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Correlations of photoemissions in a multiatomic ensemble driven by a cat-state field
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A system of two-level noninteracting atoms driven by superposition of two Glauber coherent photonic states
(a cat state) is studied. The field state is continuously restored by a source explicitly incorporated into the model.
Due to its nature, the cat state changes phase by π upon stimulated excitation of any atom, a peculiar kind of
coherent quantum feedback. That results in correlations between photonic and atomic subsystems. In the limit
of a strong field, the ansatz for the system’s density matrix is proposed and an approximate analytical solution
to the master equation is obtained in the case of a large number of atoms and slow spontaneous emission. Based
on this solution, the steady-state second-order correlation function of atomic photoemissions is evaluated and
investigated. The results demonstrate a remarkable difference from the case of the classical field (i.e., the field in
a Glauber coherent state).
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I. INTRODUCTION

For many years the creation and investigation of exotic
quantum states of light has been one of the topical goals for
researchers in quantum optics. Examples of such states are
squeezed states [1–6], Fock number states, and various super-
positions of Glauber coherent states [7–10] as well as their
entangled variants [11–16]. Such states have proved to be
convenient for various test of foundations of quantum theory
and they may eventually be useful for such fields as quantum
computation and quantum metrology [17,18]. Of particular
interest are superpositions of two Glauber coherent states,
sometimes called Schrödinger cat states. They can, for ex-
ample, serve as qubits for a quantum computer [19,20]. Since
to-date experimental techniques are close to producing such
states with many photons, it is worth exploring their properties
for future research.

The behavior of resonant atoms in highly nonclassical
light is still far from being studied more or less completely.
However, this matter is intriguing, instructive, and naturally
in demand by promising quantum technologies. In [21] the
resonance fluorescence of a single two-level atom in a cat-
state field was considered. The steady-state regime of fluore-
scence was guaranteed by explicitly incorporating the source
of the cat-state field into the model. The source not only replen-
ishes the field energy but tends to recreate its superpositional
coherent nature.

Surprisingly, as it might seem, atoms interacting with
cat-state fields puts us into the realm of quantum feedback and
control, another rapidly developing branch of quantum optics
[22,23] with many applications in studying quantum optical
systems. Any control scheme involves usually an artificial
modification of the system of interest. For measurement-based
quantum feedback, one has to set up an apparatus performing
measurements on the system and triggering the feedback loop
based on the measurement outcomes. The system thus can
be called self-organized in the sense that it demonstrates a
certain amount of self-control. In the present article we study
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a simple example of such a system: an atomic ensemble
interacting with a cat-state field of a special type, with induced
photon absorptions causing phase switchings of the field
components. The feedback loop may be constructed so as
to modify the system’s Hamiltonian or its quantum state. In
any case that is dissipative feedback since the information
about its activation enters the environment. In a series of
works [24], a measurement-based feedback loop implemented
π -phase switching of the radiation field upon emissions, i.e.,
spontaneous deexcitations, in a one- or two-atom system.
Feedback of quite the opposite, nondissipative (coherent), type
is the focus of the present work. This is rather a peculiar
kind of feedback due to it being an inherent property of
the system and emerging naturally during its evolution. As a
consequence of the cat-state nature of the pumping radiation,
the same π switching of light is induced by stimulated
excitation of any atom in the ensemble. Any individual atom
is so able to change the driving field for all other atoms
in the ensemble, quite an unusual peculiarity if compared
with ordinary nonlinear spectroscopy. This motivates studying
multiatomic systems. The aim of the present work is to
consider a multiatomic ensemble in its resonance fluorescence
in the same cat state. It is the statistics of photoemissions which
is studied, the resonance fluorescence property complementary
to its spectrum considered in [21].

The paper is organized as follows. In Sec. II we give a
theoretical model that allows us to study a steady-state regime
of the interaction of atoms with the nonclassical field. In
Sec. III we derive the master equation for the atomic part of the
system. In Sec. IV we solve the master equation approximately,
calculate the second-order correlation function of atomic
photoemissions, and compare with the known functions that
emerge in the case of classical field. In Sec. V we discuss our
results and summarize.

