparency based
heat engine [7,8], and it also can be used to describe the
photosynthesis process and solar cells [9,10].

This heat engine model gives a simple and clear demon-
stration of quantum thermodynamics. However, we notice that
some detailed properties of this lasing heat engine, e.g., the
threshold behavior and the statistics of the output light, are still
not well studied. In Ref. [9], a rate equation description was
developed. In order to obtain the photon statistics, we need to
go beyond the rate equation description. In this paper we study
this SSDB heat engine based on a more realistic single-atom
lasing setup [11–15], where the three-level atom is placed in an
optical cavity, is coupled with the quantized field mode, and is
in contact with two heat baths with temperatures Th,c [16–22].
We derive the lasing equation in both semiclassical and fully
quantum approaches (the Scully-Lamb approach [23–25]) and
analytically obtain the photon number distribution in the steady
state for both above- and below-threshold cases.

Intuitively, a higher temperature Th from the hot bath
enhances the population inversion between the two levels
|e1〉 and |e2〉 and thus should also enhance lasing. However,

our analytical result shows that a higher temperature Th also
increases the atomic decay rate. As a result, the lasing gain
decreases when Th is too high and this system shows a
double-threshold behavior: When the hot bath temperature
Th is quite low (Th � Tc), the excitation is too weak and
the system is below the lasing threshold; with increasing Th,
population inversion happens and the lasing light comes out,
but when Th keeps increasing, the lasing gain starts to decrease
and even goes below the threshold again, thus another critical
point appears, after which the output light becomes thermal
radiation again.

To avoid this double-threshold behavior, we study a four-
level model where a third ancilla bath is introduced [26]. In
this model, neither of the two lasing levels is coupled with
the hot bath directly and thus the atomic decay rate no longer
depends on the hot bath temperature. As a result, the lasing
gain and cavity photon number increase monotonically and
only one critical point exists. It turns out that the laser output
of this four-level heat engine is also bounded by the Carnot
efficiency.

We arrange the paper as follows. In Sec. II we introduce our
model setup and give a semiclassical analysis. In Sec. III we
study the fully quantum theory and derive the laser master
equation. The master equation has the same structure as
the Scully-Lamb master equations, however, with gain, loss,
and saturation parameters specific to the three-level model
of Scovil and Schulz-DuBios. In Sec. IV we present results
for the photon statistics and we note the unusual feature that
for a given gain, the photon distribution could be different.
The quantum statistical features of the four-level model are
presented in Sec. V. We conclude with a summary in Sec. VI.
Detailed derivations are relegated to the Appendixes.

II. THE SSDB HEAT ENGINE

The heat engine model is demonstrated in Fig. 1 [16–
18,21]. A three-level system Ĥ0 = Eg|g〉〈g| + E1|e1〉〈e1| +
E2|e2〉〈e2| is placed in an optical cavity which is resonant
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FIG. 1. Demonstration of the SSDB heat engine. A three-level
atom is placed in an optical cavity to generate a laser. We define
h̄ωh = E2 − Eg , h̄ωc = E1 − Eg , and h̄�l = E2 − E1.

with the atomic transition |e1〉 ↔ |e2〉. (The transition path)
|e1(2)〉 ↔ |g〉 is coupled with a cold(hot) bath.

We define the atomic transition operators as τ̂−
h := |g〉〈e2|,

τ̂−
c := |g〉〈e1|, σ̂− := |e1〉〈e2|, τ̂+

i := (τ̂−
i )†, and σ̂+ := (σ̂−)†.

The atom and the cavity interact resonantly through the Jaynes-
Cummings coupling V̂ = g(σ̂+â + σ̂−â†) and the dynamics
of this cavity-QED system can be described by the master
equation (interaction picture)

ρ̇ = i[ρ,V̂ ] + Lh[ρ] + Lc[ρ] + Lcav[ρ], (1)

where

Li[ρ] = γini

(
τ̂+
i ρτ̂−

i − 1
2 {τ̂−

i τ̂+
i ,ρ})

+ γi(ni + 1)
(
τ̂−
i ρτ̂+

i − 1
2 {τ̂+

i τ̂i ,ρ}), i = h,c

Lcav[ρ] = κ
(
âρâ† − 1

2 â†âρ − 1
2ρâ†â

)
. (2)

