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Nonclassicality of coherent states: Entanglement of joint statistics
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Simple joint measurements of pairs of observables reveal that states considered universally as classical-like,
such as SU(2) spin coherent states, Glauber coherent states, and thermal states, are actually nonclassical. We
show that this holds because we can find a joint measurement the statistics of which is not separable. Eventually
this may be extended to all states different from the maximally mixed state.

DOI: 10.1103/PhysRevA.96.063802

I. INTRODUCTION

Quantumness is the raison d’être of quantum theory as well
as the resource behind the quantum-technology revolution,
as exemplified via entanglement and Bell’s tests. In the
conventional approach, quantumness holds for a limited class
of states, difficult to generate and preserve in practice.

Nonclassical effects always emerge as the impossibility
of confining randomness of two or more variables within
probability distributions [1]. For example, this is actually the
case of the celebrated quantum tests of the Bell type [2–4].
This includes as a particular case mainstream tests such as
the failure of the Glauber-Sudarshan P function to be a true
probability density [5].

In this paper we provide a different perspective by showing
that states considered universally as classical-like, such as
SU(2) spin coherent states, Glauber coherent states, and
thermal states, are actually nonclassical. Eventually this
can be extended to all states except the maximally mixed
state. We show that this holds via entanglement of joint
statistics.

To show this we consider the simultaneous measurement of
two compatible observables in an enlarged system-apparatus
space, that provides complete information about the statistics
of two incompatible system observables. This is to say that
we can recover their exact individual statistics after a suitable
data inversion applied to the corresponding observed marginal
distributions [6]. Then we apply the data inversion to the joint
statistics. In classical physics this always leads to the joint
statistics of the corresponding system observables, a bona fide
probability distribution. We show that this holds because in
classical physics all joint distributions are separable, so the
inversion of the joint distribution works equally well as the
inversion of the marginals.

However, in quantum physics this is no longer the case, and
the inversion can lead to pathological joint distributions that
are not probabilities. In such a case we say that the state is
nonclassical. We describe the general procedure in Sec. II. We
apply it to the qubit case in Sec. III and to Glauber quadrature
coherent states and thermal states in Sec. IV via quadrature
measurements in double homodyne detection.

*alluis@fis.ucm.es; http://www.ucm.es/info/gioq

II. BASIC SETTINGS

Nonclassicality cannot be a single-observable property
since within classical physics it is always possible to reproduce
exactly the statistics of any quantum observable. Nonclassical
effects can only emerge when addressing the joint statistics
of multiple observables, especially if they are incompatible.
Let us show how, from two different perspectives: probability
distributions and characteristic functions.

A. Probability distributions

In the most general case, joint measurements require the
coupling of the system space Hs with auxiliary degrees of
freedom Ha . We consider the simultaneous measurement
of two compatible observables, X̃ and Ỹ , in the enlarged
space Hs ⊗ Ha with outcomes x and y, respectively, and
joint probability p̃X,Y (x,y). Since this corresponds to the
statistics or a real measurement we have that p̃X,Y (x,y) is
a well-behaved probability distribution. The corresponding
marginal distributions are

p̃X(x) =
∑

y

p̃X,Y (x,y), p̃Y (y) =
∑

x

p̃X,Y (x,y), (2.1)

where we are assuming a discrete range for x and y without
loss of generality. We assume that these marginals provide
complete information about two system observables in the
system space Hs , say X and Y , respectively, which may be
incompatible. This is to say that their probability distributions
pA(a) for A = X,Y and a,a′ = x,y can be retrieved from the
observed marginals p̃A(a) as

pA(a) =
∑
a′

μA(a,a′) p̃A(a′), (2.2)

where the functions μA(a,a′) are completely known as far as
we know the measurement being performed and the initial
state of the auxiliary degrees of freedom Ha . We stress that
relation (2.2) is an assumption that holds or not depending
on the observable A, the measurement performed, and the
initial state of the ancilla. Whenever the inversion is possible,
the functions μA(a,a′) can be easily determined by imposing
Eq. (2.2) for arbitrary states of the system being observed.