II. MODEL FOR THE FIELD SOURCE

We consider an ensemble of two-level atoms with a dipole
transition interacting with an external quantized electromag-
netic field. The field is supposed to be prepared in the specific
superposition of Glauber coherent states (G states) called
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Yurke-Stoler (YS) states |α〉YS [25]. This choice is motivated
by YS states being dual to ordinary Glauber coherent states
|α〉G. Just in parallel with the definition of G states as eigen-
states of the ordinary annihilation operator âG|α〉G = α|α〉G,
YS states are eigenstates of the gauge-deformed annihilation
operator

âYS = eiπn̂âG,

â
†
YS = â

†
Ge−iπn̂, (1)

âYS|α〉YS = α|α〉YS.

It is easy to check that they obey the ordinary bosonic
commutation relations [âYS,â

†
YS] = 1̂. The number of pho-

tons is invariant, n̂ = â
†
GâG = â

†
YSâYS, which guarantees the

mentioned duality. This symmetry allows one to express YS
and Glauber states through each other:

|α〉YS = 1√
2

(|iα〉G + i|−iα〉G),

|α〉G = − i√
2

(|iα〉YS + i|−iα〉YS). (2)

The property crucial to our consideration is how the Glauber
annihilation operator acts on the YS state:

âG|α〉YS = α|−α〉YS. (3)

From this equation one can see how irreversible photon loss
affects the YS state. Limited controllability of the number of
photons which have left the cavity mode prepared initially in
the YS state results in a rapid decoherence of the last one.
With a photon loss rate ν, the coherence of the initial YS state
|α〉YS will be lost in a time t � |α0|2ν−1 and it will decay into
a statistical mixture of Glauber coherent states

|α0〉YS〈α0| → 1
2 |iαt 〉G〈iαt | + 1

2 |−iαt 〉G〈−iαt |,
αt = α0 exp(−νt − iω0t), (4)

where ω0 is the mode frequency. This property is also central
to the present work. If one intends to study how the cat-state
field interacts with the system of elementary emitters in a
steady-state regime, one should somehow include in the model
the source mechanism that continuously recreates the state of
the field. While various strategies exist for the preparation
and protection of cat states against the decoherence [26–29],
for the purpose of the work we choose perhaps the simplest
mechanism utilizing the aforementioned symmetry between
YS states and G states. It is well known that a quantized mode
driven by an external source, an oscillating classical dipole, of
strength μ (without loss of generality, we consider it real in
what follows) and subjected to irreversible photon loss with
rate ν has the G state |−iμ/ν〉G as its steady state [30]. For
simplicity, the frequency of the source is assumed to be equal
to that of the mode. Analogically, a simple change of every G

operator with the YS operator will give a steady YS state

∂t ρ̂ph = �ph[ρ̂ph] = −iμ[âYS + â
†
YS,ρ̂ph]

+ 2νâYSρ̂phâ
†
YS − ν{â†

YSâYS,ρ̂ph},
�ph[|αst〉YS〈αst|] = 0,

αst = −iμ/ν. (5)

Note that αst is purely imaginary in this definition. This
approach was introduced in [21], where we direct the interested
reader for details. Since we are focused on the atom-field
interaction in the steady-state regime, the distinctive properties
of the cat-state field source are not of particular importance as
long as it gives the desired cat state in a stationary regime, and
the introduced simple mathematical model is by assumption
sufficient for our needs. In the remainder of the paper we will
assume that |αst〉YS is the initial state of the field.

III. MASTER EQUATION FOR A SYSTEM OF PHOTONS
AND ATOMS

Let us now insert the ensemble of N two-level atoms
into the field. The ith atom has its ground state |g(i)〉 and
excited state |e(i)〉. We will neglect their interaction with each
other and assume that every atom experiences the same field
as the others, i.e., there is no need to introduce an atomic
coordinate into the field operators. This is true, for example,
for closely spaced atoms (a dense ensemble) or when the atoms
are arranged in a plane orthogonal to the field’s wave vector.
We thus have to introduce the Hamiltonian terms into master
equations that describe the internal dynamics of the atoms and
their (dipole) interaction with the field:

∂t ρ̂tot = −i[Ĥat + Ĥint,ρ̂tot] + �ph[ρ̂tot], (6)

Ĥat = 	Ŝ0, Ĥint = λ(âGŜ+ + â
†
GŜ−), (7)

where 	 is the field detuning from the atomic resonance
frequency, λ is the Rabi frequency, and Ŝ±,0 are collective
atomic pseudospin operators

Ŝ0 =
N∑

i=1

ŝ
(i)
0 = 1

2

N∑
i=1

(|e(i)〉〈e(i)|−|g(i)〉〈g(i)|),

Ŝ+ =
N∑

i=1

ŝ
(i)
+ =

N∑
i=1

|e(i)〉〈g(i)|,

Ŝ− = Ŝ
†
+.