Here Lh (c)[ρ] is the contribution from the hot (cold) bath
coupled with the atom and Lcav[ρ] describes the light leaking
from the cavity to the outside vacuum field. Here ni :=
nP(ωi,Ti) for i = h,c is the thermal photon number of the
hot or cold bath calculated from the Planck distribution
nP(ω,T ) := [exp(h̄ω/kBT ) − 1]−1. With this master equation,
we obtain the equations of motion

d

dt
〈N̂1〉 = γc[nc〈N̂g〉 − (nc + 1)〈N̂1〉] − ig[〈σ̂−â†〉 − H.c.],

d

dt
〈N̂2〉 = γh[nh〈N̂g〉 − (nh + 1)〈N̂2〉] + ig[〈σ̂−â†〉 − H.c.],

d

dt
〈σ̂−〉 = ig〈σ̂ zâ〉 − 1

2

〈σ̂−〉,

d

dt
〈â〉 = −κ

2
〈â〉 − ig〈σ̂−〉, (3)

where we define N̂g := |g〉〈g| and N̂1,2 := |e1,2〉〈e1,2|, σ̂z :=
N̂2 − N̂1 for the atom operators and


 := γh(nh + 1) + γc(nc + 1) (4)

for the atomic coherence decay rate.
We apply the semiclassical approximation that 〈σ̂−â†〉 �

〈σ̂−〉〈â†〉 and 〈σ̂ zâ〉 � 〈σ̂ z〉〈â〉 = 〈N̂2 − N̂1〉〈â〉 and assume
the atom rapidly decays to its steady state right before the
cavity evolves significantly. Thus the quantum coherence term
is given by 〈σ̂−〉 = (2ig/
)〈N̂2 − N̂1〉〈â〉 (defining E := 〈â〉),

which is proportional to the population inversion �N ,

�N := 〈N̂2 − N̂1〉 = nh − nc

� + 4g2|E |2





, (5)

where


 := 1

γhγc

[γh(3nh + 1) + γc(3nc + 1)],

� := 3nhnc + 2(nh + nc) + 1.

Notice that when there is no cavity coupling (g = 0), the
atomic populations return to the SSDB result

〈N̂g〉 : 〈N̂1〉 : 〈N̂2〉 = 1 :
nc

nc + 1
:

nh

nh + 1
(6)

and the population inversion is

�N0 = (nh − nc)/�. (7)

We see that the constant � is just the normalization factor.
Now we obtain the lasing equation as

Ė =
[

2g2(nh − nc)


� + 4g2|E |2
 − κ

2

]
E = 1

2

[
G

1 + B|E |2 − κ

]
E .

(8)

In the above bracket, G := 4g2�N0/
 is the lasing gain and
G/κ � 1 means above the lasing threshold; B := 4g2
/
�

is the saturation parameter. It is worth noticing that, although
the population inversion �N0 increases with nh, it also gets
saturated and could never exceed 1, while the atomic decay
rate 
 keeps increasing linearly with nh.

As a result, with increasing Th starting from Tc, the lasing
gain first increases from zero and gets above the threshold, but
then the lasing gain achieves a maximum point, after which it
starts to decrease, and even goes below the threshold again at
a very high temperature Th [Figs. 2(a) and 2(b)]. Intuitively, a
higher Th would enhance the population inversion for lasing;
however, a higher Th also enhances the atomic decay rate 
,
which suppresses the lasing gain [Eq. (8)]. Therefore, at a very
high temperature Th, the lasing gain decreases and even below
the threshold again.

In Fig. 2(b) we show a numerical result for the atomic
populations in the steady state changing with Th. When Th is
very high, the populations on |e1,2〉 are almost totally inverted,
but the lasing gain G decreases with Th. In addition, the cavity
photon number 〈n̂l〉 shows similar behavior [Fig. 2(c)]. Notice
that the photon number 〈n̂l〉 in the cavity is not large; this
is because we have only one atom in the cavity and thus the
photon emission is limited.

If the cavity coupling strength g is strong or atomic
spontaneous decay rates γh,c are weak, the second critical
point would appear at a much higher temperature Th, but such
a behavior of double critical points always exists. For realistic
laser systems with N atoms in the cavity, the coupling strength
could be effectively enhanced by the atom number (

√
Ng).

Therefore, it is not easy to observe such double-threshold
behavior in common laser systems since the second threshold
is usually too high and beyond the practical regime of interest.
However, for a single-atom heat engine laser, it is much easier
for this double-threshold behavior to happen. In the finite
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FIG. 2. (a) Lasing gain G. Here G/κ � 1 means above the lasing
threshold. (b) Steady-state populations on |g〉, |e1,2〉. (c) Average
photon number 〈n̂l〉 in the cavity obtained from the analytical result
(13) and (17) (red dashed line) and numerically solving the master
equation directly (blue solid line). We set γh = γc = 32κ , g = 14κ ,
and nc = 0.05 as the cold bath photon number. The two critical points
are nh � 0.187 and nh � 8.647.

cavity limit κ → 0, this threshold condition simply reduces
as nh − nc � 0 and then it leads to the SSDB inequality
ηSSDB = �l/ωh � 1 − Tc/Th, which was derived based on the
comparison of the Boltzmann factors [1].