The key idea is to extend this inversion (2.2) from the
marginals to the complete joint distribution to obtain a joint
distribution pX,Y (x,y) for the X and Y variables in the system
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state [6]:

pX,Y (x,y) =
∑
x ′,y ′

μX(x,x ′) μY (y,y ′) p̃X,Y (x ′,y ′). (2.3)

This is actually a definition of pX,Y (x,y) motivated by the
classical case, where after Eq. (2.2) the kernels μA(a,a′)
are actually independent conditional probabilities of getting
a given a′, with ∑

a

μA(a,a′) = 1. (2.4)

In particular this implies that the kernels in Eq. (2.3) must
be the same as those introduced in Eqs. (2.2) since pX,Y (x,y)
must give the correct marginals

pX(x) =
∑

y

pX,Y (x,y), pY (y) =
∑

x

pX,Y (x,y). (2.5)

Parallels can be drawn with the construction joint probability
distributions via the inversion of moments [7].

B. Characteristic functions

An alternative approach can be formulated in terms of char-
acteristic functions defined as usual as the Fourier transform
of the probability distributions, assuming now a continuous
range for a,

CA(u) =
∫

da eiau pA(a) = 〈eiuA〉, (2.6)

which can be inverted in the form

pA(a) = 1

2π

∫
du e−iau CA(u). (2.7)

Since both CA(u) and pA(a) contain full information about
the statistics of A the characteristic function can equally well
serve for our purposes.

The simultaneous measurement of X̃ and Ỹ leads to a joint
characteristic function

C̃X,Y (u,v) = 〈ei(uX̃+vỸ )〉 =
∫

dxdyei(ux+vy)p̃X,Y (x,y),

(2.8)
from which two marginal characteristics can be derived for
each observable rather simply as

C̃X(u) = C̃X,Y (u,0), C̃Y (v) = C̃X,Y (0,v). (2.9)

In many interesting practical settings, such as the one to be
examined in Sec. IV, the observed C̃A(u) and true CA(u)
characteristics are simply related in the form

C̃A(u) = HA(u)CA(u), (2.10)

where HA(u) is an instrumental function, which is assumed to
be known as far as we know the details of the measurement
being performed. This is the case of linear shift invariant
systems where H is the frequency response of the system,
or the optical transfer function in classical imaging optics.
That is to say that p̃A(a) is the result of convolving pA(a) with
the impulse response function, which is the Fourier transform
of H . Note that HA(0) = 1 by normalization of probability
distributions.

Assuming that HA(u) has no zeros, as it will be our case
here, the analog of the inversion (2.2) is after Eq. (2.10) simply

CA(u) = C̃A(u)/HA(u). (2.11)

Applying the inversion to the joint statistics we get

CX,Y (u,v) = C̃X,Y (u,v)

HX(u)HY (v)
, (2.12)

as a particular counterpart of Eq. (2.3). The question is
whether the so-inferred characteristic CX,Y (u,v) leads to a
true probability distribution pX,Y (x,y) via Fourier inversion:

pX,Y (x,y) = 1

(2π )2

∫
du dv e−i(ux+vy) CX,Y (u,v), (2.13)

i.e., whether the integral exists and pX,Y (x,y) is non-negative,
as it is always the case in classical physics as shown next.

C. Classical physics

Let us show that in classical physics these inversion
procedures (2.3) and (2.12) always lead to a bona fide
probability distribution pX,Y (x,y). Classically the state of the
system can be completely described by a legitimate probability
distribution pj , where index j runs over all admissible states
λj for the system. This is the corresponding phase space,
assumed to form a discrete set for simplicity and without loss
of generality. There is no limit to the number of points λj so it
may approach a continuum if necessary.

So the observed joint statistics can be always expressed as

p̃X,Y (x,y) =
∑

j

pj X̃(x|λj ) Ỹ (y|λj ), (2.14)

where Ã(a|λj ) is the conditional probability that the observ-
able Ã takes the value a when the system state is λj . By
definition, phase-space points λj have definite values for every
observable so the factorization X̃(x|λj )Ỹ (y|λj ) holds. Strictly
speaking they are the product of delta functions. Applying
Eq. (2.2) we get the conditional probabilities for the system
variables:

A(a|λj ) =
∑
a′

μA(a,a′) Ã(a′|λj ). (2.15)

Thus, because of the separable form Eq. (2.14) we readily get
from Eqs. (2.3) and (2.15) that the result of the inversion is the
actual joint distribution for X and Y ,

pX,Y (x,y) =
∑

j

pj X(x|λj ) Y (y|λj ), (2.16)

and therefore a legitimate statistics. Thus, lack of positivity
or any other pathology of the retrieved joint distribution
pX,Y (x,y) is then a signature of nonclassical behavior.