(8)

We will also assume that the spontaneous decay process is
slow enough compared to the evolution due to the atom-field
interaction that it can be neglected on the typical time scale of
the atom-field interaction characterized by the Rabi frequency
λ (assumed to be real without loss of generality). In this case
one can talk about self-organized feedback: The Hamiltonian
(7) suggests that the phase of the coherent state’s parameter
is switched by π upon every absorption of the field photon
[see (3)]. This is fundamentally different from the artificially
constructed feedback studied in our previous papers, where the
feedback was engineered to switch the phase of the external
(classical) field upon every spontaneous photodetection.

The master equation (6) is quite complicated as it describes
the evolution of a combined (infinite-dimensional) system of
field and atoms. We will follow the approach from [21] and
assume that the field subsystem is fast compared to that of
atoms and contains many photons, i.e., the coherent state
parameter of the steady state is big enough: μ � ν. At the
same time, this is the most interesting case to study, as the YS
state with a large number of photons (as is well known, the
average photon number in |αst〉 is |αst|2) demonstrates strong
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nonclassical features, involving the superposition of almost
orthogonal coherent states: 〈αst|−αst〉 � 1 (this inequality is
valid for both G and YS states). The most general form of the
solution to the master equation in this case is as follows:

ρ̂tot = �̂(+) ⊗ |αst〉YS〈αst| + �̂(−) ⊗ |−αst〉YS〈−αst|
+ R̂ ⊗ |αst〉YS〈−αst| + R̂† ⊗ |−αst〉YS〈αst|. (9)

In [21] we have seen that interaction with but one atom is
enough to destroy the coherence of the field state and make it an
incoherent mixture of |αst〉YS and |−αst〉YS. However, keeping
the last two terms in (9) (nondiagonal with respect to field
variables) is important. While they vanish when tracing over
field variables and hence do not contribute to the atomic state
(since we have assumed the practical orthogonality of |αst〉YS

and |−αst〉YS), they represent the correlation that builds up
between the atom and the field during evolution. As we will
see below, the time evolution of �̂(±) and R̂ is interrelated,
meaning that the said terms are indispensable for a correct
description of all the physical phenomena in the system.

When substituting this ansatz into a master equation and
tracing over field variables, it appears that the result looks
particularly simple in terms of new operators

�̂ = �̂(+) + �̂(−),

r̂ = R̂ − R̂†.
(10)

The operators (10) obey the following system of equations:

∂t �̂ = −i	[Ŝ0,�̂] + iλαst[r̂ ,Ŝ+ + Ŝ−],

∂t r̂ = −i	[Ŝ0,r̂] − �r̂ − iλαst[�̂,Ŝ+ + Ŝ−], (11)

where � = 4μ2/ν, and in the case of a strong field it dominates
the time dependence of r̂ . It is then well justified to neglect the
derivative of r̂ in the second equation, assuming that r̂ reaches
its steady value very rapidly compared to the time scale of the
evolution of ρ̂. Note that for 	 = 0 the evolution of �̂ is merely
a result of random infinitesimal rotations around the first axis in
the three-dimensional space of a collective atomic pseudospin.
For nonzero detunings this simple evolution interwinds with
precession around the third axis. As a result, the steady-state
solution to (11) is a maximally mixed (N + 1) × (N + 1)
density matrix �̂st = 1̂/(N + 1).