III. FULLY QUANTUM APPROACH

The semiclassical approach is helpful to get a basic
understanding of the physical process in this heat engine. To
get a more precise and rigorous description, we adopt the
Scully-Lamb approach to study the fully quantum theory for
the cavity mode � := tratomρ [23–25,27]. In this approach, the
previous semiclassical separation of the correlation functions
are not needed. Defining the matrix elements of � in Fock basis
as Pmn := 〈m|�|n〉, we have

d

dt
Pmn = ig(

√
nρ12;m,n−1 − √

mρ21;m−1,n)

− ig(
√

m + 1ρ12;m+1,n − √
n + 1ρ21;m,n+1)

+ κ[
√

(m + 1)(n + 1)Pm+1,n+1 − 1
2 (m + n)Pmn].

(9)

Here ραβ;mn := 〈α,m|ρ|β,n〉 and α,β = 1,2,g are the atom
state indices. The first two terms mean that the dynamics of
the cavity mode and the atom are coupled together and we
need to eliminate the atom degree of freedom.

For this purpose, we adopt the adiabatic elimination to
take away the dynamics of the atom [23–25]. Namely, we
assume that the atom decays very fast and quickly arrives at its
steady state (κ � γh,c). That gives a set of algebraic equations,
which enable us to obtain the equation for the photon number

probability Pn := 〈n|�|n〉 (see Appendix A),

d

dt
Pn = n[A Pn−1 − AbPn]

1 + nB/A
− (n + 1)[A Pn − AbPn+1]

1 + (n + 1)B/A

+ κ[(n + 1)Pn+1 − nPn], (10)

where we define

A := 4g2nh(nc + 1)


�
, Ab = 4g2nc(nh + 1)


�
,

B := A
4g2



�
. (11)

The constants 
, �, and 
 are the same as in Eqs. (4) and (5).
This equation has the same form as in Ref. [27] [p. 297, Eq.
(59)]. Here A indicates the stimulated emission rate, while
Ab is the stimulated absorption rate.

Expending the fractions in the above lasing equation to first
order, we further derive the equation for the average photon
number 〈n̂l〉 = ∑

nPn, i.e.,

d

dt
〈n̂l〉 = (A − Ab − κ)〈n̂l〉 + A − B〈(n̂l + 1)2〉

+ A

Ab
B

〈
n̂2

l

〉 · · · . (12)

The first linear term is the net lasing gain, which is exactly the
same as that in the previous semiclassical laser equation (8),
and we can verify A − Ab = G. The B terms are nonlinear
saturation which is beyond the linearized laser theory.

IV. PHOTON NUMBER STATISTICS

Setting Ṗn = 0 in the lasing equation (10), the photon
number distribution of the cavity mode in the steady state
is obtained as follows:

Pn

Pn−1
= A

Ab + κ
(
1 + nB

A

) ,

Pn = P0

n∏
k=1

A

Ab + κ
(
1 + kB

A

) (n � 1). (13)

The maximum probability of Pn appears around

n∗ = A

κB
(A − Ab − κ). (14)

Here Pn increases when n < n∗ but decreases when n > n∗.
Thus the lasing threshold requires n∗ � 0, which is just the
same as the above-threshold condition G − κ = A − Ab −
κ � 0.

When the system is working far below the threshold,
approximately the distribution becomes an exponentially
decaying one,

Pn

Pn−1
= A

Ab + κ
� 1. (15)

Therefore, the output light is like thermal radiation. However,
we should recall that if the system is below but still close to
the lasing threshold, the the realistic photon distribution is not
the idealistic thermal one [Eq. (13)]. For example, Figs. 3(b)
and 3(c) show that Pn is not exactly an exponentially decaying
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FIG. 3. Photon number distributions and Wigner functions. The
parameters are the same as those in Fig. 2 and (a) and (b) nh = 0.17
(below threshold), (c) and (d) nh = 0.507 (above threshold), (e) and
(f) nh = 2.629 (above threshold), and (g) and (h) nh = 9 (below
threshold). Notice that nh = 0.507 in (c) and (d) and nh = 2.629 in (e)
and (f) are the two blue points in Fig. 2(a) which have the same gain
G/κ = 2. The two critical points are nh � 0.187 and nh � 8.647.
The yellow columns (right) are given by the analytical result (13)
and the green columns (left) are the numerical result by solving
the master equation (1) directly. The distributions below the lasing
threshold in (a), (b), (g), and (h) are not exactly thermal distributions
(Pn ∝ exp[−n�l/T ]). The red dashed lines in (c) and (e) are the
corresponding Poisson distribution Pn = e−〈n̂l 〉〈n̂l〉n/n!, where 〈n̂l〉
is the average photon number.

distribution. In addition, above the threshold, the distribution
is not the perfect Poisson one either [24,25].

