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Multiphoton subtracted thermal states: Description, preparation, and reconstruction
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We present a study of optical quantum states generated by subtraction of photons from the thermal state.
Some aspects of their photon number and quadrature distributions are discussed and checked experimentally. We
demonstrate an original method of up to ten photon subtracted state preparation with use of just one single-photon
detector. All the states were measured with use of a balanced homodyne technique and the corresponding density
matrices were reconstructed. The fidelity between desired and reconstructed states exceeds 99%. Combined with
homodyne detection it can also be used for precise measurement of high-order autocorrelation functions.
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I. INTRODUCTION

Preparation and measurement of various quantum states
of light are the keystones of quantum optics. So far only a
few classes of quantum states were available for experimental
research. Among them there are displaced and squeezed states,
the first few Fock states, Schrödinger cat states, etc. One of
them, namely the thermal state, plays a special role. On the
one hand, it is an easy-to-prepare state, but on the other, it
supports classical correlations and can be used as a test site
area for effects based on classical or quantum correlations.

It is worth mentioning that the first pioneer experiment in
quantum optics is considered to be the work by Hanbury Brown
and Twiss [1], who investigated correlations in thermal light
by means of a beam splitter and a pair of detectors, outputs
of which are analyzed with a coincidence circuit. Since then
thermal states have been used in many applications including
ghost imaging [2–4], quantum illumination [5], and “thermal
laser” [6]. Schmidt-like correlations [7] and HOM interference
[8] were also observed for thermal states. In the present paper
we study a family of thermal states modified by multiphoton
subtraction.

Photon addition and subtraction is of great interest in
quantum optics, because it provides a tool for direct tests of
basic commutation relations [9], and enables Schrödinger’s cat
[10] and other non-Gaussian quantum state preparation. It can
also be used for probabilistic linear no-noise amplification
[11]. One- and two-photon subtracted thermal states were
demonstrated for the first time in [12]. Next up to eight-photon
subtracted thermal state was prepared with use of photon-
number-resolved detectors [13,14].

In the present work we analyze the quadrature distribution
of multiphoton subtracted thermal states (MPSTS) both theo-
retically and experimentally. The text is organized as follows.
In Sec. II we introduce a universal approach for photon number
distribution calculation of arbitrary multiphoton subtracted
quantum states, which is based on generating functions. Using
this technique, we find photon number and quadrature distri-
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butions for MPSTS. In Sec. III we describe an experimental
technique of MPSTS preparation with using just one non-
photon-number-resolving single-photon detector. In Sec. IV
we show how one can apply the model of MPSTS, found in
the previous section, to the density-matrix reconstruction from
the quadrature measurements. Finally, the experimental results
are presented and discussed in Sec. V. The utilization of photon
subtraction of the thermal state for precise interferometric
phase measurements was recently reported [15].

II. PHOTON SUBTRACTED STATES

Photon-number distribution P (n) is a key characteristic
of any quantum state of light. Any particular distribution
corresponds to its generating function G(z), which can be
defined by equation

G(z) =
∑

n

P (n)zn, P (n) = G(n)(0)

n!
, (1)

where G(n) is an nth-order derivative. Properties of the
annihilation operator and renormalization conditions lead us
to the simple description of photon subtraction [16]:

G1(z) = G(1)(z)

μ
, (2)

where G1(z) is the generating function, which corresponds to
the photon subtracted state and μ is a mean photon number
of the initial state. Applying (2) k times, one can find the
generating function for the k-photon subtracted state:

Gk(z) = G(k)(z)

μμ1 · · ·μk−1
, (3)

where μk is a mean photon number of the k-photon subtracted
state.

Equations (2) and (3) can be used for calculation of the
distribution P (n) (1) as well as for the mth-order correlation
function calculation:

g(m) = G(m)(1)

μm
= μ1μ2 · · · μm−1

μm−1
, m = 2,3, . . . . (4)
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Let’s consider several examples.

A. Fock state

The photon-number distribution of the Fock state |m〉 is
P (n) = δm,n and its generating function G(z) = zm. After
photon subtraction (2) it transforms to G1(z) = zm−1, which
corresponds to the state |m − 1〉.

B. Coherent state

A coherent state can be written in the Fock basis as
|α〉 = e− |α|2

2
∑∞

n=0
αn√
n!

|n〉, so its photon number has a Poisson

distribution P (n) = e−|α|2 |α|2n

n! , with the mean photon number
μ = |α|2 so the generating function turns G(z) = eμ(z−1).
Applying photon subtraction (2) one can verify that G1(z) =
G(z), which means that the coherent state doesn’t change under
photon subtraction.

