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Recently, an approach to tomography with extended anisotropic radiation sources has been introduced, which
helps to overcome the challenges resulting from the low brilliance typical for x-ray laboratory sources. The method
is based on the three-dimensional Radon transform (3DRT) which uses planar integrals instead of line integrals.
By extending the source spot in one direction, more photons can contribute to image formation while the impact
on the resolution is minor with the 3DRT approach. In this work we present a more comprehensive description
of the method, derive quantitative error estimates for the extraction of these planar integrals measured with a
finite source size, and validate the 3DRT scheme by analytical theory. We also demonstrate a simple and efficient
reconstruction algorithm for 3D Radon data. Finally, we further substantiate the method with experimental results
obtained at a microfocus x-ray source with an extremely anisotropic source spot.
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I. INTRODUCTION

X-ray computed tomography (CT) is widely used today
for nondestructive three-dimensional (3D) imaging in medical
[1], biological, and material science applications [2]. Apart
from the high penetration power, hard x rays also offer
further advantages: The broadening of the beam by scattering
and diffraction within the object are sufficiently low so that
the projection approximation required for CT holds up to
large specimen thickness and small voxel size. Moreover, the
absorption coefficient is quantitatively tractable and can be
linked to material composition. Finally, the small wavelength
holds the promise of reaching high resolution. In practice,
however, most applications of analytical CT reach at best
moderate resolution in the micron range, while nanoscale
resolution below that of visible light remains rare. This is
primarily due to the limited brilliance of laboratory x-ray
sources, despite some important advances such as the liquid
jet anode [3–6] or the inverse Compton scattering based
sources [7,8]. For this reason, synchrotron radiation (SR) is still
indispensable for tomography at the nanoscale. X-ray phase
contrast CT based on free space propagation [9–11], which
enables high resolution also for non- or weakly absorbing soft
tissues, are even more constrained to SR. In order to reach
the required degree of spatial coherence or the resolution, one
cannot simply slit down or refocus a laboratory x-ray source,
without detrimental loss of flux.

To overcome these constraints, we have recently proposed
an approach to analytical CT based on the 3D Radon transform
(3DRT) [12]. The 3D Radon transform is well understood
theoretically [13] and several reconstruction methods for cone-
beam data based on the 3DRT have been considered (see, i.e.,
Refs. [14,15]). The method put forward in Ref. [12] is designed
to make a larger fraction of photons exploitable without losing
resolution or coherence by relaxing the brilliance or source size
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in one of the two source dimensions. Extending the source in
one direction sx while keeping the other sy sufficiently small
(as required for resolution or coherence), a larger flux can
contribute to the image. At the same time the “good” image
quality (resolution, coherence) as determined by the small
source direction sy is translated isotropically into all (3D)
directions of the reconstruction volume. This 3DRT approach
requires the measurement of planar integrals, i.e., integrals
over planes through the object, instead of using line integrals
of the conventional 2D Radon transform. Further, the normal
vector of the planes have to be sampled on the unit sphere. Due
to constraints imposed by the anisotropic source, two rotation
axes have to be used. While we have previously shown by
both simulation and experiment that the 3DRT method works
in principle [12], we had not yet given quantitative limits on
the tolerable source extension sx � sy with associated error
bounds, which is the scope of the present work.

In this work, we hence consider to which extent detector
line integrals, measured in cone-beam geometry with a source
of given width sx , approximate the planar integrals required
for the 3DRT. Note that the error studied here by analytic
theory includes but is not limited to the well-known cone-beam
error controlled by the cone-beam angle σ , and depends
both on σ and the source size sx . The results are useful
also for the conventional case of micro-CT with isotropic
source size. As we discuss in detail, two conditions have to
be distinguished: First, the nonlinear averaging of the signal
such as in absorption contrast, where the negative logarithm
of the detector value has to be taken prior to reconstruction.
Second, the linear averaging which applies, for example, for
phase contrast or x-ray fluorescence tomography, but also as
the limit of weakly absorbing samples. In the linear case,
we show that the finite source size results only in a minor
error contribution with no loss of resolution. Contrarily, for
the nonlinear averaging associated with absorption contrast,
the tolerable extension of the source in sx is more critical and
must be chosen according to object properties-in particular the
spatial variation of the projected absorption coefficient.

We then show experimentally that sharp reconstructions of a
biological object (gerbil cochlea) can indeed be obtained based
on the 3DRT, resulting in isotropic resolution on the order of
20 μm, even when projections are almost completely blurred
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FIG. 1. Sketch of the cone-beam geometry. A point source at
r0 projects some density of the object, described by f , on a two-
dimensional pixel detector. A line L on the detector defines a plane
(red) in R3 together with the source. Integration along a set of parallel
lines yields a one-dimensional profile which approximates the planar
integrals. Each line, defining a plane, corresponds to one value of the
profile. A full set of planar integrals can be used to reconstruct the
original density f by the inverse 3DRT.

in one direction owing to a highly anisotropic source size of
0.04 mm × 12 mm. With respect to the previous experiments
[12], the angular sampling, data processing routines, and the
reconstruction procedure were improved further.

The manuscript is organized as follows: Following
these motivational paragraphs, the cone-beam reconstruction
scheme and basic definitions are introduced. Section II
presents the analytic theory, including the geometric errors of
the linear and nonlinear case, as well the related quantification
of the resolution loss. An explicit reconstruction algorithm is
given in Sec. III, addressing also the issue of angular sampling
for the 3DRT. Finally, the experimental demonstration is
presented in Sec. IV, before the manuscript closes with a brief
conclusion.