In Fig. 3 we show the photon number distributions and
the corresponding Wigner functions when Th is in different
regimes. The photon number distribution is calculated by the
above analytical result (13) (yellow columns on the right)
as well as by solving the master equation (1) numerically
(green columns on the left), and they match each other quite
well for all different Th, which confirms the validity of the
above adiabatic elimination method. Further, it shows that with
increasing Th, the cavity output light first gives out thermal
light, then becomes lasing, and then turns back to be thermal
again in the very-high-temperature regime, which confirms our
previous result.

It is worth noticing that the two blue points in Fig. 2(a)
(nh � 0.507 and nh � 2.629) have the same gain G, but their
distributions still differ greatly [see Figs. 3(c) and 3(e)]. For
example, their maximum value also depends on A /B [see
Eq. (14)].

The total output power of the cavity is

Pl = −tr(Lcav[ρ]h̄�ln̂l) = h̄�lκ〈n̂l〉, (16)

which is proportional to the average photon number of the
cavity mode. From the photon number distribution (13), we
obtain the average photon number (see Appendix A)

〈n̂l〉 = A

κB
(A − Ab − κ) + A

κB
(κ + Ab)P0. (17)

In Fig. 2(c) we compare this analytical result for cavity
photon number with the numerical result by solving the master
equation (1) directly; they fit each other quite well.

When the system is far above the threshold, P0 � 0
and thus only the first term dominates. Therefore, the laser
power is

Pl = h̄�l

A

B
(A − Ab − κ)

=
h̄�lγhγc

(
nh − nc − κ

4g2 
�
)

γh(3nh + 1) + γc(3nc + 1)
. (18)

The leading term of this result (without the κ term) is the same
as that in Ref. [9], which was calculated by rate equations (see
Eq. [S6] in the Supplemental Material thereof). This result
is valid when the system is far above the lasing threshold.
When the system is below or around the threshold, the P0

term in Eq. (17) becomes important and cannot be neglected
[Fig. 2(c)]. Considering nc ∼ 0 and γh = γc = γ , a rough
estimation for the cavity photon number is

〈n̂l〉 ∼ γ nh

κ(3nh + 2)
− γ 2

4g2

(nh + 1)(2nh + 1)

3nh + 2
, (19)

where the second term increases with nh monotonically and
indicates that the hot photon number could weaken the lasing.
Thus the maximum cavity photon number does not appear at
nh → ∞. Again we see that the cavity photon number is not
large, which is because there is only one single atom in the
cavity and thus the photon emission is limited.

Further, with this distribution Pn, the variance of the photon
number is

σ 2 := 〈
n̂2

l

〉 − 〈n̂l〉2 = A 2

κB
− A

κB
(κ + Ab)P0〈n̂l〉. (20)

When the system is far above the threshold, P0 � 0 and

σ 2

〈n̂l〉 = 1 + Ab + κ

A − Ab − κ
. (21)

Thus the lasing photon number distribution is super-Poissonian
(σ 2 > 〈n̂l〉). When A 
 Ab + κ , the photon distribution
approaches the Poissonian one with σ 2 � 〈n̂l〉.

V. FOUR-LEVEL HEAT ENGINE MODEL

In the above discussion, we notice that the three-level heat
engine has a problem of double critical points, namely, when
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FIG. 4. Four-level heat engine. The transition |e2〉 ↔ |e3〉 is
coupled with a third ancilla bath with temperature Ta.

the hot bath temperature is increased, the atomic coherence
decay rate is also increased, which decreases the lasing gain
and even below the threshold again. To avoid this problem,
we consider a four-level system as shown in Fig. 4 [26]. The
transition |e2〉 ↔ |e3〉 is coupled with a third ancilla bath with a
low temperature Ta so as to “cool down” the atomic coherence
decay rate of the lasing transition. In addition, this third bath
also increases the population on |e2〉, as we will show below.

Using the same method as the above discussion (see also
Appendix B), the linearized semiclassical lasing equation is

Ė � 1

2

[
4g2


′ �N ′
0 − κ

]
E + o(|E |2),

�N ′
0 = [(nh − nc)na + (nc + 1)nh]/�′, (22)

where G′ := 4g2�N ′
0/
′ is the lasing gain and


′ = γana + γc(nc + 1),
(23)

�′ = (4nhnc + 3nh + 2nc + 1)na + nh(nc + 1).

Here na := nP(ωa,Ta) is the thermal photon number of the
transition |e2〉 ↔ |e3〉 and ωa = E3 − E2. In this case, the
decay rate 
′ does not depend on the hot bath and thus will
not increase with Th as the three-level case. In addition, it is
clear to see that G′/κ = 1 is a linear equation and gives only
one root for nh when nc,a are fixed, which means that only one
critical point exists (see Fig. 5).