C. Squeezed vacuum

The photon-number distribution of the squeezed vacuum
state Ŝ(ξ ) |0〉 is [17]

P (2n) = 1

cosh(|ξ |)
(2n)!

(n!)2

(
1

2
tanh(|ξ |)

)2n

,

P (2n + 1) = 0, n = 0,1, . . . .

(5)

Its generating function equals

G(z) = 1

cosh(|ξ |)
√

1 − z2 tanh2(|ξ |)
, (6)

and its mean photon number is μ = G(1)(1) = sinh2(|ξ |).
Using this approach, one can, for example, calculate a high-

order correlation function of squeezed vacuum:

g(n) = n!

2n

�n/2�∑
k=0

(2n − 2k)!

k!(n − k)!(n − 2k)!

(
1

sinh2(|ξ |)

)k

, (7)

where �. . .� is the floor function.

D. Thermal state

The density matrix of a thermal state has a well-known
diagonal form:

ρ̂ =
∞∑

n=0

P (n) |n〉 〈n| , (8)

where P (n) = μn/(1 + μ)n+1 is a Bose-Einstein distribution.
This distribution is a particular case of compound Poisson
distribution

Pμ,a(n) = �(a + n)

�(a)

μn

ann!

1

(1 + μ/a)n+a
. (9)

This distribution has two parameters: the mean photon number
μ and coherence parameter a. At a = 1 Eq. (9) turns into
the Bose-Einstein distribution, and at a −→ ∞ (9) turns
into the ordinary Poisson distribution. This distribution de-
scribes a multimode thermal state, where a is the number of
modes [18].

It can be shown that the same distribution applies also to the
single-mode multiphoton-subtracted thermal state [13,14,16].

Its generating function equals

G(z) =
[

1 + (1 − z)μ

a

]−a

. (10)

Using (2) one can show that photon subtraction conserves
the type of the distribution (9), but changes the values of
parameters a and μ as follows: a1 = a + 1 and μ1 = μa+1

a
.

Using these iterative relations we can see that a thermal state
with the initial parameters μ0 and a0 = 1 after subtraction of
k photons transforms into the state (8), (9) with parameters

ak = k + 1, μk = μ0(k + 1). (11)

It is rather counterintuitive that the mean photon number
increases after the photon subtraction procedure. This can be
explained as follows. Probabilistic photon subtraction can be
realized by means of a low-reflective beam splitter combined
with a single-photon detector in the reflection channel, which
clicks if the photon annihilation takes place [10]. As the
reflection of the beam splitter is very weak, most of the
time there are no detector clicks. However, when a photon is
detected it results in the following: (1) there is one less photon
after the beam splitter than before; (2) the number of photons
before the beam splitter was greater (on the average) than the
mean. In our case the second factor is much greater than the
first one. Let us mention that for coherent states with Poisson
photon distributions these two factors compensate each other,
so the photon subtraction doesn’t change the mean photon
number.

This peculiar behavior can be effectively used as proba-
bilistic amplification due to photon subtraction, which enables
higher phase sensitivity in thermal field interferometry [15].
In contrast, ordinary losses only decrease μ and conserve a.

Using (4), we can show that the correlation function of a
k-photon subtracted thermal state equals

g2 = 1 + 1

a
= 1 + 1

k + 1
. (12)

This equation is similar to the correlation function for a
multimode thermal state [18].

Photon-number distributions for several photon-subtracted
thermal states as well as their Wigner functions are shown in
Fig. 1. Following the procedure of photon subtraction, the
initial Gaussian function transforms to a ring-shaped non-
Gaussian function, whose radius is approximately proportional
to

√
μk . The non-Gaussianity of MPSTS has been studied

recently [19].
We can also find a quadrature distribution of MPSTS:

Pμ,a(q) =
∞∑

n=0

Pμ,a(n)|ϕn(q)|2, (13)

where ϕn(q) are the Hermit eigenfunctions of the harmonic
oscillator:

ϕn(q) = Hk(q)

(2kk!
√

π )1/2
e−x2/2. (14)

Hk are Hermite polynomials.
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FIG. 1. Photon number distributions and Wigner functions for initial thermal state and k-photon subtracted thermal states with k = 1,5,10.

The quadrature distributions P (q) for 0–10-photon sub-
tracted thermal states are shown in Fig. 2. It can be calculated
that the variance σ 2 and the kurtosis K ≡ (q − q̄)4/σ 4 relates
to photon distribution parameters a and μ as

σ 2 = μ + 1

2
, K = 3 − 6

(
μ

2μ + 1

)2
a − 1

a
. (15)

These relations can be used for quick estimation of a and μ

from homodyne measurements.