A. Cone-beam reconstruction scheme

The cone-beam geometry (Fig. 1) is of outstanding practical
importance for computed tomography: it naturally arises,
whenever projections from a point source are measured with
a two-dimensional camera. These cone-beam projections can
be defined as

p(r0,rd ) :=
∫ ∞

0
f (r0 + t l)dt, with l = rd − r0

‖rd − r0‖ ∈ S2,

(1)

where r0 and rd denote the position of the source and a point
on the detector, respectively. The function f describes some
local property of the sample, for example, the attenuation of x
rays of a specific energy per unit length. A single acquisition
naturally produces p(r0,rd ) for all rd on the detector. The
original function f can be reconstructed exactly from a set
of cone-beam projections from different directions, if the set
of directions satisfies certain completeness conditions [16,17].
Varying the direction can be achieved by either rotating the
sample and thus f , or by moving a gantry with source and
detector on an orbit around the sample.

Three-dimensional imaging in cone-beam geometry has
been studied extensively and several reconstruction algorithms
have been proposed [1,15–18]. One approach considered in
this work is based on the three-dimensional Radon transform
(3DRT),

g(n,s) = Rf (n,s) ≡
∫
R3

f (r)δ(r · n − s)dr. (2)

It maps a function, f : R3 → R+, to the set of its planar
integrals, g : S2 × R → R+. An explicit inversion formula
for the Radon transform is given by [13]

f (r) = −1

8π2

∫
S2

∂2
s g(n,s)|s=n·rdS. (3)

Here “·” denotes the usual inner product on R3, and n ∈ S2 is
understood as a unit vector in R3. The integration is computed
over the unit 2-sphere S2 with integration variable n and dS

denotes the surface element on the 2-sphere. To relate the cone-
beam projections to the Radon transform recall the following
basic geometric fact: In cone-beam geometry, any line L on the
detector together with the position of the source r0 determines
a plane in R3. As a direct consequence, planar integrals can
be extracted up to a non-negative kernel Kpnt by integrating
p(r0,rd ) along a line L on the detector,

g̃(n,s) =
∫

L

p(r0,rd )wL(rd )drd

=
∫
R3

f (r)Kpnt(r)δ(r · n − s)dr. (4)

We suppress the relation between the Radon coordinates (n,s)
and r0 and L parametrizing the same plane for now. The pur-
pose of the weighting function wL is to compensate the miss-
ing curvature of the detector. The explicit form of the kernel
Kpnt and the choice of the weighting function wL will be
discussed in Sec. II C. The cone angle σ , the angular field
of view of the object seen from the source, constitutes an
important parameter of the setup. It can be defined as

σ := max{�(r − r0,r′ − r0) : r,r′ ∈ supp f }.
In particular, we have that Kpnt → 1 for σ → 0. Hence, for
σ 	 1, the approximate planar integrals defined in Eq. (4) can
be used to reconstruct f . This provides us with a particularly
simple method for cone-beam tomography with small cone
angles:

(1) Measure cone-beam projections p for various orienta-
tions.

(2) Extract (approximate) planar integrals g̃ by integrating
along (straight) lines on the detector.

(3) Reconstruct f from the planar integrals using some in-
version algorithm for the three-dimensional Radon transform.

In this work we analyze the compatibility of this approach
with an extended source.

II. THEORY

A. Optical system

Consider the geometry as sketched in Fig. 2. We de-
scribe the object’s local attenuation coefficient by f (r). Let
the object be contained in a ball of radius R around r1,
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FIG. 2. Cone-beam geometry with an extended source. The
object, described by f , is contained in a ball of radius R around
r1. The source is centered at r0. The detector lies in the plane through
r2 with normal z ‖ (r2 − r0). The source to object distance ‖r1 − r0‖
and the object to detector distance ‖r2 − r1‖ are denoted by z01 and
z12, respectively. If the (line) source S is parallel to a line on the
detector L, all rays from points rs ∈ S to points rd ∈ L lie in a
common plane P (light red).

supp f ⊂ Ball(r1,R). Consider a fully incoherent and isotrop-
ically emitting source. The latter assumption is justified if we
restrict our consideration to a narrow cone around the optical
axis z. We describe the source by its (spectrally and angular
integrated) radiant emittance I0j (rs) in the plane through
r0 with normal z (z = z0). For simplicity we assume j to
be non-negative and normalized such that

∫
j (rs)drs = 1.

Naturally, the source spot is assumed to be finite with spatial
extent sx and sy in x and y directions, respectively, thus
supp j = S ⊂ {(x,y,z0) : |x| < sx,|y| < sy}.

By neglecting any diffraction within the object we can write
the total intensity in the detection plane as

I (rd ) = I0

∫
S

j (rs)

‖rd − rs‖2
e−p(rs ,rd )drs ,

where p was defined in Eq. (1). In the empty beam without an
object we have p ≡ 0 and the intensity is

Iempty(rd ) = I0

∫
S

j (rs)

‖rd − rs‖2
drs .

For relatively small sources we have ‖rd − rs‖2 ≈ ‖rd −
r0‖2(1 + O(ω2) + O(ωR/z01)) with ω =

√
s2
x + s2

y/z02. Di-

vision by the empty-beam intensity then yields

u(rd ) := I (rd )

Iempty(rd )
=

∫
S

j (rs)e
−p(rs ,rd )drs . (5)

For a point source, the negative logarithm of u resembles p

exactly. In the general case we obtain the effective projection,

p̃(rd ) = − ln (u(rd )) = − ln

(∫
S

j (rs)e
−p(rs ,rd )drs

)
.

(6)

With a finite source spot we have that p̃ �= p and the image is
corrupted.

B. Extraction of planar integrals from blurred projections

For our further analysis we assume that sy 	 sx , such that
x is the low-coherence direction and y the high-coherence
direction. For now, we consider the limit sy → 0, i.e., let S be
a line. As we will see, sx > 0 does not affect the resolution
of our method but rather introduces a systematic error. The
general case, sy > 0, will be considered in Sec. II E.

