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Finite-temperature behavior of the Bose polaron
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We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation theory valid
for weak coupling between the impurity and the bosons, we derive analytical results for the energy and damping
of the impurity for low and high temperatures, as well as for temperatures close to the critical temperature
Tc for Bose-Einstein condensation. These results show that the properties of the impurity vary strongly with
temperature. In particular, the energy exhibits a nonmonotonic behavior close to Tc, and the damping rises
sharply close to Tc. We argue that this behavior is generic for impurities immersed in an environment undergoing
a phase transition that breaks a continuous symmetry. Finally, we discuss how these effects can be detected
experimentally.
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I. INTRODUCTION

The experimental realization of highly population-
imbalanced atomic gases has dramatically improved our
understanding of the properties of mobile impurities in a
quantum medium. Using Feshbach resonances [1] to tune the
interaction between the impurity and the reservoir, cold-atom
experiments have systematically explored the properties of
impurities first in fermionic [2–4] and recently also in bosonic
[5,6] reservoirs. While there are many similarities between
impurities in fermionic and bosonic reservoirs (termed the
Fermi and Bose polarons, respectively), there are also impor-
tant differences. For instance, whereas the Fermi polaron has a
sharp transition to a molecular state with increasing attraction
[7–15], the Bose polaron exhibits a smooth crossover instead,
either to a molecular state [16] or the lowest Efimov trimer
[17] depending on the value of the three-body parameter. The
Bose polaron has also been proposed to be unstable toward
other lower lying states [18,19].

Here, we investigate a unique feature of the Bose polaron
(polaron from now on): The medium exhibits a phase transition
between a Bose-Einstein condensate (BEC) and a normal gas.
The effect of such a transition on the quasiparticle properties
has not been explored before in previous finite-temperature
studies of the Bose polaron [20,21]. Using perturbation theory
valid for weak coupling, we show that this transition gives rise
to several interesting effects. Both the energy and the damping
of the polaron depend strongly and in a nontrivial way on the
temperature in the region around the critical temperature Tc.
More generally, these effects are relevant to the behavior of
quasiparticles near a phase transition that breaks a continuous
symmetry of the system. We discuss how these effects can
be measured. Very recently, the temperature dependence of
the polaron was investigated for strong coupling [22]. Our
present study focuses instead on the weak-coupling regime
where rigorous results can be derived.

The paper is organized as follows. In Sec. II, we describe
the model and introduce the perturbative framework. Our
main results are presented in Sec. III. Here we describe the
polaron properties in three different temperature regimes: at

low temperature, in the region close to the critical temperature
for Bose-Einstein condensation, and all the way to high
temperature. We conclude in Sec. IV.

II. MODEL AND METHODS

We consider an impurity of mass m in a gas of bosons with
mass mB. The Hamiltonian is

H =
∑

k

ε
B
k b

†
kbk + gB

2

∑
k,k′,q

b
†
k+qb

†
k′−qbk′bk

+
∑

k

εkc
†
kck + g

∑
k,k′,q

c
†
k+qb

†
k′−qbk′ck, (1)

where the operators b
†
k and c

†
k create a boson and the

impurity, respectively, with momentum k and free dispersions
εB

k = k2/2mB and εk = k2/2m. The boson-boson and the
boson-impurity interactions are short range with coupling
strengths gB and g, respectively, and we work in units where
the volume, h̄, and kB are 1.

The Bose gas is taken to be weakly interacting, i.e., na3
B�1,

where n is the boson density and aB > 0 is the boson-boson
scattering length. As we are interested in deriving rigorous
results, we use Popov theory to describe the Bose gas. Below
the BEC critical temperature Tc � 2π

[ζ (3/2)]2/3
n2/3

mB
, we have

the usual Bogoliubov dispersion Ek = [εB
k (εB

k + 2TBn0)]1/2,
where n0 is the condensate density, and TB = 4πaB/mB

the boson vacuum scattering matrix. Below Tc, we have the
normal and anomalous propagators for the bosons in the BEC,