III. EXPERIMENT

The sketch of the experimental setup is shown in Fig. 3.
The HeNe cw laser radiation at the wavelength of 633 nm is
coupled with a single-mode fiber and asymmetrically split
into two channels. The main part of radiation serves as a
local oscillator and the leftover part is utilized for quantum
state preparation. The initial quasithermal state is prepared by
passing the laser beam through the rotating ground glass disk
[20,21]. The corresponding coherence time of τcoh = 40 μs
approximately equals the time it takes for a grain of the disk to
cross the laser beam and can be tuned by the disk displacement
and its speed variation. For the single spatial mode selection,
the scattered radiation is passed again through the single-mode
fiber. Conditional photon subtraction is realized by a beam
splitter with reflectivity r = 1% combined with an APD
single-photon detector Laser Components COUNT-100C-FC
with 100 Hz dark counts and a 50 ns dead time, placed in
the reflection channel [10]. Finally, the quadrature distribution
of the obtained photon subtracted thermal state is measured
with the homodyne technique [22]. We used a commercial
balanced homodyne detector Thorlabs PDB450A with a
100 kHz bandwidth and a 78% quantum efficiency. The Wigner
functions of measured states are axially symmetrical (see
Fig. 1), so the homodyne phase isn’t varied.

The main difference of our setup from the others [12–14]
is a cw regime, which allow us to use just one APD detector
for a multiple photon subtraction. It can be done as follows

(see Fig. 4). The natural bell-shaped time mode ψ(t) of the
pseudothermal light can be characterized by the correlation
function g(2)(t) with the width τcoh = 40 μs. The measured
quadrature value q is obtained by the difference photo current
I− integration over the averaging time τa: q ∝ ∫

τa
I−(t)ψ(t)dt

[23]. Choosing the acquisition time τa = 12 μs < τcoh we cut
the central part of the mode ψ(t). So our measured mode is
now rectangle-shaped with the width τa . Every photo count
registered inside this τa-interval corresponds to the photon
subtraction from this measured mode. If the APD dead time
τd = 50 ns � τa , we can register several photo counts inside
the acquisition interval, which corresponds to multiple photon
subtraction. To avoid any interbin correlations we select the
bins periodically separated by 2τcoh. We should note that it
is possible to use the data from all the bins; it significantly
increases the sample size, but the measured values become
statistically dependent so the χ2 test (see next section) can no
longer be applied.

The multiple photon subtraction method is quite similar
(up to space-time exchange) to the principle of operation
of the photon-number-resolved detector, based on the APD
array [24], where several photons in one spatial mode can
be independently detected by different APD’s, placed in the
different points of the initial spatial mode area. Two-photon
subtracted thermal states were recently realized using this
technique [15]. It can also be used in other cw experiments, for
example, for modification of the squeezed vacuum states [25].
The necessary condition τcoh � τd ≈ 50 ns can be satisfied,
for example, in the case of 2 MHz narrow-band spontaneous
parametric down-conversion [26].

The measured conditional quadrature distributions were
used to reconstruct the prepared quantum states of light.

IV. RECONSTRUCTION

An easy way to estimate the quantum state (8) and (9)
from experimental quadrature data is based on the relations
(15). The quadrature variance σ 2 and kurtosis K versus the
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FIG. 2. Quadrature distributions P (q) for the k-photon subtracted thermal states with k = 0–10. Experimental data are plotted as histograms
with statistical errors, the MLE fit is plotted as a red dashed line, and theoretical distribution as a blue solid line.
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FIG. 3. Experimental setup. Thermal state ρthermal is prepared
from a HeNe laser radiation by randomizing its phase and amplitude
in a rotating ground glass disk (GGD) [20,21]. Photon subtraction
â is realized with a low-refractive beam splitter combined with a
single-photon APD detector. The quadrature distribution of prepared
state is measured with the homodyne detection technique [22].

number of subtracted photons are plotted in Fig. 5 and the
experimental dots lie close to the theory curves (11) and
(15). However, for more accurate reconstruction we used the
maximum likelihood estimation (MLE). Typically, the MLE
is used to reconstruct the density matrix of the state ρ̂ =∑N

n,m=0 ρn,m |n〉 〈m|, where N is a limit of maximum photon
number [27].