Let L be a line on the detector, the integration line, and
define

g̃ = M−1
∫

L

p̃(rd )wL(rd )drd , (7)

where M = z02/z01 is the geometric magnification and wL

some weighting function. Inserting Eq. (6) into Eq. (7), we
obtain

g̃ = M−1
∫

L

− ln

(∫
S

j (rs)e
−p(rs ,rd )drs

)
wL(rd )drd . (8)

Note that Eq. (8) is the generalization of Eq. (4) for a line
source. Again, g̃ only depends on the values of f in the set
of planes defined by L and the source points rs ∈ S. More
precisely, g̃ is determined by f |conv(S∪L) where “conv” denotes
the convex hull in R3. Accordingly, if S ‖ L (as lines in R3)
then S and L lie in a common plane P with conv(S ∪ L) ⊂ P

and g̃ is determined by f |P . This simple fact allows us to
compare g̃ to the corresponding planar integral,

g =
∫

P

f (r)dA.

In fact we could write g̃ = P̃[f |P ] and g = P[f |P ] and
study the operators P̃,P : L2(R2) → R. The constraint S ‖ L

ensures that P̃ also operates on L2(R2) instead of L2(R3)
and thereby makes P̃ and P comparable. However, we are
not going to use this notation. For the following analysis, we
require L ‖ S and hence, for our choice of coordinates, L ‖ x.

C. Geometric errors

We first consider the limiting linear case, where the
exponential and logarithm in Eq. (8) can be linearized and

g̃ ≈ gw := M−1
∫

L

∫
S

j (rs)p(rs ,rd )drswL(rd )drd . (9)

This linearization can be made for a weakly absorbing object
where p 	 1, or more generally, for any process where linear
projections are measured. Substituting Eq. (1) into Eq. (9) and
interchanging the order of integration we obtain

gw = M−1
∫

S

∫
L

∫ ∞

0
j (rs)f (r)wL(rd )dtdxddxs,

with r := rs + rd − rs

‖rd − rs‖ t.

(10)

Here we introduce xs and xd as the x ordinates of rs =
(xs,0,z0) ∈ R3 and rd = (xd,yd,z2) ∈ R3, respectively.

For fixed rs , the integration over dt and dxd can be
transformed to a surface integral dA over a subset of P . In
the following we are going to derive an explicit expression for
this surface integral. This will ultimately enable us to compare
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Eq. (9) to the planar integral g. As a first step, we define the
auxiliary polar coordinate θ as

tan θ := xd − xs√
y2

d + z2
02

.

For its differential we obtain the relation,

dθ =
√

y2
d + z2

02

‖rd − rs‖2
dxd,

with rs fixed. Note that (θ,t) constitute polar coordinates
around rs in the plane P . The area differential in the plane
consequently reads

dA = ‖r − rs‖dθdt

= ‖r − rs‖
√

y2
d + z2

02

‖rd − rs‖2
dxddt.

(11)

In order to make the right-hand side of Eq. (11) independent
of rs and r, we employ the approximations ‖r − rs‖ ≈ z01 and
‖rd − rs‖ ≈ ‖rd − r0‖, resulting in

z01

‖r − rs‖
‖rd − rs‖2

‖rd − r0‖2
dA =

z01

√
y2

d + z2
02

‖rd − r0‖2
dxddt. (12)

Note that rd on the left-hand side of Eq. (12) is not an
independent variable but the linear projection of the point
r from rs onto the detector plane. The natural choice of the
weighting function can be read of from Eq. (12),

M−1wL(rd ) =
z01

√
y2

d + z2
02

x2
d + y2

d + z2
02

. (13)

From here on we will suppress the subscript L in w for
notational simplicity. Under the assumption that the blurred
projection is fully captured by the detector, we can formally
extend the integration to the entire plane P . Inserting Eqs. (12)
and (13) into Eq. (10) and exchanging the order of integration
a second time yields

gw =
∫

P

f (r)
∫

S

j (rs)
z01

‖r − r0‖
‖r − r0‖
‖r − rs‖

‖rd − rs‖2

‖rd − r0‖2
dxsdA

=
∫

P

f (r)Kpnt(r)Ksrc(r)dA,

where we introduced the integration kernels,

Kpnt(r) = z01

‖r − r0‖ , (14a)

Ksrc(r) =
∫

S

j (rs)
‖r − r0‖
‖r − rs‖

‖rd − rs‖2

‖rd − r0‖2
dxs. (14b)

Equation (14a) is independent of the source size and purely
caused by the diverging beam in cone-beam geometry. In
addition, the finite source causes the second kernel, Eq. (14b),
which reduces to 1 for a point source. By expanding the kernels

into Taylor series in r around r1, we find for r ∈ Ball(r1,R),

|Kpnt(r) − 1| � σ + 2σ 2 + O(σ 3),

|Ksrc(r) − 1| � O(σ )
m1

z01
+ O(1)

m2

z2
01

+ O(σ 2)

+(higher moments),

where mk is the kth moment of the emittance distribution j ,
mk = ∫

S
j (rs)‖rs − r0‖kdrs and σ = R/z01 the cone angle.

This leads to the upper error bound,

|gw − g|
g

� σ + 2σ 2 + O(σ )
m1

z01
+ O(1)

m2

z2
01

+ O(σ 3)

+ (higher moments). (15)

The moments of the emittance distribution are limited by the
source dimension, mk � sk

x , hence mk/z
k
01 � (sx/z01)k . The

first moment m1 can be eliminated by adapting the coordinate
system to the center of mass of the source distribution j . For
most applications, one can certainly assume sx/z01 	 1 in
which case the finite source is negligible and the right-hand
side of Eq. (15) is effectively given by σ .