Simple algebra shows that �N ′
0 is the population inversion

on |e2〉 and |e1〉 when there is no cavity coupling. Notice
that when Ta → 0, we have �N ′

0 → 1, which means that all
the populations would fall on |e2〉 in the steady state. This is
because when Ta = 0, once the population falls down from |e3〉
to |e2〉, it could never go back. This is the maximum inversion
for lasing. In Fig. 5 we also notice that the lasing threshold is
much easier to achieve than in the three-level case, i.e., a very
small nh provides a strong enough pumping for lasing.

In the finite cavity limit κ → 0, the lasing condition is given
by �N ′

0 � 0 [Eq. (22)], which leads to

eωa/Taeωc/Tc � eωh/Th . (24)

If we consider that the ancilla bath has the same temperature
as the cold one, Ta = Tc, the above inequality gives

1 − Tc

Th

� 1 − ωa + ωc

ωh

= �l

ωh

. (25)
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FIG. 5. (a) Lasing gain G′ for the four-level system. (b) Average
photon number 〈n̂l〉 in the cavity obtained from the analytical result
(red dashed line) and numerically solving the master equation directly
(blue solid line). (c) Ratio A ′/B′. We set γh = γc = γa = 32κ , g =
14κ , nc = 0.1, and na = 0.1. The critical point is nh � 0.0141.

Here �l/ωh is just the output efficiency of this four-level
system and again it is bounded by the Carnot efficiency, which
is similar to the previous SSDB discussion.

The fully quantum equation also has the same form as the
three-level case [Eq. (10)], except that the parameters A , Ab,
and B should be changed to be (see Appendix B)

A ′ := 4g2nh(nc + 1)(na + 1)


′�′ , A ′
b = 4g2ncna(nh + 1)


′�′ ,

B′ := A ′ 4g2
 ′


′�′ , (26)

where 
 ′ = γ −1
h (4nanc + na + 3nc + 1) + γ −1

c (4nhna +
2nh + na) + γ −1

a (4nhnc + 2nh + 3nc + 1). In Fig. 5 we show
the lasing gain and the cavity photon number, which increase
monotonically with the hot bath temperature Th. Again, the
laser gain is just given by G′ = A ′ − A ′

b .
The cavity photon number is still given by Eq. (17),

but the parameters should be changed by A ′, A ′
b , and B′,

correspondingly. Figure 5(c) shows that this analytical result
for the cavity photon number fits quite well with the numerical
result.

When the system is far above threshold, the laser power is
estimated by (considering κ → 0)

κ〈n̂l〉 � G′A ′

B′ = [(nh − nc)na + (nc + 1)nh]/
 ′. (27)

If we further consider nc,a ∼ 0, γh = γc = γa = γ , and nh 

1, then the maximum gain and cavity photon number are
around G′ ∼ 4g2/γ and 〈n̂l〉 ∼ γ /4κ . Both the lasing gain
G′ and the cavity photon number 〈n̂l〉 approach saturation in
the very-high-temperature regime, as shown in Fig. 5. This is
because in this regime, the population is almost totally inverted
(�N ′

0 → 1) and thus the increase of the hot bath temperature
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Th can no longer cause a significant increase of the lasing
gain. Unlike the three-level result (19), the hot bath no longer
has any weakening effect on the lasing and thus more lasing
photons can be produced in the cavity, and the lasing power
can be increased. However, the cavity photon number is still
limited due to the single-atom feature.

VI. SUMMARY

In this paper we studied the statistics of the lasing output
from the SSDB heat engine. In this heat engine model, a single
three-level atom is coupled with the quantized cavity mode and
is in contact with a hot and a cold heat bath together. We derived
a laser equation for this heat engine model and obtained the
photon number distribution both below and above the lasing
threshold. Below the lasing threshold, the output light from the
cavity is more likely thermal radiation. With the increase of
the hot bath temperature, the population is inverted and lasing
light comes out. If the hot bath temperature keeps increasing,
our analytical result shows that the atomic decay rate is also

enhanced, which weakens the lasing gain. As a result, at a very
high temperature of the hot bath, another critical point appears
and after that the output light becomes thermal radiation again.