This model is quite general, but not optimal, because the
number of estimated parameters is too large; the corresponding
problem is ill conditioned and requires a lot of computing
power. Therefore, it gives rather low precision of estimates. For
a considerable set of experimentally available quantum states
of light, the model based on the basis of displaced squeezed
Fock states and root approach can be used for significant
decrease of the number of estimated parameters [28].

However, a simpler model based on the compound Poisson
photon number distribution (8) and (9) is sufficient for the
purposes of this paper. We just need to fit measured quadrature
distribution P (q) with the model distribution Pμ,a(q) (13) and
find the values of a and μ, which maximize the likelihood

A
PD

I-

q

t

t

t

τa

τcohooohhhooo

2τcoh

FIG. 4. Experimental data processing (qualitative picture). The
quadrature values q (center plot) obtained by the difference photo
current I− (top plot) integration over the acquisition interval τa .
This interval is smaller than the width τcoh of the natural time
mode ψ(t) (red bell-shaped plot), which can be defined by the
correlation function measurement. So the measured time mode is
rectangular shaped with the width τa . Every APD photo count (bottom
plot) corresponds to the photon subtraction. Time bins periodically
separated by the 2τcoh were selected for the further quantum state
reconstruction.
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FIG. 5. Dependency of the quadrature distribution variance σ and
kurtosis K on the number of subtracted photons. Dots correspond to
experimental values and lines to theoretical predictions (11) and (15).

function. To account for the homodyne detection efficiency
η we smooth the model distribution Pμ,a(q) with a Gaussian
function e−q2η/(1−η) [22]. Our model exploits only two real
parameters, so high precision quantum state estimation can be
performed. However, every time one should check whether the
estimated function Pμ,a(q) is a good fit for the experimental
data P (q). This verification was done with the usual χ2 test.
The significance level was higher than 0.01 for all of the
prepared and measured states. In Fig. 2 one can see that the
dashed red lines, obtained by MLE, are indeed a good fit
for the experimental quadrature data, plotted as histograms,
and lie close to the solid blue lines, which correspond to
the state (8) and (9) with theoretically predicted values of a

and μ.

V. RESULTS

Eleven different quantum states were prepared, measured,
and reconstructed, namely the initial thermal state with the
mean photon number μ = 1.63 and k-photon subtracted
thermal states, where k = 1, . . . ,10. The estimated values
of a and μ are plotted in Fig. 6. Lines correspond to the
predicted values of the parameters (11). As follows from the
figure, experimental results are in the good agreement with
theoretical predictions. Error bars of the estimated parameters
were calculated using the Fisher information matrix. Large
uncertainties for k = 9,10 are due to the small volume of the
sampled data (just 1500 and 450 points).

We should note that, in spite of the theory of photon
subtraction predicting integer values of the parameter a (11),
our model allows for real values of a (9), which enables
better fit of the experimental data. Such quantum states can
be interpreted as a mixture of states with different numbers of
subtracted photons. For example, one photo count may cause
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FIG. 6. Dependency of the mean photon number μ and coherence
parameter a on the number of subtracted photons. Dots correspond
to experimental values and lines to theoretical predictions (11).

both by the photon subtraction and by the dark (or background)
noise. So, the selection of events, corresponding to one photo
count, gives a mixture of the initial and one-photon-subtracted
states.

It’s worth noting that all the experimental nonidealities such
as APD dark counts, limited quantum efficiency, and so on,
do not cause significant deviations from the simple theory
predictions. We estimate the agreement between theoretical
and experimental density matrices by calculating the fidelity:

F (ρ̂th,ρ̂exp) = [Tr(
√√

ρ̂thρ̂exp

√
ρ̂th)]2. (16)

For all the measured states the fidelity is higher than 99%. The
calculated values of fidelity are also indicated in Fig. 2.

We should also mention that the obtained fidelity values
are rather high in spite of the estimated values of parameter
a deviating from values predicted by the theory (Fig. 6). This
means that the a value is more sensitive to the changes in
quantum state than the fidelity.

VI. CONCLUSION

Quadrature distributions of photon-subtracted thermal
states have been studied both theoretically [based on gen-
erating function approach (2)] and experimentally. Simple
equations (15) for quadrature distributions of MPSTS have
been found. Up to ten-photon subtracted states have been
experimentally realized with a single APD by means of a
long coherence time of the initial thermal state (Figs. 3
and 4). Applying MLE and using fitting functions with two
real parameters (13) we were able to reconstruct selected
quantum states with high accuracy by measuring quadra-
ture distributions. This simple model fits rather well the
experimental data shown in Fig. 2. The estimated states are
in a good agreement (fidelity > 99%) with the theoretical
prediction.
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