Similarly, the procedure outlined above in terms of charac-
teristic functions leads always in classical physics to a bona
fide distribution. This is because the observed characteristics
is always separable as the Fourier transform of Eq. (2.14),

C̃X,Y (u,v) =
∑

j

pj C̃X(u|λj ) C̃Y (v|λj ), (2.17)

where C̃A(u|λj ) are the corresponding conditional character-
istics. Then, after Eq. (2.12) we get also a separable joint
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characteristics for system variables X and Y ,

CX,Y (u,v) =
∑

j

pj CX(u|λj ) CY (v|λj ), (2.18)

that leads via Fourier transform to the same legitimate
distribution in Eq. (2.16).

III. QUBIT EXAMPLE

Let us focus on the qubit as the simplest quantum system
Hs . The most general state of the qubit is

ρ = 1
2 (σ0 + s · σ ), |s| � 1, (3.1)

where s is a three-dimensional real vector with |s| � 1, σ0 is
the 2 × 2 identity matrix, and σ are the Pauli matrices. The
task is finding for every ρ a suitable measurement so that
the inversion (2.3) of the observed statistics p̃X,Y (x,y) cannot
be a probability distribution. To this end, we will use that any
measurement performed in the enlarged spaceHs ⊗ Ha can be
conveniently described by a positive operator-valued measure
(POVM) in Hs :

�̃X,Y (x,y) = 1
4 [σ0 + η(x,y) · σ ]. (3.2)

Positivity and normalization require that

�̃X,Y (x,y) � 0,
∑
x,y

�̃X,Y (x,y) = σ0, (3.3)

so that

|η(x,y)| � 1,
∑
x,y

η(x,y) = 0. (3.4)

The corresponding statistics is

p̃X,Y (x,y) = tr[ρ�̃X,Y (x,y)] = 1
4 [1 + η(x,y) · s], (3.5)

and naturally

p̃X,Y (x,y) � 0,
∑
x,y

p̃X,Y (x,y) = 1. (3.6)

For definiteness, let us consider the case

η(x,y) = η√
3

(x,y,xy), (3.7)

where x,y = ±1 and η is a real parameter we will assume
positive without loss of generality 1 � η > 0. Actually, for
η = 1 we have that p̃X,Y (x,y) is a discrete and complete
sampling of the SU(2) Husimi function for two-dimensional
systems [8]. The observed marginals are

p̃X(x) = 1

2

(
1 + x

η√
3
sx

)
, p̃Y (y) = 1

2

(
1 + y

η√
3
sy

)
,

(3.8)

that provide complete information about the system observ-
ables X = σx and Y = σy with exact statistics:

pX(x) = 1
2 (1 + xsx), pY (y) = 1

2 (1 + ysy). (3.9)

The inversion of the marginals is carried out by the functions

μA

(
a,a′) = 1

2

(
1 +

√
3

η
aa′

)
, (3.10)

so that the inversion of the joint distribution in Eq. (2.3) leads
to

pX,Y (x,y) = 1

4

(
1 + xsx + ysy + xysz

√
3

η

)
. (3.11)

A. Nonclassicality of all states different from the maximally
mixed state

Throughout we are free to chose the axes and the ob-
servables measured. In this spirit, using SU(2) symmetry,
and without loss of generality, we can choose axes so that
sx = sy = 0,sz = |s|, so that

pX,Y (x,y) = 1

4

(
1 + xy

√
3

η
|s|

)
. (3.12)

This can take negative values for x = −y = ±1,

pX,Y (±1, ∓ 1) = 1

4

(
1 −

√
3

η
|s|

)
< 0, (3.13)

provided that η <
√

3|s|. Clearly for all s �= 0 we can always
chose η satisfying this relation. So every state different from
the maximally mixed state s = 0 is nonclassical.