G11(k,iωs) = u2
k

iωs − Ek
− v2

k

iωs + Ek
,

G12(k,iωs) = G21(k,iωs) = ukvk

iωs + Ek
− ukvk

iωs − Ek
, (2)

where u2
k = 1 + v2

k = [(εB
k + TBn0)/Ek + 1]/2 are the

coherence factors and ωs = i2sT is a boson Matsubara
frequency with s integer. The condensate density is then found
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FIG. 1. [(a), (b)] First-order and [(c)–(h)] second-order diagrams
for the impurity self-energy. The impurity propagator is shown as the
bottom red lines, and the external impurity propagators attach to the
red dots. The boson normal and anomalous propagators are shown
as the upper solid black lines, while dashed lines are condensed
bosons. The wavy vertical lines denote the impurity-boson scattering
matrix Tv .

self-consistently from the condition

n = n0 − T
∑
ωs,k

eiωs0+G11(k,iωs)

= n0 + 8n0

3
√

π

(
n0a

3
B

)1/2 +
∑

k

εB
k + TBn0

Ek
fk, (3)

where fk = [exp(Ek/T ) − 1]−1 is the Bose distribution
function for temperatures T < Tc. Popov theory provides
an accurate description except in a narrow critical region
determined by |T − Tc|/Tc � n1/3aB [23].

Perturbation theory

We use perturbation theory in powers of the impurity-
boson scattering length a to analyze the impurity problem.
At T = 0, this approach has yielded important information.
For instance, the impurity energy was shown to depend
logarithmically on a at third order [24], similarly to the energy
of a weakly interacting Bose gas beyond Lee et al. [25,26].
The first order self-energy in Figs. 1(a) and 1(b) gives the
mean-field energy shift �1 = Tvn, where Tv = 2πa/mr is
the boson-impurity scattering amplitude at zero energy, with
mr = mBm/(mB + m) being the reduced mass. This shift is
independent of temperature, and in order to get a nontrivial T

dependence, we need to go to second order.
The six possible second-order diagrams are shown in Fig. 1.

Diagrams 1(c)–1(f) yield the “Fröhlich” contribution

�F
2 (p,ω) = n0(T )T 2

v

∑
k

[
1

εB
k + εk

+ εB
k

Ek

(
1 + fk

ω−Ek−εk+p
+ fk

ω + Ek−εk+p

)]
, (4)

where the frequency ω is taken to have an infinitesimal
positive imaginary part. The first term in the integrand comes
from replacing the bare boson-impurity interaction g with the
scattering matrix Tv (see, e.g., Ref. [24]). These diagrams are
nonzero only for T � Tc, as they correspond to the scattering
of a boson into or out of the condensate. The term �F

2 can also
be obtained from the Fröhlich model [27–29].

The “bubble” diagrams [Figs. 1(g) and 1(h)] give

�B
2 (p,ω) = T 2

v

∑
k

[
v2

k(1 + fk)�11(k + p,ω − Ek)

−ukvk[(1 + fk)�12(k + p,ω − Ek)

− fk�12(k + p,ω + Ek)]

+u2
kfk�11(k + p,ω + Ek)

]
(5)

where the pair propagators �11 and �12 are given in
Appendix A. The bubble diagrams have not previously
been evaluated, as they require particles excited out of the
condensate and consequently are suppressed by a factor√

n0a
3
B for T � Tc compared with the Fröhlich diagrams.

Their magnitude, however, increases with T as particles get
thermally excited out of the BEC, and �B

2 is indeed the only
nonzero contribution to second order for T > Tc. Note that
the Fröhlich model does not include �B

2 and therefore cannot
describe the polaron correctly for finite T [24].

III. BOSE POLARON AT FINITE TEMPERATURE

The polaron energy Ep for a given momentum p is found
by solving Ep = εp + Re[�(p,Ep)]. Here, we focus on an
impurity with momentum p = 0. To second order in a, it is
sufficient to evaluate the self-energy for zero frequency [24],
and the equation for the polaron energy therefore simplifies to

E = Re[�(0,0)] = Tvn + Re
[
�F

2 (0,0) + �B
2 (0,0)

]
. (6)

The broadening of the polaron is given by � =
−Im[�F

2 (0,0) + �B
2 (0,0)]. To simplify the notation, we will

suppress the momentum and energy arguments of the self-
energy, as these are zero. Instead, we will write �(T ) to focus
on the T dependence.