To avoid this double-threshold behavior, we considered
a four-level model where neither of the two lasing levels is
coupled with the hot bath directly and a third ancilla bath is
introduced. As a result, the atomic decay rate in this four-level
no longer depends on the hot bath temperature and thus
the lasing gain and cavity photon number keep increasing
monotonically when the hot bath temperature increases. This
four-level heat engine is also bounded by the Carnot efficiency,
which is the same as the original three-level SSDB model.
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APPENDIX A: LASING EQUATION FOR THE THREE-LEVEL SYSTEM

1. Lasing equation

Here we derive the lasing equation for the photon number distribution Pn = 〈n|�|n〉, where � = tratomρ is the density matrix
of the cavity mode. We assume that the cavity leaking is much slower than the atom decay and omit Lcav[ρ]; then the master
equation (1) gives (defining ραβ;mn = 〈α,m|ρ|β,n〉, where α,β = 1,2,g are the atom state indices)

d

dt
ρ11;mn = ig(

√
nρ12;m,n−1 − √

mρ21;m−1,n) − 
−
c ρ11;mn + 
+

c ρgg;mn,

d

dt
ρ22;mn = ig(

√
n + 1ρ21;m,n+1 − √

m + 1ρ12;m+1,n) − 
−
h ρ22;mn + 
+

h ρgg;mn,

d

dt
ρ12;mn = ig(

√
n + 1ρ11;m,n+1 − √

mρ22;m−1,n) − 1

2
(
−

h + 
−
c )ρ12;mn,

d

dt
ρ21;mn = −ig(

√
m + 1ρ11;m+1,n − √

nρ22;m,n−1) − 1

2
(
−

h + 
−
c )ρ21;mn,

d

dt
ρgg;mn = 
−

c ρ11;mn − 
+
c ρgg;mn + 
−

h ρ22;mn − 
+
h ρgg;mn. (A1)

Here we define 
+
i = γini and 
−

i = γi(ni + 1) for i = h,c. The matrix elements for the cavity mode is Pmn := 〈m|�|n〉 =
ρ11;mn + ρ22;mn + ρgg;mn; thus, combined with the cavity leaking term Lcav[ρ], the equation for the cavity mode is

d

dt
Pmn = ig(

√
nρ12;m,n−1 − √

mρ21;m−1,n) − ig(
√

m + 1ρ12;m+1,n − √
n + 1ρ21;m,n+1)

+ κ[
√

(m + 1)(n + 1)Pm+1,n+1 − 1
2 (m + n)Pmn]. (A2)

In the first two terms, the dynamics of the cavity mode is still coupled with that of the atom.
To derive a equation for the cavity mode alone, we need to replace ρ12;mn by Pmn in Eqs. (A2) by adiabatic elimination [24,25].

That is, due to the fast decay of the atom, Eqs. (A1) quickly arrive at the steady state, which gives

0 = ig(
√

nρ12;m,n−1 − √
mρ21;m−1,n) − 
−

c ρ11;mn + 
+
c ρgg;mn,

0 = ig(
√

nρ21;m−1,n − √
mρ12;m,n−1) − 
−

h ρ22;m−1,n−1 + 
+
h ρgg;m−1,n−1,

0 = ig(
√

nρ11;mn − √
mρ22;m−1,n−1) − 1

2 (
−
h + 
−

c )ρ12;m,n−1,

0 = −ig(
√

mρ11;mn − √
nρ22;m−1,n−1) − 1

2 (
−
h + 
−

c )ρ21;m−1,n,

0 = 
−
c ρ11;mn − 
+

c ρgg;mn + 
−
h ρ22;mn − 
+

h ρgg;mn,

0 = 
−
c ρ11;m−1,n−1 − 
+

c ρgg;m−1,n−1 + 
−
h ρ22;m−1,n−1 − 
+

h ρgg;m−1,n−1. (A3)
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Together with the relations

Pmn = ρ11;mn + ρ22;mn + ρgg;mn,

Pm−1,n−1 = ρ11;m−1,n−1 + ρ22;m−1,n−1 + ρgg;m−1,n−1, (A4)

Eqs. (A3) and (A4) become a closed set for the eight variables ρgg;mn, ρ11;mn, ρ22;mn, ρgg;m−1,n−1, ρ11;m−1,n−1, ρ22;m−1,n−1,
ρ12;m,n−1, and ρ21;m−1,n. Solving this equation set, we obtain the steady values of ρ12;mn represented by Pmn. Here we are
concerned with only the diagonal terms Pn = 〈n|�|n〉 (m = n), which gives

ig(
√

nρ12;n,n−1 − √
nρ21;n−1,n) = n[4g2nh(nc + 1)Pn−1 − 4g2nc(nh + 1)Pn]


� + n4g2

(A5)

for the first two terms in Eqs. (A2), where


 := γc(nc + 1) + γh(nh + 1), � = 3nhnc + 2(nh + nc) + 1, 
 := 1

γhγc

[γh(3nh + 1) + γc(3nc + 1)], (A6)

Then we obtain the lasing equation for the cavity mode [see Ref. [27], p. 297, Eq. (59)]
d

dt
Pn = n[A Pn−1 − AbPn]

1 + nB/A
− (n + 1)[A Pn − AbPn+1]