D. Nonlinear averaging

We now consider the nonlinear case in order to study the
nonlinear averaging which takes place in Eqs. (6) and (7).
This effect is in itself independent of the cone-beam geometry.
In order to analyze it independently we make the following
assumptions: (i) small cone angle σ ≈ 0 and hence w = 1; (ii)
a thin object such that the projection integrals p(rs ,rd ) can be
approximated by functions h : R2 → R, with

p(rs ,rd ) = h

(
xs

M − 1

M
+ xd

1

M
,yd

1

M

)
. (16)

Assumption (ii) is equivalent to approximating the three-
dimensional density f with a two-dimensional screen at z1.
The argument of h on the right-hand side of Eq. (16) gives the
intersection of rays from rs to rd with this screen.

Inserting Eq. (16) into Eq. (5) yields

u(rd ) =
∫

S ′
jeff(xs)e

−h(xd/M−xs ,yd/M)dxs

= [
jeff ∗ e−h(·,yd/M)

]
(xd/M),

where jeff(xs) := M(M − 1)−1j [−M(M − 1)−1xs] is the ef-
fective emittance distribution and S ′ := −(M − 1)M−1S =
supp jeff . Here ∗ denotes convolution with respect to the
argument marked with “·”. This jeff describes the emittance
rescaled to the object plane z = z1. The effective projection
can be expressed as

p̃(rd ) = − ln (u(rd ))

= − ln ([jeff ∗ e−h(·,yd/M)](xd/M))

=: [jeff ∗logexp h(·,yd/M)](xd/M),

where we defined the exponential convolution ∗logexp. From
now on, we will suppress the second argument yd/M of h.
Using this notation, we may write the approximate planar
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integral as

glogexp := M−1
∫

L

p̃(rd )dxd =
∫

L′
[jeff ∗logexp h](xd )dxd,

(17)

with L′ := M−1L. The difference to the exact planar integral
g then reads

glogexp − g =
∫

L′

(
[jeff ∗logexp h](xd ) − h(xd )

)
dxd

=
∫

L′

(
[jeff ∗logexp h](xd ) − [jeff ∗ h](xd )

)
dxd.

(18)

We denote by ε(xd ) the integrand of Eq. (18),

ε(xd ) := [jeff ∗logexp h](xd ) − [jeff ∗ h](xd ). (19)

Equation (19) quantifies the local approximation error. Writing
the two convolutions explicitly and pulling the second term
into the logarithm yields

ε(xd ) = − ln([jeff ∗ e−h(·)](xd ) e[jeff∗h](xd ))

= − ln([jeff ∗ e−h(·)+[jeff∗h](xd )](xd ))

= [jeff ∗logexp 	xd
](xd ), (20)

where 	xd
(x) = h(x) − [jeff ∗ h](xd ) is the deviation from the

local average of h in the vicinity of xd . In the second line of
Eq. (20) we used that multiplication with a constant commutes
with convolution. Equation (20) gives us a lower bound for ε,

0 � ε(xd ) � − ln cosh (δh(xd )),

where δh(xd ) = maxx∈S ′ |	xd
(x)| quantifies the maximal vari-

ation of h within the effective source size. The effect of the
exponential convolution is shown in Fig. 3. There, a profile
h featuring sharp edges is plotted together with j ∗logexp h,
and j ∗ h where j is the emittance distribution of a uniform
source, Eq. (23). In the lower half of Fig. 3 the relative deviation
εa = (j ∗logexp ah − j ∗ ah)/a is plotted for different a ∈ R+.
It is strictly negative and its modulus increases with increasing
a. Note that for 5% transmission, the relative deviation reaches
20% in this example.

If |	xd
| is sufficiently small, we can expand Eq. (20) into a

Taylor series. The first nonzero term is

ε(xd ) ≈ −[
jeff ∗ 	2

xd

]
(xd )

= −
∫

S ′
jeff(xs)

(
h(xd − xs) − [jeff ∗ h](xd )

)2
dxs

= [jeff ∗ h]2(xd ) − [jeff ∗ h2](xd ). (21)

By integration of Eq. (21), we obtain

glogexp − g =
∫

L′
ε(xd )dxd

≈
∫

L′

(
h2(xd ) − [jeff ∗ h]2(xd )

)
dxd. (22)

Equation (22) gives the lowest order of the error due to the
exponential convolution. The assumption of weakly varying
absorption (|	xd

| 	 1) which led to Eq. (22) breaks down for

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 h

j ∗ h
j ∗logexp h

0 5 10 15 20

x/sx

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

ε1
ε3
ε5

FIG. 3. Exponential and linear convolution. The example struc-
ture h is convolved (by ∗logexp and ∗) with a normalized uniform
density of width 2sx . The lower half shows the relative deviation
εa = (j ∗logexp ah − j ∗ ah)/a for different absorption strengths a.
The numbers a = 1, 3, and 5 correspond to approximately 37%, 5%,
and 0.7% transmission, respectively.

sharp edges in the projected attenuation. We analyze this case
by considering a piece-wise constant function,

h(xd ) =
{
hi for ai < xd � ai+1

0 for xd � a0 or xd > aN.

We assume that the effective source size s ′
x = sxM/(M − 1)

is smaller than the structure size of the object, such that ai+1 −
ai > 2s ′

x for all i. For simplicity, we assume the source to be
uniform,

j (xs) =
{

1
2sx

for xs ∈ [−sx,sx]

0 otherwise.
(23)

By carrying out the integration in Eq. (17), we get

glogexp − g = −2s ′
x

∑
i

(δhi coth δhi − 1),

where δhi = hi+1 − hi

2
.

As a numerical example we consider a rectangular function
(N = 1) of width a1 − a0 and height h0, giving

|glogexp − g|
g

= 4s ′
x

a1 − a0

h0 coth h0 − 1

h0
. (24)

The second fraction on the right-hand side of Eq. (24) is asymp-
totically linear near 0 and bounded by 1. Note that h0 = − ln μ

where μ is the projected attenuation coefficient. For ≈ 5%
transmission, we have h0 ≈ 3 and (h0 coth h0 − 1)/h0 ≈ 0.67.
In this case |glogexp − g|/g ≈ 1.34(2s ′

x)/(a1 − a0). If s ′
x is

of comparable magnitude as the structure size a1 − a0, the
relative error is of the order 1.