Our main results for the second-order polaron energy shift,
	E ≡ E − Tvn, and broadening � are shown in Fig. 2 for
m = mB. We observe a strong temperature dependence, along
with an intriguing nonmonotonic behavior across the phase
transition. We discuss the various regimes and limiting cases
in the following. For concreteness, we mainly discuss the case
of equal masses mB = m, with the equations for mB �= m

relegated to the appendices.

A. Low-temperature behavior

The term �F
2 (T ) can be evaluated analytically for T = 0,

giving [24,28,29]

�F
2 (0) = 32

√
2

3

a2n0

mξ0
, (7)

where ξ0 is the healing length ξ = 1/
√

8πn0aB evaluated at
zero temperature. An analytic expression for general mass ratio
is given in Ref. [28].

When evaluating �B
2 , we find that it contains terms that

diverge logarithmically at large momentum. This is similar to
the third-order logarithmic divergence in the polaron energy
at T = 0 [24]. The divergence can be cured by including the
momentum dependence of the scattering matrix, which pro-
vides an ultraviolet cutoff at the scale 1/k = a∗ ∼ max(a,aB).
Since the healing length sets the lower limit in the momentum
integral, we find

�B
2 (0) � 4

√
6πa2n0

mξ0

(
2π

3
√

3
− 1

)√
n0a

3
B ln(a∗/ξ ), (8)

where we ignore terms of order (n0aaB)2. Equation (8) is
suppressed by (n0a

3
B)1/2 compared with �F

2 (0), and we thus
ignore the terms in �B

2 that give rise to this divergence and
focus on the remainder, denoted �̃B

2 (T ) (see Appendix B
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FIG. 2. (a) Second-order energy shift and (b) decay rate for
m = mB. The lines are for n1/3aB taking the values 0.04 (solid),
0.1 (dashed), and 0.25 (short dashed). In panel (a), we also show
the T = T −

c prediction (12) for the three interaction values (dots), as
well as the low-temperature prediction to fourth order in T/Tc (thin,
black). The shaded region illustrates where Popov theory is expected
to fail.

for details). Note that a divergent term of the form (8)
in the self-energy is to be expected, since at a = aB the
polaron ground-state energy must correspond to the chemical
potential of a weakly interacting Bose gas, i.e., E = ∂EWS/∂n,
with EWS being the energy of the weakly interacting Bose
gas including the correction by Wu and Sawada [25,26].
From this argument, we also conclude that there must be a
similar contribution arising from the Fröhlich-type diagrams
if we treat the excitations of the BEC beyond Bogoliubov
theory. Such an investigation is beyond the scope of this
work.

To proceed, we take advantage of how the self-energy below
Tc simplifies into a product of a T -dependent prefactor and a
function of ξ/λ, where λ = (2π/mBT )1/2 is the de Broglie
wavelength. Specifically

�F
2 (T ) = �F

2 (0)

(
n0(T )

n0(0)

)3/2

[1 + IF (ξ/λ)]. (9)

Here IF is a dimensionless form of the integral appearing
in (4); see Appendix B for details. It vanishes at T = 0 and
its imaginary part at low temperature is only nonzero when
m < mB (Appendix C). Similarly to Eq. (9), an expression for

�̃B
2 (T ) which explicitly contains the additional suppression

factor (n0a
3
B)1/2 is given in Appendix B.

Because of the suppression factor, at low temperature we
neglect �̃B

2 and focus on �F
2 . Here, the superfluid density

n0(T ) decreases as T 2 for T � Tc [23,30], which from Eq. (9)
gives a T 2 decrease in the polaron energy. Indeed, expanding
Eq. (3) at low temperature yields

n − n0(T )

n
� π3/2(T/Tc)2

6ζ
(

3
2

)4/3(
na3

B

)1/6 − π7/2(T/Tc)4

480ζ
(

3
2

)8/3(
na3

B

)5/6
,

(10)

where at each order in T/Tc we keep only the leading-
order contribution in na3

B. However, we find that IF (ξ/λ) ∝
(na3

B)−4/3(T/Tc)4 for T � Tc, and since this increase is
proportional to (na3

B)−4/3, it quickly dominates for a weakly
interacting BEC. As a result, we obtain

E(T ) � E(0) + π2

60

a2

a2
B

T 4

nc3
, (11)

where we have introduced the speed of sound in the BEC: c =
(4πaBn)1/2/m. Interestingly, the low T dependence of the po-
laron energy (11) can be related to the free energy of phonons in
a weakly interacting BEC for T � Tc: Fph = −π2T 4/(90c3)
[31]. Indeed, by setting a = aB we find that (11) exactly
matches the change in the BEC chemical potential due to the
thermal excitation of phonons, i.e., 	μ = −∂Fph/∂n|

T ,V
. To

our knowledge, this T 4 increase in the chemical potential of a
weakly interacting BEC has never been measured. Our result
thus suggests a way to measure this effect using, for instance,
radio-frequency (RF) spectroscopy on the impurity [5,6].