In this regard it is worth noting that all pure states
of the qubit are SU(2) coherent states [9]. Because of
their definition and properties they are often regarded as
the closets analogs of the Glauber coherent states that can
exist in finite-dimensional spaces. Accordingly, since Glauber
coherent states are universally regarded as classical, the SU(2)
coherent states are reported as the most classical allowed
in finite-dimensional systems. This is because their joint
angular-momentum statistics can be described by a bona fide
classical-like distribution on the corresponding phase space,
which is the sphere. This is discussed in great detail in
Ref. [10], for example, regarding their Glauber-Sudarshan
SU(2) P function. This is to say that their classical-like
resemblance refers to their angular-momentum statistical
properties, although they would be nonclassical by their
finite-dimensional nature. However, we have just shown that
even if we just focus on the angular-momentum statistics they
are actually as nonclassical as any other spin state when we
look beyond the P function.

B. Entanglement of statistics

Let us provide an explicit demonstration that if pX,Y < 0 the
observed statistics (3.12) cannot be expressed in a separable
form. Separable means that there is a bona fide probability
distribution pj so that

p̃X,Y (x,y) =
∑

j

pj

4

(
1 + x

η√
3
λj,x

)(
1 + y

η√
3
λj,y

)
,

(3.14)
leading to

pX,Y (x,y) =
∑

j

pj

4
(1 + xλj,x)(1 + yλj,y), (3.15)

where, since the phase space is a sphere, λj are three-
dimensional real vectors with unit modulus |λj | � 1, being

063802-3



ALFREDO LUIS AND LAURA MONROY PHYSICAL REVIEW A 96, 063802 (2017)

>

>

>

>

a1

a2

vacuum

vacuum

φ1

φ2

D3

D4

D5

D6

t,r

t,r50%

50%

FIG. 1. Eight-port homodyne detector.

λj,x and λj,y the corresponding components. We recall that
there is no limit to the number of vectors λj . Then, if the
separable form Eq. (3.15) holds we have after Eq. (3.12) that

∑
j

pjλj,xλj,y =
√

3

η
|s|. (3.16)

We can readily show that separability (3.15) and negativity
(3.13) are contradictory. This is because |λj | � 1 so that∑

j pjλj,xλj,y � 1. Thus separability implies
√

3|s|/η � 1

while negativity implies just the opposite
√

3|s|/η > 1. There-
fore, negativity of the inferred distribution pX,Y (x,y) is equiv-
alent to entanglement of the observed statistics p̃X,Y (x,y).

C. Practical implementation

Comparing Eqs. (3.1) and (3.2) with Eq. (3.7) it can be
readily seen that for η = 1 the elements of the POVM (3.2)
are proportional to projectors on pure states with

〈σx〉 = x/
√

3, 〈σy〉 = y/
√

3, 〈σz〉 = xy/
√

3. (3.17)

If we write the most general pure state in the basis of
eigenvectors of σz as

|ψ〉 =
(

cos θ
2

sin θ
2 eiφ

)
, (3.18)

we get

〈σx〉 = sin θ cos φ, 〈σy〉 = sin θ sin φ, 〈σz〉 = cos θ,

(3.19)
so that the states satisfying the conditions (3.17) can be easily
found by suitably combining θ and φ values with

θ = ±θ0 mod π, φ = ±φ0 mod π, (3.20)

being

tan θ0 =
√

2, φ0 = π/4. (3.21)

The projection on these states can be easily implemented
in practice in a one-photon realization of the qubit via the
version of the eight-port homodyne detector schematized in
Fig. 1 [11–13]. Let the qubit be spanned by the one-photon
states |1,0〉 and |0,1〉, where |n1,n2〉 denote photon-number

states with n1,2 photons in two field modes a1,2. We consider
these states as the eigenstates of σz with eigenvalues 1 and
−1, respectively. The modes a1,2 are mixed with two further
modes in vacuum as schematized in Fig. 1. The two input beam
splitters are identical and unbalanced, with real transmission
and reflection coefficients t and r ,

t = sin
θ0

2
, r = cos

θ0

2
, (3.22)

with a relative π phase change in the lower-side reflections.
There are also two phase plates introducing phase shifts φ1,2

with

φ1 = −φ2 = π/4. (3.23)