This exponential error appears in conventional CT as well.
In medical imaging it is one source of metal streak artefacts
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and also known as exponential edge-gradient effect (EEGE)
in the literature [19]. It is, however, not as apparent there, as
the source size limits the resolution and is thus usually kept
smaller. For our method, without any other restriction on the
source size, this nonlinear error does impose a limit on s ′

x .

E. Resolution

We have seen that the one-dimensional (line) source does
not influence the resolution if the integration line is parallel to
the source. Instead, it affects the quantitativity of the planar
integrals by a geometric and a nonlinear contribution. We
gave upper bounds (up to higher orders of the cone angle)
for these errors and showed that the geometric contribution
is negligible whereas the nonlinear contribution is determined
by the strength of local variations of the projections.

Let us now consider the general case where 0 < sy 	 sx .
Let rs = (xs,ys,z0). Note that the emittance distribution j is
a two-dimensional density here instead of a one-dimensional
one. First, we analyze the linear case given by Eq. (9). We
decompose S into the set of parallel lines with constant ys ,
defining Sys

:= {(xs,ys,z0) : xs ∈ R} ∩ supp j . Further, define
the one-dimensional normalized densities

j̄ (ys)dys :=
∫

Sys

j (xs,ys)dxsdys,

jys
(xs)dxs := j (xs,ys)dxsdys

j̄ (ys)dys

.

For fixed integration line and sample orientation, each of
these lines Sys

on the source satisfies Sys
‖ L and for this reason

fixes a (different) plane. These planes can be parametrized
by their Radon coordinates (n(ys),s(ys)). Following this
approach, the generalization of Eq. (9) for a two-dimensional
source reads

gblur := M−1
∫

L

∫ sy

−sy

∫
Sys

j (rs)p(rs ,rd )dxsdysdxd

=
∫ sy

−sy

j̄ (ys)

(
M−1

∫
L

∫
Sys

jys
(xs)p(rs ,rd )dxsdxd

)
dys

=
∫ sy

−sy

j̄ (ys)gw(n(ys),s(ys))dys. (25)

Note that ys �→ n(ys) and ys �→ s(ys) are smooth and for
small cone angles can be approximated by n(ys) ≈ n(0) and
s(ys) ≈ s(0) + (M − 1)M−1ys . Defining j̄eff(ys) := M(M −
1)−1j̄ (−M(M − 1)−1ys) analogously to jeff, Eq. (25) can be
rewritten as

gblur ≈
∫ sy

−sy

j̄ (ys)gw

(
n(0),s(0) + M − 1

M
ys

)
dys

=
∫ s ′

y

−s ′
y

j̄eff(ys)gw(n(0),s(0) − ys)dys (26)

= [j̄eff ∗ gw(n(0),·)](s(0)),

where

s ′
y = M − 1

M
sy. (27)

FIG. 4. Rectangular support for different orientations of the
coordinate system. The numbers sx and sy are defined as the smallest
number such that the rectangle [−sx,sx] × [−sy,sy] (with respect to
the coordinate system defined by x) fully contains S (red). If x is
chosen such that sy is minimal, any other direction x̃ results in a
bigger s̃y . If S is unknown, only an upper limit to s̃y as a function of
�(x,x̃), sx , and sy can be computed.

The planar integrals are blurred with the point spread function
(PSF) j̄ and Eq. (27) gives the extent of the blurring.
Importantly, the blurring depends only on s ′

y , and not on on s ′
x .

For the nonlinear case, Eq. (8), we write glogexp = gw +
(glogexp − gw). The term in parentheses is given by Eq. (18),
the convolutions being two-dimensional in this case. The
nonlinear generalization of Eq. (26) then reads

g̃blur ≈ [j̄eff ∗ gw(n(0), · )](s(0)) +
∫

L′
ε(xd )dxd,

with ε(xd ) as defined in Eq. (19). The exponential convolution
further distorts the measurement in addition to the blurring.
The properties of this nonlinear contribution were discussed
in Sec. II D.

It may not always be experimentally possible or desirable
to exactly align the integration line L with the low-coherence
direction. Some source shapes do not even have a unique low-
coherence direction. We may define sx and sy to be the smallest
real numbers such that supp j is contained in the rectangle with
sides 2sx and 2sy which are aligned with the coordinate axes.
Let x be a direction such that sy is minimal and let x̃ be any
other direction that is rotated by the angle α with respect to x.
The source dimensions in this rotated frame are bounded by
(cf. Fig. 4)

s̃y � sy | cos α| + sx | sin α|,
s̃x � sx | cos α| + sy | sin α|.

For α 	 1 this gives

s̃y ≈ sy

(
1 + α

sx

sy

)
+ O(α2).

Since sy effectively limits the resolution by Eq. (27), this
measures how fast the resolution deteriorates, if the integration
line is not strictly aligned with the low-coherence direction.
We see that as long as αsx/sy � 1 the resolution does not
deteriorate significantly.

III. SAMPLING AND RECONSTRUCTION

A. Reconstruction algorithm

For n ∈ S2,s ∈ R let g(n,s) be the values of the Radon
transform R of f , as defined in Eq. (2). The original function
f can be recovered exactly from the full Radon transform Rf ,
if it fulfills certain smoothness properties [20].
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Let � ⊂ S2
+ be a discrete subset of the hemisphere with

#� = N , � ⊂ R with #� = K , and let G = {g(n,s) | n ∈
�,s ∈ �}. We state the discrete reconstruction problem as
follows: Given G, approximate f . The number K is effectively
given by the number of detector pixels in the high-coherence
direction and the number N depends on the chosen sampling
scheme.