B. Behavior close to Tc

We now turn our attention to temperatures close to Tc. From
Eq. (4) it follows that �F

2 (T ) ∝ n0(T ) and one would at first
sight expect that it vanishes as T → T −

c . This is in fact not the
case when m = mB. Expanding Eq. (4) to lowest order in n0

yields

�F
2 (T −

c ) = T 2
v

TB

∑
k

fk = 4π
na2

maB
. (12)

Thus, �F
2 (T ) has a nonzero value ∝ 1/aB when T → T −

c .
Since �F

2 obviously is zero for T > Tc, this means that it is
discontinuous at Tc. The origin of this surprising result is that
the low-energy spectrum of the Bose gas changes from linear to
quadratic in momentum at Tc, increasing the density of states
dramatically. Consequently, the diagram given by Fig. 1(d),
describing the scattering of the impurity on a thermally excited
boson, develops an infrared divergence for n0 → 0 when m =
mB . For m �= mB , on the other hand, we find �F

2 (T −
c ) = 0 so

that �F
2 is continuous across Tc; see Appendix B.

Above Tc, �̃B
2 (T ) is the only nonzero second-order term and

Eq. (5) simplifies considerably since vk = 0 and Ek becomes
εB
k + TBn − μ; i.e., Popov theory corresponds to the Hartree-

Fock approximation for T > Tc. The boson chemical potential
is therefore μ = μid + TBn, with μid the chemical potential of
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an ideal Bose gas. We obtain

�2(T > Tc)

�F
2 (T = 0)

= − 1√
n

1/3
0 (0)aB

[
IN (T/Tc)

+ i
3
√

π
[
Li2(z) + 1

2 log2(1 − z)
]

16ζ 4/3(3/2)

(
T

Tc

)2
]
,

(13)

where we have used the ideal Bose gas relation nλ3 = Li3/2(z),
with Li being the polylogarithm and z ≡ exp(μid/T ) being
the fugacity. The dimensionless function IN (T/Tc) is given
in Appendix D. It follows from Eq. (13) that the imaginary
part of the self-energy diverges as log2(1 − z) when z → 1
for T → T +

c . This comes from infrared divergences in the
integrals containing the Bose distribution function. Physically,
it means that the polaron becomes strongly damped close to
Tc. The real part of �2(T ) can also be shown to diverge when
T → T +

c as outlined in Appendix D.

C. High-temperature behavior

Finally, we consider the limit T � Tc. Expanding the self-
energy to lowest order in the fugacity z yields

�B
2 (T )

�F
2 (0)

� −κ

[
0.315

Tc

T
+ i

3
√

π

16ζ (3/2)1/3

√
T

Tc

]
(14)

with κ = [n0(0)a3
B]−1/6. Thus, whereas the energy shift of the

polaron decreases with increasing temperature, the polaron
becomes increasingly damped as the impurity collides with
more energetic bosons.

D. Validity of perturbation theory

At T = 0, the small parameter of perturbation theory is
a/ξ and we additionally require a2/aBξ � 1 for the polaron
to be well defined [24]. In general, we expect perturbation
theory to be valid provided �2 < �1. From this, we derive the
condition |a| � aB valid close to Tc, by comparing (12) with
the first-order shift Tvn. For a small gas parameter, n1/3aB,
this condition is much stricter than the T = 0 conditions. We
therefore expect perturbation theory to break down earlier
for temperatures close to Tc. Above Tc, perturbation theory
is accurate when n−1/3,λ � |a|. Note also that perturbation
theory breaks down in the critical region |T − Tc|/Tc � n1/3aB

[23,32], which is the origin of the infrared divergences as T →
Tc. However, the critical region is narrow for a weakly interact-
ing BEC, making our results reliable except very close to Tc.