The output beam splitters are balanced, also with real trans-
mission and reflection coefficients and a π phase change in
the lower-side reflections. Detectors placed at the four output
beams detect the exit port of the photon, so there are only four
possible outcomes. The input-output relations for the complex
amplitudes are, omitting for simplicity the vacuum modes that
will not contribute to the final result,

a3 = 1√
2

(−ra1 + teiφ2a2), a4 = 1√
2

(−ra1 − teiφ2a2),

(3.24)

a5 = 1√
2

(teiφ1a1 − ra2), a6 = 1√
2

(teiφ1a1 + ra2),

where aj is the amplitude of the field mode impinging
on detector Dj . Following the analyses in Ref. [13] for a
one-photon case, the probability that the detector Dj clicks
is p(j ) = |〈j |ψ〉|2 where the un-normalized vectors |j 〉 are,
following the same criterion as in Eq. (3.18),

|3〉 = 1√
2

(
r

−te−iφ2

)
, |4〉 = 1√

2

(
r

te−iφ2

)
,

|5〉 = 1√
2

(
t

−re−iφ1

)
, |6〉 = 1√

2

(
t

re−iφ1

)
. (3.25)

Therefore, using all preceding equations in this section, it can
be easily seen that the detectors click with the probabilities in
Eqs. (3.5) and (3.7) for η = 1. More specifically D3 clicks with
probability p̃X,Y (−1,−1), detector D4 clicks with probability
p̃X,Y (1,1), D5 clicks with probability p̃X,Y (−1,1), and D6

clicks with probability p̃X,Y (1,−1).

D. Extension to larger dimension

This analysis may be extended to systems in Hilbert spaces
of arbitrary dimension. For pure states |ψ〉 this can be readily
done by focusing on the two-dimensional subspace spanned
by the pair |ψ〉 and |ψ⊥〉, where |ψ⊥〉 is any state orthogonal
to |ψ〉. We may then define σz = |ψ〉〈ψ | − |ψ⊥〉〈ψ⊥| and
accordingly for the other Pauli matrices. For mixed states
we may focus on their projection on any two-dimensional
space that can be regarded as the marginal distribution of a
larger statistics. Alternatively, we may deal with dichotomic
observables, such as parity or any other on/off detectors
[14,15].
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FIG. 2. Diagram of the experimental realization. Detectors D1
and D2 are homodyne detectors measuring quadratures X1,θ and Y2,θ ,
respectively.

IV. UNBALANCED DOUBLE HOMODYNE DETECTION

Next we will demonstrate that there is a simple practical
procedure leading to pathological quadrature joint statistics
for Glauber coherent states and thermal states.

A. Procedure

The experiment consists of a double homodyne detector
(see Fig. 2), where the observed state |ψ〉 is mixed with vacuum
in an unbalanced beam splitter, with transmission and reflec-
tion coefficients t and r , respectively. At the output of the beam
splitter, two homodyne detectors perform the simultaneous
measurement of the commuting rotated quadratures X1,θ and
Y2,θ in the corresponding modes, where θ is the phase of the
local oscillator. We understand this as a noisy simultaneous
measurement of the noncommuting quadratures X and Y in
the signal mode in state |ψ〉. This is the relation between the
corresponding observables:

X̃ = X1,θ = rXθ + tX0,θ ,

Ỹ = Y2,θ = tYθ − rY0,θ , (4.1)

where X0,θ and Y0,θ are the corresponding rotated quadratures
for the input mode in vacuum, while Xθ and Yθ are the rotated
quadratures in the signal mode, with

Xθ = X cos θ + Y sin θ,

Yθ = −X sin θ + Y cos θ. (4.2)

The quadratures are defined as the real and imaginary parts of
the corresponding complex-amplitude operator a = X + iY

and when necessary we will take advantage of the fact that the
vacuum is invariant under quadrature rotations.