1 + (n + 1)B/A
+ κ[(n + 1)Pn+1 − nPn], (A7)

where we define

A := 4g2nh(nc + 1)


�
, Ab := 4g2nc(nh + 1)


�
, B := A

4g2



�
. (A8)

2. Photon number statistics

In Eq. (A7) of Ṗn, expanding the fractions to first order, the average photon number 〈n̂l〉 = ∑
nPn gives

d

dt
〈n̂l〉 = (A − Ab − κ)〈n̂l〉 + A − B〈(n̂l + 1)2〉 + A

Ab
B

〈
n̂2

l

〉 + · · · . (A9)

In the steady state, the photon number distribution is

Pn

Pn−1
= A

Ab + κ
(
1 + nB

A

) , Pn = P0

n∏
k=1

(A 2/κB)
A
κB (κ + Ab) + k

:= P0Y ! Xn

(n + Y )!
, (A10)

where we define X := A 2/κB and Y := A
κB (κ + Ab). The average photon number is

〈n̂l〉 =
∞∑

n=0

n
P0Y !Xn

(n + Y )!
= P0Y !

∞∑
n=1

(n + Y − Y )Xn

(n + Y )!
= P0Y !

∞∑
n=1

[
XXn−1

(n − 1 + Y )!
− YXn

(n + Y )!

]

= X − Y + YP0 = A

κB
(A − Ab − κ) + A

κB
(κ + Ab)P0. (A11)

When the system is far above the threshold, P0 � 0 and then we obtain

κ〈n̂l〉 = A

B
(A − Ab − κ) =

γhγc(nh − nc − κ
4g2 
�)

γh(3nh + 1) + γc(3nc + 1)
. (A12)

Notice that the radiation power of the cavity is just Pl = −h̄�l
d
dt

〈n̂l〉|cav = h̄�lκ〈n̂l〉. The leading term of this result is consistent
with that in Ref. [9].

The variance of the photon number distribution is calculated by

〈
n̂2

l

〉 =
∞∑

n=0

n2 P0Y !Xn

(n + Y )!
= P0Y !

∞∑
n=1

[
nXXn−1

(n − 1 + Y )!
− nYXn

(n + Y )!

]

=
∞∑

n=0

(n + 1)X
P0Y !Xn

(n + Y )!
− nY

P0Y !Xn

(n + Y )!
= 〈n̂l + 1〉X − 〈n̂l〉Y,

σ 2 : = 〈
n̂2

l

〉 − 〈n̂l〉2 = X − YP0(X − Y + YP0) = A 2

κB
− A

κB
(κ + Ab)P0〈n̂l〉. (A13)

When the system is far above the threshold, P0 � 0 and we have

σ 2 = A 2

κB
= 〈n̂l〉 + A

κB
(Ab + κ),

σ 2

〈n̂l〉 = 1 + Ab + κ

A − Ab − κ
. (A14)

If we have A 
 Ab + κ , the photon distribution approaches the Poisson one with σ 2 � 〈n̂l〉.
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APPENDIX B: LASING EQUATION FOR THE FOUR-LEVEL SYSTEM

1. Semiclassical lasing equation

Here we study the lasing equation for the four-level model shown in Fig. 4. First we consider the semiclassical equations
similar to Eqs. (3). We have

d

dt
〈N̂1〉 = γc[nc〈N̂g〉 − (nc + 1)〈N̂1〉] − ig[〈σ̂−〉〈â†〉 − 〈σ̂+〉〈â〉],

d

dt
〈N̂2〉 = −γa[na〈N̂2〉 − (na + 1)〈N̂3〉] + ig[〈σ̂−〉〈â†〉 − 〈σ̂+〉〈â〉],

d

dt
〈N̂3〉 = γh[nh〈N̂g〉 − (nh + 1)〈N̂3〉] + γa[na〈N̂2〉 − (na + 1)〈N̂3〉],

d

dt
〈σ̂−〉 = ig〈N̂2 − N̂1〉〈â〉 − 1

2

′〈σ̂−〉,

d

dt
〈â〉 = −κ

2
〈â〉 − ig〈σ̂−〉, (B1)

where we define 
′ = γana + γc(nc + 1) for the coherence decay rate. The steady state gives the population inversion as

〈N̂2 − N̂1〉 = (nh − nc)na + (nc + 1)nh

�′ + 4g2|E |2

′ 
 ′

, (B2)

where

�′ = 4nanhnc + 3nhna + 2nanc + nhnc + nh + na,


 ′ = γ −1
h (4nanc + na + 3nc + 1) + γ −1

c (4nhna + 2nh + na) + γ −1
a (4nhnc + 2nh + 3nc + 1).