While such simple considerations are enough to get a
steady-state solution, obtaining the actual time dependence
of the density matrix is not so straightforward. The discussed
atomic system is totally equivalent to the angular momentum
j = N/2 and Ŝ+,Ŝ−,Ŝ0 operate in subspaces specified by
j . The technique of irreducible tensor operators [31,32] is
convenient when treating such systems. Instead of solving
the equations in the jm basis, one can decompose any
bounded operator Ô over the set of operators {T̂κq : κ =
0,1, . . . ,2j ; q = −κ, . . . ,κ}, which are the components of the
irreducible tensor operator T̂κ :

Ô =
2j∑

κ=0

κ∑
q=−κ

OκqT̂κq, Oκq = Tr(T̂ †
κqÔ), (12)

where by definition

T̂κq =
j∑

m,m′=−j

(−1)j−m′
C

j,j,κ

m,−m′,q |jm〉〈jm′|, (13)

with C
j,j ′,κ
m,m′,q the Clebsch-Gordan coefficients. The operators

T̂κq satisfy certain commutation relations with the angular
momentum operators. They take the most compact form when
using spherical components of angular momentum [31]:

[Ŝm,T̂κq] =
√

κ(κ + 1)Cκ,1,κ
q,m,q+mT̂κq+m, m = 0,±1, (14)

where Ŝ±1 = ∓Ŝ±/
√

2 and Ŝ0 is the same as in (8).
Applying these to (11) (with ∂t r̂ = 0, as discussed above),

it is straightforward to get the expression for rκq ,

rκq = iλαst
√

2κ(κ + 1)

� + i	q

(
C

κ,1,κ
q,−1,q−1�κq−1 − C

κ,1,κ
q,1,q+1�κq+1

)
,

(15)

and substitution into first equation of (11) yields

∂t�κq = −i	q�κq + (
C

κ,1,κ
q+1,−1,qFκq+1 − C

κ,1,κ
q−1,1,qFκq−1

)
,

(16)

Fκq = 2λ2α2
st κ(κ + 1)

� + i	q

(
C

κ,1,κ
q+1,−1,q�κq+1 − C

κ,1,κ
q−1,1,q�κq−1

)
.

(17)

As one can see, it splits into independent subsystems for
each individual κ . These systems can be solved numerically;
however, for a large number of atoms this approach becomes
impractical.

IV. APPROXIMATE SOLUTION AND CORRELATIONS
OF ATOMIC PHOTOEMISSIONS

In [21] we dealt with the spectrum of resonance fluores-
cence from a single atom interacting with a field in the YS state.
In the present paper we study another important characteristic
quantity, second-order correlation of photoemissions from the
atomic ensemble

G(t) = Tr[Ŝ+Ŝ+(t)Ŝ−(t)Ŝ−�̂st]. (18)

Terms with r̂ do not contribute due to the aforementioned
orthogonality of YS states with opposite parameters in the
strong-field limit.

Making use of the equivalence between the Schrödinger
and Heisenberg pictures [33], we rewrite (18),

G(t) = Tr[Ŝ+Ŝ−�̂(t)], �̂(0) = Ŝ−�̂stŜ+. (19)

In the irreducible tensor representation the expression for the
correlation function yields

G(t) =
2j∑

κ=0

κ∑
q=−κ

Tr(Ŝ+Ŝ−T̂κq)�κq(t)

= 2j (j + 1)
2j∑

κ=0

j∑
m=−j

�κ0(t)(−1)j−m

× (
C

j,1,j

m,−1,m−1

)2
C

j,j,κ

m,−m,0. (20)
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We see that only ρκq(t) with q = 0 contribute to the
correlation function. To obtain them, we need to solve the
whole system (16) and (17), and doing this analytically for
an arbitrary number of atoms is troublesome. We propose
a simplification of (16) and (17) based on the following
considerations. Initially, all �κq with q �= 0 are absent. That is
not the case for t > 0. Nevertheless, there are perspectives for
a simplified “diagonal” modification of (16) and (17). Note
that for a large number of atoms, �κ0(t) with large κ values
contribute to (20). For large κ the Clebsch-Gordan coefficients
in (16) and (17) depend smoothly on q. One may expect
that a similar smooth dependence (at least in the vicinity of
q = 0) is shared by �κq(t) during an intermediate period of
evolution. These observations give us a variety of options
to simplify (16) and (17). It is, for example, possible to just
assume that ρκq ≈ ρκq±2. A smarter way would be to also
adjust the diffusion rates appropriately. When considering
possible simplifications, our goal is to better simulate the
time dependence of the correlation function G(t). With this in
mind, we have chosen the following approximation to (17):