For notational clarity, we motivate the algorithm starting
from the inversion formula Eq. (3). See Refs. [1,20] for a
derivation of the inversion formula in n dimensions. First, we
rewrite Eq. (3) to

f (r) = 1

2

∫
S2

ĝ(n,n · r)dS,

where ĝ is the filtered Radon data,

ĝ(n,s) := −1

4π2
∂2
s g(n,s).

By exploiting the radial symmetry of g, g(n,s) = g(−n, − s),
which is conserved by the filtering, the integration domain can
be reduced to the hemisphere S2

+,

f (r) =
∫
S2+

ĝ(n,n · r)dS. (28)

To discretize the integral in Eq. (28), we replace ĝ(n,r · n)
with the nearest point in �, ĝ(n,r · n) ≈ ĝj (r · nj ) where nj =
argminnj ∈� dist(n,nj ) and ĝj : R → R+,ĝj (s) = ĝ(nj ,s).
Here “dist” denotes the distance on the sphere. This yields
a semidiscrete version of Eq. (28),

f (r) =
N∑

j=1

ĝj (r · nj )aj , (29)

where aj = ∫
Aj

1dS and Aj = {n ∈ S2
+ | dist(n,nj ) �

dist(n,nj ′ )∀j ′ �= j}. Note that the Aj represent the partitioning
of the hemisphere into the Voronoi regions (cf. Ref. [21]) from
the generating set �. If the nj are distributed uniformly on
the hemisphere this simplifies to aj = 2π/N . For an arbitrary
sampling scheme � the aj can be computed numerically.

In order to use Eq. (29) for numerical reconstruction, the
ĝj (s) need to be discretized for s ∈ �. One way to do so is
nearest-neighbor interpolation ĝj (s) ≈ ĝj i = ĝ(nj ,si), where
si = argminsi∈� |s − si |. Note that the interpolation here is
fundamentally different from nearest-neighbor interpolation
in conventional tomographic reconstruction. The method we
describe here will instead result in trilinear interpolation.

Here, for each j in Eq. (29), the set of si ∈ � corresponds
to a set of parallel slabs Bij = {r ∈ R3 : |nj · r − si | � |nj ·
r − si ′ |∀i �= i ′} ⊂ R3. Let Vk ⊂ R3 denote the voxels of the
reconstruction volume. The fully discrete version of Eq. (29)
then becomes

f (rk) =
K∑

i=1

N∑
j=1

ĝj iaj Vol3(Bij ∩ Vk). (30)

Here Vol3(Bij ∩ Vk) denotes the volume inR3. Computation of
Eq. (30) can be performed for the whole reconstruction volume
in parallel. The algorithm consists of two computational steps:

(1) For each j , compute ĝj from gj . The filtering can
be performed efficiently in Fourier space, using a properly

FIG. 5. The Radon coordinates (n,s) are defined with respect to
the center of the object r1. A line on the detector can be parametrized
by its orthogonal direction n0 in the detector plane and its minimal
distance s0 to the optical axis. The intersection of the optical axis with
the detector is denoted by r2. Both the Radon coordinates (n,s) as
well as the line corresponding to (n0,s0), together with the position
of the source r0, uniquely describe a plane in R3. Their relation can
be understood by basic planar geometry.

discretized version of F[∂2
s gj ](q) = −4π2q2F[gj ](q), where

q denotes the nonangular frequency coordinate.
(2) Back-project the filtered stacks ĝj into the reconstruc-

tion volume.

B. Acquisition and sampling

To acquire a full set of Radon data, the sample needs to
be rotated with respect to the optical axis (determined by
source and detector). We assume that source and detector
are mounted on a rigid gantry and describe the rotation
by a rotated Cartesian coordinate system (x′,y′,z′) which
is related to the fixed sample coordinate system (x,y,z) by
θ ∈ SO(3). The detector is parallel to the plane spanned by
x′,y′. Any integration line L ⊂ span{x′,y′} on the detector can
thus be parametrized by n0 ∈ span{x′,y′} ∩ S2 and s0 ∈ R+
such that L(n0,s0) = {r ∈ span{x′,y′} | n0 · r = s0}. The plane
corresponding to the integration line can be expressed in Radon
coordinates (cf. Fig. 5) as

s = z01 sin φ,

n = R(n0 × z′,φ)n0,

where φ = arctan(s0/z02) and R(n0 × z′,φ) denotes a rotation
around n0 × z′ of angle φ. For small cone angles σ these
relations can be approximated by

s = s0

M
, (31a)

n = n0. (31b)

Without constraints on L, all n0 ∈ span{x′,y′} ∩ S2

parametrize possible integration lines. Every orientation θ

consequently yields Radon data g(n,s) for a two-dimensional
surface, which for small cone angles becomes a plane. The
full three-dimensional Radon space S2

+ × R can thus be
acquired by rotation on a one-dimensional orbit �1 ⊂ SO(3),
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dim �1 = 1. The number N of sampled orientations required
for a certain angular resolution 	θ for this reason scales with
N ∼ O(1/	θ ).

The extended source imposes the constraint L ‖ x′ or
equivalently

n0 ‖ y′. (32)

Under this constraint every orientation yields Radon data on a
one-dimensional curve only, which becomes a line for σ 	 1.
For the full Radon space, rotation on a two-dimensional subset
�2 ⊂ SO(3), dim �2 = 2 is required. In this case the number
of required orientations N ∼ O(1/	θ2) is squared compared
to the unconstrained case. This can be significantly improved
by replacing Eq. (32) with the relaxed constraint,

�(n0,y′) � 	α, (33)

where 	α is the maximal admissible rotation angle as
discussed in Sec. II E. With Eq. (33), every orientation θ

yields a strip of width 	α and rotation on a one-dimensional
subset suffices to sample the full Radon space. The number of
required orientations is reduced to N ∼ O(1/(	θ · 	α)).