Focusing on the characteristics-based approach in Sec. II
B we begin with the observed joint characteristics for the
observables X1,θ and Y2,θ ,

C̃ ′
X,Y (u′,v′) = 〈 ei(u′X̃+v′Ỹ )〉, (4.3)

and we proceed to retrieve the joint characteristics for
the observables X and Y . Using relations (4.1) and (4.2)
in Eq. (4.3) we consider that the characteristic function
already adapted for our target variables X and Y is

C̃X,Y (u,v) = C̃ ′
X,Y (u′,v′) where

u = u′ r cos θ − v′t sin θ,

v = u′r sin θ + v′t cos θ. (4.4)

With this we get that the observed joint characteristic function
can be expressed as

C̃X,Y (u,v) = C
(S)
X,Y (u,v) HX,Y (u,v), (4.5)

where

C
(S)
X,Y (u,v) = 〈ψ |ei(uX+vY )|ψ〉, (4.6)

HX,Y (u,v) = 〈0|ei(zX0,θ +wY0,θ )|0〉 = e−(z2+w2)/8, (4.7)

and

z = u′t = t

r
(u cos θ + v sin θ ),

w = −v′r = − r

t
(−u sin θ + v cos θ ). (4.8)

It turns out that C
(S)
X,Y (u,v) is the symmetrically ordered

characteristic function for X and Y , while H is the two-
dimensional frequency response with

HX(u) = HX,Y (u,0), HY (v) = HX,Y (0,v), (4.9)

and after Eqs. (4.7) and (4.8)

HX,Y (u,v) = e−(f u2+gv2+2γ uv)/8, (4.10)

with

f = t2

r2
cos2 θ + r2

t2
sin2 θ,

g = t2

r2
sin2 θ + r2

t2
cos2 θ,

γ = t2 − r2

2t2r2
sin(2θ ). (4.11)

Finally we arrive at the general relation for arbitrary input
|ψ〉 using Eqs. (2.12), (4.5), and (4.9),

CX,Y (u,v) = C
(S)
X,Y (u,v)

HX,Y (u,v)

HX,Y (u,0)HX,Y (0,v)
, (4.12)

with

HX,Y (u,v)

HX,Y (u,0)HX,Y (0,v)
= exp (−γ uv/4). (4.13)

This is the factor which makes the whole difference between
classical and quantum physics (see discussion below). It
holds provided that the input beam splitter is unbalanced,
t �= r , and that there is a rotation between the measured
and inferred variables, θ �= 0 and π/2. These are the key
ingredients allowing the entanglement of statistics required
to disclose nonclassical properties, as discussed in Sec. II.

B. Glauber coherent states

To illustrate this procedure with a meaningful case let
us assume that |ψ〉 is a coherent state |ψ〉 = |α〉, with
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a|α〉 = α|α〉 and α = x0 + iy0, so that

C
(S)
X,Y (u,v) = 〈α|ei(uX+vY )|α〉 = ei(ux0+vy0)e−(u2+v2)/8.

(4.14)

The final CX,Y (u,v) in Eq. (4.12) can be expressed in matrix
form as

CX,Y (u,v) = eiξ∗·se−ξ ∗Mξ , (4.15)

with ξ = (u,v)T and s = (x0,y0)T , where the subscript T

denotes transposition and M is the 2 × 2 real symmetric matrix

M = 1

8

(
1 γ

γ 1

)
, (4.16)

that does not depend on α. The condition for the existence of
the integral (2.13) leading to the pX,Y (x,y) distribution is that
M should be non-negative, that is, with positive eigenvalues,
which holds provided |γ | � 1. Otherwise, there is no joint
distribution pX,Y (x,y), contrary to the classical case shown in
Sec. II C. Since M does not depend on α the condition |γ | > 1
leading to a nonclassical result can be satisfied at once for
every coherent state by a suitable choice of beam splitter and
phase θ . For example, for θ = π/4, t2 > 1/

√
2.