Therefore, the lasing equation is

Ė = 2g2


′ 〈N̂2 − N̂1〉E − κ

2
E =

[
2g2[(nh − nc)na + (nc + 1)nh]


′�′ + 4g2|E |2
 ′ − κ

2

]
E

� 1

2

[
4g2[(nh − nc)na + (nc + 1)nh]


′�′ − κ

]
E . (B3)

2. Fully quantum approach

Now we consider the fully quantum approach. Similar to Eqs. (A1), the equations for the density elements are

d

dt
ρ11;mn = ig(

√
nρ12;m,n−1 − √

mρ21;m−1,n) − 
−
c ρ11;mn + 
+

c ρgg;mn,

d

dt
ρ22;mn = ig(

√
n + 1ρ21;m,n+1 − √

m + 1ρ12;m+1,n) − 
+
a ρ22;mn + 
−

a ρ33;mn,

d

dt
ρ12;mn = ig(

√
n + 1ρ11;m,n+1 − √

mρ22;m−1,n) − 1

2
(
+

a + 
−
c )ρ12;mn,

d

dt
ρ21;mn = −ig(

√
m + 1ρ11;m+1,n − √

nρ22;m,n−1) − 1

2
(
+

a + 
−
c )ρ21;mn,

d

dt
ρgg;mn = 
−

c ρ11;mn − 
+
c ρgg;mn + 
−

h ρ33;mn − 
+
h ρgg;mn,

d

dt
ρ33;mn = 
+

a ρ22;mn − 
−
a ρ33;mn − 
−

h ρ33;mn + 
+
h ρgg;mn. (B4)

Here we define 
+
i = γini and 
−

i = γi(ni + 1) for i = h,c,a. The equation for the cavity mode is

d

dt
Pmn = ig(

√
nρ12;m,n−1 − √

mρ21;m−1,n) − ig(
√

m + 1ρ12;m+1,n − √
n + 1ρ21;m,n+1)

+ κ[
√

(m + 1)(n + 1)Pm+1,n+1 − 1
2 (m + n)Pmn]. (B5)

The first two terms mean that the cavity mode is coupled with the atom.
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We apply the adiabatic elimination and consider the steady state of the atom

0 = ig(
√

nρ12;m,n−1 − √
mρ21;m−1,n) − 
−

c ρ11;mn + 
+
c ρgg;mn,

0 = ig(
√

nρ21;m−1,n − √
mρ12;m,n−1) − 
+

a ρ22;m−1,n−1 + 
−
a ρ33;m−1,n−1,

0 = ig(
√

nρ11;mn − √
mρ22;m−1,n−1) − 1

2 (
+
a + 
−

c )ρ12;m,n−1,

0 = −ig(
√

mρ11;mn − √
nρ22;m−1,n−1) − 1

2 (
+
a + 
−

c )ρ21;m−1,n,
(B6)

0 = 
−
c ρ11;mn − 
+

c ρgg;mn + 
−
h ρ33;mn − 
+

h ρgg;mn,

0 = 
+
a ρ22;mn − 
−

a ρ33;mn − 
−
h ρ33;mn + 
+

h ρgg;mn,

0 = 
−
c ρ11;m−1,n−1 − 
+

c ρgg;m−1,n−1 + 
−
h ρ33;m−1,n−1 − 
+

h ρgg;m−1,n−1,

0 = 
+
a ρ22;m−1,n−1 − 
−

a ρ33;m−1,n−1 − 
−
h ρ33;m−1,n−1 + 
+

h ρgg;m−1,n−1.

Together with the relations

Pmn = ρ11;mn + ρ22;mn + ρ33;mn + ρgg;mn,

Pm−1,n−1 = ρ11;m−1,n−1 + ρ22;m−1,n−1 + ρ33;m−1,n−1 + ρgg;m−1,n−1, (B7)

Eqs. (B6) and (B7) become a closed set for the ten variables ρgg;mn, ρ11;mn, ρ22;mn, ρ33;mn, ρgg;m−1,n−1, ρ11;m−1,n−1, ρ22;m−1,n−1,
ρ33;m−1,n−1, ρ12;m,n−1, and ρ21;m−1,n. Solving this equation set, we obtain

ig(
√

nρ12;n,n−1 − √
nρ21;n−1,n) = 4g2n[nh(nc + 1)(na + 1)Pn−1 − ncna(nh + 1)Pn]


′�′ + n4g2
 ′ , (B8)

where the parameters 
′, �′, and 
 ′ are just the same as those in the semiclassical results [Eqs. (B1) and (B2)]. Thus, the laser
equation has the same form as the three-level case [Eqs. (10) and (A7)], except that the parameters A , Ab, and B are changed to

A ′ := 4g2nh(nc + 1)(na + 1)


′�′ , A ′
b = 4g2ncna(nh + 1)


′�′ , B′ := A ′ · 4g2
 ′


′�′ . (B9)
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