IV. EXPERIMENT

A. Setup

Experiments were carried out with a sealed tube source
(FK-61 04x12 MO, Thomson Tubes Electroniques, France)
with a molybdenum anode. The source was mounted with
a 6◦ tilt to produce a 0.04 mm × 12 mm source spot. A
sCMOS pixel detector fiber coupled to a Gadox scintillator
(2k × 2k X-Ray SCMOS Camera, Photonic Science, UK) with
a resolution of 2048 × 2048 and a pixel size of 6.5 μm was
used. The sample was mounted on a Kappa goniometer (515
series, Huber, Germany). A dried cochlea of a gerbil (diameter
≈ 0.5 mm), glued to a pipette tip (Eppendorf, Germany) with
epoxy adhesive, was chosen as an object. Note that the object,
which was available from a biomedical collaboration [5] does
not matter for the scope of this work, but in terms of structure
size, composition and absorption is very suitable for the setup.
The geometric parameters of the setup are listed in Table I.

Figure 6(a) shows a photograph of the setup. The source
was powered by a standard analytical x-ray generator (ID 3003,
Seifert, Germany) at 60 kV acceleration voltage with 40 mA
anode current. The radiation was pre-hardened by a 180 μm
aluminium foil. In total N = 16 001 projections with 0.5 s
acquisition time were taken. The different orientations were
evenly distributed on the hemisphere by a heuristic algorithm.
The total integration time for all projections was 134 min. Each
image was dark-field and empty-beam corrected. Nine sets of
parallel planar integrals with a maximal angular deviation from

TABLE I. Geometric parameters of the tomography setup: source
to sample distance z01, sample to detector distance z12, geometric
magnification M , cone angle σ , effective source extents (in the object
plane) s ′

x,s
′
y , and effective pixel size (in the object plane) peff.

z01 z12 M σ 2s ′
x 2s ′

y peff

87.5 cm 24.9 cm 1.28 10−2 2.6 mm 9 μm 5 μm

FIG. 6. Experimental setup and results. (a) Photograph showing
the setup consisting of the sealed tube source, kappa goniometer,
and pixel detector. The background has been masked to highlight
the components. (b) “Raw” projection prior to the reconstruction.
The bar at the top indicates the effective width of the source 2s ′

x . (c)
Numerical projection of the reconstructed volume. (d) Slice through
the reconstructed volume. (e) Magnified region [outlined in (d)].

the high-coherence direction of 	α = 0.5◦ were extracted
from each projection. Prior to the integration, the top and
bottom of each image with respect to the direction of the
sample holder were masked out with a Gauß error function to
minimize boundary effects. The sets of planar integrals were
binned with a factor of 2 in the radial coordinate s. The binned
effective pixel size 2peff approximately matches the effective
width of the PSF 2s ′

y . The angular deviation is expected to
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cause a blurring of less than 32 μm (3.6 times the effective
source size) due to the strong anisotropy (sx/sy = 300).

Equation (30) was implemented in MATLAB to reconstruct
the 3D volume. The set of planes corresponding to one
projection was treated as parallel by using Eqs. (31a) and (31b),
neglecting the divergence of the cone. The voronoi regions for
the discrete spherical integration were computed using the
“SphericalVoronoi” algorithm (cf. Reddy et al. [22]) of SCIPY

0.19.1 [23]. Reconstruction was carried out on a machine with
2 Intel Xeon E5-2650 v3 CPUs (10 cores each) and 512 GB
memory. The computation used all cores and less than 30 GB of
the available memory for a 9003 voxels reconstruction volume
and took about 120 min.

B. Results

Figure 6 summarizes the results. The “raw” projection
[Fig. 6(b)] prior to the reconstruction clearly exhibits a hori-
zontal blurring due to the extended source. The red bar at the
top illustrates the effective horizontal extent of the source (in
the object plane). Figure 6(c) shows a numerical re-projection
of the reconstructed volume for the same orientation. The
structure of the sample is sharply resolved in all directions.
A slice of the reconstruction volume is shown in Fig. 6(d). It
appears to be sharp, as well. Small bone structures are well
resolved as can also be seen in the magnified region in Fig. 6(e).
Dark cloudy artefacts are visible close to dense bone structures
in Fig. 6(d). These may be caused by the nonlinear averaging.
After all, these regions absorb up to 75% and thus represent
strong edges with variations of h up to 1.4. By measuring the
width of different sharp edges with high contrast, we obtained
a rough estimate for the resolution of 2–4 px. This corresponds
to 20 to 40 μm resolution. It is in good agreement with our
estimated blurring due to sy > 0 and 	α > 0 of 32 μm.

The edges of the glue and the pipette tip show clear signs
of edge enhancement due to phase contrast. The bright regions
next to the bone edges in Fig. 6(d) may also indicate this. Edge
enhancement under similar conditions, although with a much
smaller source aspect ratio s ′

x/s
′
y , has already been observed

by Vassholz et al. [12].

V. CONCLUSION AND OUTLOOK

We briefly summarize the main error bounds derived for
the measuring planar integrals in cone-beam geometry. For
the linear case applicable, for example, to phase contrast, the
contribution to the total error is bounded according to Eq. (15)
by O(σ )(m1/z01)2, where m1 was the first moment of the
source distribution in the “extended” direction, i.e., along x.
For analytical CT, we always deal with a small cone angle
σ 	 1 as well as with m1/z01 	 1. Consequently, this error
contribution can be safely neglected for analytical CT. Note
that the error remaining for a point source is linear in σ and can
be compensated by Grangeat’s trick [15]. As a result, linear
signal integration is compatible with extremely anisotropic
sources, for example, sx/sy � 103 under realistic parameters.
Further, we have shown that the resolution in the linear case is
not affected by sx , but only the “good” direction sy , since the
blurring associated with the source is governed by the length

scale s ′
y = sy(M − 1)M−1 [Eq. (27)], just as in the isotropic

case.
Contrarily, for the nonlinear case (absorption contrast)