C. Thermal states

This result can be extended to mixed thermal states using
their expansion in the coherent-state basis as

ρ = 1

πn̄

∫
d2αe−|α|2/n̄|α〉〈α|, (4.17)

where n̄ is the mean number. After the result (4.14) we get the
following symmetrical-order joint characteristic function for
thermal states:

C
(S)
X,Y (u,v) = tr[ρei(uX+vY )] = e−(1+2n̄)(u2+v2)/8, (4.18)

leading to a final CX,Y (u,v) of the form (4.15) with s = 0 and

M = 1

8

(
1 + 2n̄ γ

γ 1 + 2n̄

)
, (4.19)

that depends on the particular thermal state being considered.
In this case M fails to be non-negative when |γ | > 1 + 2n̄.
This is a more stringent condition as n̄ grows, that is, as
ρ becomes proportional to the identity matrix. So for every
t and r there are thermal states with large enough n̄ that behave
as classical-like. Vice versa, for every n̄ we can find t and r

values so that the thermal state behaves as nonclassical.

D. Discussion

1. Squeezed Q function

Although the above analysis focuses on characteristic
functions, it may be worth showing that the observed joint
statistics p̃X,Y (x,y) results from projection of the observed
state |ψ〉 on quadrature squeezed states |ξx,y〉,

p̃X,Y (x,y) = |〈ξx,y |ψ〉|2, (4.20)

where the states |ξx,y〉 are defined by the eigenvalue equation

[(r2 − t2)a†eiθ + ae−iθ ]|ξx,y〉 = 2(rx + ity)|ξx,y〉. (4.21)

This can be easily shown from the defining eigenvalue
equations

X̃|φ〉 = x|φ〉, Ỹ |φ〉 = y|φ〉, (4.22)

combining them as(
rX̃ + it Ỹ

)|φ〉 = (rx + ity)|φ〉, (4.23)

using Eqs. (4.1) and (4.2), and then finally projecting on the
vacuum on the mode a0, being |ξx,y〉 = 〈0|φ〉.

Thus the measuring states |ξx,y〉 are quadrature squeezed
states provided that the input beam splitter is unbalanced, t �=
r . The squeezing direction in the X-Y plane is specified by the
phase θ . This is to say that the statistics p̃X,Y (x,y) is actually
a squeezed Q function. This reduces to the standard Q in the
balanced scheme t = r so that |ξx,y〉 become coherent states
|α〉 with α = (x + iy)/

√
2 [16].

2. Nonclassical measurement

The fact that the statistics is given by projection on
nonclassical states does not spoil the interest of the result.
Actually, this is the same case of the most paradigmatic non-
classical tests, such as sub-Poissonian statistics and quadrature
squeezing. They also crucially rely on the projection on highly
nonclassical measuring states: number states and infinitely
squeezed states, respectively. Moreover, it has been shown
that such nonclassical effects vanish if the measuring states
become classical-like [17].

3. The vacuum

For the proper comparison with the classical model in
Eq. (2.14) it must be understood that in this case we refer
to classical models where the vacuum means a field of definite
zero amplitude. Since our result relies on the frequency
response (4.7) it may be regarded as a quantum-vacuum effect,
as other relevant nonclassical effects in quantum optics such
as spontaneous emission [5].

4. Entanglement of statistics

We think it is worth pointing out that the nonclassical
test found here, that is, M lacking positive semidefiniteness,
has a very close resemblance with the inseparability criterion
for Gaussian states [18]. This might be expected since we
have already commented on the fact that nonclassicality
is equivalent to the lack of factorization for the observed
statistics.

V. CONCLUSION

We have used a simple and general protocol to disclose
nonclassical effects for states customarily regarded as the
most classical states. These are the Glauber coherent states,
thermal states, and SU(2) coherent states for spin variables.
Moreover, we have shown that for all states there is always
a measurement setting where the inferred joint distribution
cannot represent probabilities, with the only exception being
the totally incoherent mixed state in finite-dimensional spaces.
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So there is no state that would always allow us to infer true
probability distributions. These results are consistent with
previous works that have also reported nonclassical properties
for these states following different approaches [1,19], and with
some more recent works extending nonclassical correlations
and entanglement to all quantum states [20].

We have shown that nonclassicality holds because the
observed joint probability distribution is not separable. We
have to stress that this does not refer to actual particles, but
just to the dependence of the statistics on the two observed
variables.
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