E. Numerical results

In Fig. 2, we plot the second-order self-energy �2 as
a function of T , evaluated numerically using Eq. (9) for
various values of the gas parameter. We see an intriguing
nonmonotonic temperature dependence of both the polaron
energy shift and damping. For T < Tc, the energy shift
increases and the numerical results recover our predicted T 4

behavior in Eq. (11) for T � Tc. In particular, the rate of the
increase scales with a

−7/2
B so that there is a strong temperature

dependence when the gas parameter of the BEC is small. The
damping of the polaron, � = −Im �2, also increases with T

FIG. 3. Polaron energy as a function of interaction strength.
(a) m = mB and n1/3aB = 0.003 as in the Aarhus experiment [5] for
T = 0 (solid line) and T = Tc/10 (dashed). (b) m/mB = 40/87 and
n1/3aB = 0.03 as in the JILA experiment [6] with T = 0 (solid line)
and T = Tc/2 (dashed). The lines are thinner in the regime a2 > aBξ0

where the polaron ceases to be a well-defined quasiparticle [24],
and they are only plotted in the range where the finite-temperature
second-order shift is smaller than the mean-field energy. Note that
our perturbative results are reliable at a higher temperature in the
JILA experiment since the gas parameter n1/3aB is larger than in the
Aarhus experiment.

as more thermally excited bosons scatter on the impurity. Both
the energy shift and the damping vary strongly close to Tc. This
reflects both the logarithmic divergences discussed above as
well as the discontinuous jump in the Fröhlich self-energy at
Tc given by Eq. (12), which is indicated by •’s in Fig. 2. Since
perturbation theory breaks down close to Tc, we do not plot
the numerical results in this region. For T > Tc, the energy
shift of the polaron decreases and it vanishes as T → ∞. The
predicted increase in the damping rate for T � Tc in Eq. (14)
is not visible in the range of temperatures shown in Fig. 2,
which focuses on the phase transition region.

In Fig. 3, we plot the total polaron energy �1 + �2 as a
function of the interaction parameter 1/n1/3a for zero and finite
temperature. We consider both the Aarhus 39K experiment and
the JILA 40K-87Rb experiment, where the latter corresponds
to the case of a light impurity. In the region where we expect
perturbation theory to be reliable, we see that the polaron
energy for the equal-mass Aarhus case is shifted significantly
higher by temperature, even when T � Tc. Moreover, we find
a small decay rate � � 	E in this regime. Thus, the polaron
energy shift should be measurable, as we discuss below. On
the other hand, the light impurity in the JILA case has a finite-
temperature energy shift that is negative rather than positive.
The reason is that—contrary to the equal mass case—�F

2 (T ) is
now continuous across Tc where it goes to zero, as discussed
in Sec. III B. Its positive contribution to the polaron energy
is therefore much smaller, and the overall temperature shift
becomes negative. The decay rate �, on the other hand, is
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comparable to |	E| in the regime where |	E| is significant for
the JILA parameters. This can be traced to the fact that �F

2 (T )
develops a pole and corresponding imaginary part when m <

mB—see Appendix C for an analytic expression for Im�F
2 .

Physically, the pole originates from processes where thermally
excited Bogoliubov modes scatter resonantly on the polaron.
These scatterings are possible since the equation εk = Ek has
a solution for m < mB , and they lead to decay.

IV. DISCUSSION AND CONCLUSION

The nontrivial temperature dependence of the impurity
properties close to Tc is due to quite generic physics and
is not limited to the specific system at hand. It originates
from the change of the dispersion from quadratic to linear
at Tc, which is a consequence of the U (1) symmetry-breaking
resulting from the formation of a condensate. This dramatically
changes the low-energy density of states of the Bose gas,
which impacts the excitations that couple strongly to the
impurity. Thus, similar effects should occur in other systems
involving impurities coupled to a reservoir that undergoes
a phase transition where a continuous symmetry is broken.
This includes impurities in helium mixtures [33], conventional
or high-Tc superconductors [34], magnetic systems [35], and
nuclear matter [36].