associated with taking the negative logarithm of the detector
intensity for each pixel, the validity of approximating the
planar integral by the detector line integral can be rapidly
compromised when increasing sx . The error, in fact, depends
on the variation of the absorption coefficient within the object,
more precisely on the variation of the projection integral
on a length scale given by the effective source size. For
weakly varying absorption, the corresponding error bound is
described by Eq. (22). Somewhat more explicit results can
be obtained for piece-wise constant projection profiles with
arbitrary absorption (or equivalently transmission values); see
Eq. (24). Note, however, that the examples given correspond
to the quite unlikely case of strong jumps in the profile. Many
relevant samples, in particular biological tissues, will exhibit
rather smooth transmission. This is because the discontinuities
arising from internal boundaries are minimized by integration
along the rays through the object, except for very large
and flat interfaces. The problem of strong interfaces is well
known from artefacts denoted as metal streak artefacts also in
conventional CT, although other effects are denoted as metal
streak artefacts, as well. More precisely, the described effect of
nonlinear averaging is often denoted as the exponential edge-
gradient effect (EEGE). Indeed, the results on the nonlinear
averaging derived here, in particular Eq. (20), may also be
applied to conventional CT, helping to control the errors and
to optimize parameters in instrumental design to avoid such
artefacts.

To put the error of the nonlinear case into a practical
perspective, in particular for biological tissue, we have carried
out an experiment in absorption contrast. It shows that the
typical variation of absorption in an object composed of both
bone and soft tissue does not impede successful reconstruction
with 3DRT, even at extremely anisotropic source sizes. To this
end, consider the experimental results illustrated in Fig. 6.
Despite a seemingly hopeless blurring of the projections
[Fig. 6(b)], the 3DRT reconstruction yields a very sharp
reprojection of the reconstruction [Fig. 6(c)] and shows
surprising interior detail [Figs. 6(d) and 6(e)]. Effects of the
nonlinear error in the form of some cloudy background around
the edges of strongly absorbing bones can be identified; they,
however, do not significantly hamper the overall reconstruction
quality.

As we have demonstrated, the herein described 3DRT
scheme is compatible with extended sources. As such, it
may circumvent the compromise between resolution and
acquisition time that one usually has to make for sources of
low brilliance. The Appendix contains a simulated comparison
between the 3DRT method and conventional tomography
based on the 2D Radon transform (2DRT) with filtered
backprojection (FBP) for specific parameters. In the simulated
case, the 3DRT scheme increases the signal-to-noise ratio by
a factor of 4 while the total acquisition time and the surface
power density of the source remain equal.

In conclusion, the analytical results derived here and the
experimental demonstration of the 3DRT reconstruction in an
extremely anisotropic case with sx/sy � 300 further validate
the method proposed in the recent letter [12]. They prove
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that the 3DRT scheme makes reconstruction compatible with
a source size extended along one dimension (the “low-
resolution direction”), while the beam properties along the
“high-resolution direction” determine the resolution of the
entire 3D reconstruction.

Importantly, the current work provides quantitative error
bounds useful for experimental design, as well as data inter-
pretation. The derived results are of course equally relevant
for CT with other radiation sources of low brilliance, notably
neutron tomography.
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APPENDIX: COMPARISON OF THE 3D RADON SCHEME
WITH 2D RADON TOMOGRAPHY

This appendix contains a simulated comparison of the
3DRT method with conventional tomography based on the
2D Radon transform using filtered backprojection (FBP) [24].
The two methods were compared by keeping the surface
power density of the source, as well as the total integration
time constant. Different integration times for the individual
projections were simulated by distinct levels of Poisson noise.
The simulation was carried out in parallel beam geometry. A
collection of 20 homogeneously absorbing balls with radius
20 px, randomly placed in a ball of diameter 300 px was used
for simulation. The absorption coefficient was adjusted to a
maximum absorption of 0.5. The parameters for the simulation
and reconstruction are listed in Table II. They were chosen
such that the total acquisition time T ∝ Nt ∝ Nν/(sxsy) is
constant for the two methods. Here, N denotes the number of
projections, t the acquisition time of the individual projections,
sx and sy the extent of the source spot in x and y directions, and
ν denotes the number of photons per pixel per projection. For
the 3DRT scheme, N = 16 001 parallel projections (uniformly
distributed on the hemisphere) were computed. The line
source was simulated by convolving the projections with a
uniform point spread function of size 300 px × 1 px. From
each projection, nine sets of line profiles within an angle
of 	α = 0.5◦ were extracted. The 2DRT reconstruction was
obtained using N = 500 projections from a point source
(uniformly distributed on a semicircle).

TABLE II. Parameters for the simulated data and reconstruction
using the 3D Radon scheme (3DRT) and conventional tomography
based on the 2D Radon transform (2DRT), respectively. The number
of projections N , source size sy , source aspect ratio sx/sy , and the
number of simulated photons per pixel ν are listed.

3DRT 2DRT

N 16 001 500
sy 1 px 1 px
sx/sy 300 1
ν 469 50

Figure 7 shows slices through the reconstructed volumes for
both methods. The signal-to-noise ratio (SNR) was computed
for the slices shown in Figs. 7(c) and 7(d) from the contrast
between the two overlapping balls in the lower right and
the background, and the noise of the background, yielding
SNR3DRT = 10.4 and SNR2DRT = 2.4.

1.20.5

(c) (d)

0.008-0.0020.008-0.002

0.008-0.002

(a) (b)

FIG. 7. Simulated projections and reconstruction using the 3DRT
scheme and conventional tomography based on the 2D Radon
transform (2DRT). (a) Slice through the object consisting of 20
homogenous balls. The attenuation coefficient was chosen such that
the maximum absorption from all directions was 0.5. (b) Projections
with Poisson noise in the 3DRT geometry with a line source (lower
half) and the 2DRT geometry with a point source (upper half). (c)
Slice through the reconstructed volume computed from the 3DRT
data. (d) Slice through the 2DRT reconstruction.
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