Fκq−1 = Fκq+1 ≈ 2λ2α2
stκ(κ + 1)�κq

×
(

C
κ,1,κ
q,−1,q−1

� + i	(q − 1)
− C

κ,1,κ
q,1,q+1

� + i	(q + 1)

)
. (21)

We have shifted the q index in the terms of Fκq±1 that contain
ρκq±2. It could seem that the more natural approach would
be to also change the Clebsch-Gordan coefficients explicitly
written in (16) in the same way. However, it was found to
give a worse approximation in terms of the function G(t). The
substitution into (16) yields a set of independent equations on
�κq and we will only be interested in the case q = 0. Using an
explicit expression of Clebsch-Gordan coefficients, we arrive
at a rather simple solution

�κ0(t) = �κ0(0)exp(−Aκt), Aκ = 4�λ2|αst|2κ(κ + 1)

�2 + 	2
,

(22)

where �κ0(0) is evaluated from (19), assuming that �̂st is a
maximally mixed state. Interestingly, while the approximation
(21) was initially developed for a high number of atoms, it
also works quite well for small numbers too.

It is instructive to compare the calculated correlation
functions in a YS field with the same function in the G field.
For the G field, there is no need to use the ansatz (9). The
master equation for the case of the G field is obtained from
(6) by replacing all YS operators with G operators (including
those in �[ρ̂tot]). If the source of the field is strong, as it is for
the YS field, the field with good precision occurs in its steady
state |αst〉G, with αst taken from (5): ρ̂tot = �̂ ⊗ |αst〉G〈αst|.
Tracing over field variables, we see that the atomic density
matrix then obeys the von Neumann equation (neglecting the
slow spontaneous emission)

∂t �̂ = −i[λαst(Ŝ+ − Ŝ−) + 	Ŝ0,�̂]. (23)

Here we have used the fact that αst is purely imaginary. Its
solution, as is well known, demonstrates Rabi oscillations (and
they can be seen in the correlation function as thin solid lines

(a)

(b)

FIG. 1. Correlation function of atomic photoemissions evaluated
at (a) 	 = λ/10 and (b) 	 = 2λ/3. The other parameters are
similar for all the curves: μ = 10λ, ν = 3λ, and N = 25. Correlation
functions in the G field are represented by thin solid lines, thick
solid lines are for exact correlation functions in the YS field, and
approximate functions in the YS field are shown by dashed lines.

in Fig. 1) and is evidently drastically different from the case
of the YS field.

Correlation functions evaluated for different values of the
system’s parameters are given in Fig. 1 in comparison with
the exact correlation function evaluated using the numerical
solution of (16) and (17) and correlation functions in the G

field evaluated using the solution of (23). As one can see,
the approximation is able to catch the general shape of the
curve, although the details related to the 	 dependence are
not present (the agreement between the exact solution and
the approximation is better for greater detunings). However,
the asymptotic behavior

lim
t→∞G(t) =

(
2j (j + 1)

3

)2

(24)

is the same for the approximate and exact solutions due to
eventual extinction of all �κ0 with κ > 0 for both types of
solution.

V. CONCLUSION

We have studied correlations of photoemissions in the
ensemble of two-level atoms interacting with light in the
special superposition of Glauber coherent states. The ex-
plicit incorporation of the light source into the model is of
principal importance. Despite the source tending to restore
the coherence of the cat state, the light mode is inevitably
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getting correlated with atoms. These correlations turn the
atomic ensemble into an open quantum system due to the
openness of the cat-state source. Spontaneous transitions in
the atomic system were neglected in the evolution equation
and only inserted later “by hand” when considering the
correlation function. Nevertheless, correlations of spontaneous
emissions revealed by G(t) are purely of irreversible type. That
drastically differs from the case of atoms interacting with the
G field, where the steady state displays Rabi oscillations.

The system demonstrates a self-induced feedback, the
phase switchings of the field components upon every induced
absorption of a photon. It is the feedback that induces
correlations between atomic and photonic subsystems. The
case of many atoms and a multiphotonic field is of particular

interest. A somewhat simplistic model appears to be in
qualitative agreement with the exact numerical calculation.
We believe that investigation of more complex systems with
self-organized feedback of the type described in the present
paper could potentially reveal further interesting phenomena.
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