The temperature dependence of the polaron energy can
be investigated by RF spectroscopy of 39K atoms. In these
experiments, a RF pulse transfers a small fraction of atoms
from a BEC in the |F = 1,mF = −1〉 state into the |1,0〉 state,
such that they form mobile impurities. The impurity-BEC
interaction is highly tunable using a Feshbach resonance and
thus the polaron energy can be obtained both for attractive
and repulsive interactions. As shown in Fig. 3, the energy
shift due to a finite temperature is sizable in the regime where
perturbation theory should be reasonable: at 1/(n1/3a) = 10
the energy at T = Tc/10 compared to T = 0 corresponds to
a RF frequency shift of ∼7 kHz, which is comparable to the
experimental resolution. Since the temperature dependence of
the polaron energy scales with �F

2 (0) ∝ a2n0, it is favorable
to access a given interaction strength by choosing a large
scattering length and accordingly small density.

To conclude, using perturbation theory valid in the weak
coupling regime, we investigated the properties of the Bose
polaron as a function of temperature. We derived analytical
results both for low temperature T � Tc, T � Tc, and high
temperature T � Tc. These results show that the superfluid
phase transition of the surrounding Bose gas has strong effects
on the properties of the polaron. The energy depends in
a nontrivial way on T with a pronounced nonmonotonic
behavior around Tc, and the damping increases sharply as
Tc is approached. We argued that these effects should occur
in a wide range of systems consisting of impurities immersed

in an environment undergoing a phase transition. Finally, we
discussed how this intriguing temperature dependence can be
detected experimentally.
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APPENDIX A: PAIR PROPAGATORS

After performing the Matsubara frequency sums, we obtain

�11(p) =
∑

k

[
u2

k(1 + fk)

z − Ek − εk+p
+ v2

kfk

z + Ek − εk+p
+ 2mr

k2

]
(A1)

for the normal pair propagator at four-momentum p = (p,z),
and

�12(p) = −T
∑
ων

G12(−k, − ων)G(k + p,ων + z)

=
∑

k

[
ukvk(1 + fk)

Ek + εk+p − z
+ ukvkfk

εk+p − Ek − z

]
, (A2)

�22(p) = −T
∑
ων

G22(−k, − ων)G(k + p,ων + z)

=
∑

k

[
u2

kfk

z + Ek − εk+p
+ v2

k(1 + fk)

z − Ek − εk+p

]
(A3)

for the anomalous and particle-hole propagators.

APPENDIX B: SELF-ENERGY BELOW Tc: FRÖHLICH
AND BUBBLE DIAGRAM INTEGRALS

To find the polaron energy within perturbation theory,
we evaluate the Fröhlich diagrams at zero momentum and
frequency, but finite temperature:

�F
2 (T ) = n0(T )T 2

v

∑
k

[
1

εk + εB
k

+ εB
k

Ek

(
1 + fk

−Ek − εk
+ fk

Ek − εk

)]

= 2πn0(0)a2

mrξ0
A(α)︸ ︷︷ ︸

�F
2 (T =0)

(
n0(T )

n0(0)

)3/2

⎡
⎢⎢⎢⎣1 + 2

π

1 + 1/α

A(α)

∫
f̄k

k2dk√
k2 + 2

( −1√
k2 + 2 + k/α

+ 1√
k2 + 2 − k/α

)
︸ ︷︷ ︸

IF (ξ/λ,α)

⎤
⎥⎥⎥⎦ , (B1)
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where we have switched to dimensionless variables in the
second line, measuring momentum in units of the inverse
healing length. Here α ≡ m/mB is the mass ratio and ξ0 is the
BEC healing length evaluated at T = 0. The Bose distribution
in dimensionless units is

f̄k = 1

exp
[

λ2

4πξ 2 k
√

k2 + 2
]− 1

. (B2)

The function defined in the main text for equal masses is
IF (ξ/λ) ≡ IF (ξ/λ,1). For T � Tc we have

IF (ξ/λ) � π4

1280ζ
(

3
2

)8/3(
na3

B

)4/3

(
T

Tc

)4

. (B3)

The mass-ratio dependent function A was found for general
mass ratio in Ref. [29] (see also Ref. [24]) to be

A(α) = 2
√

2

π

1

1 − α

[
1 − 2α2

1 + α

√
α + 1

α − 1
arctan

√
α − 1

α + 1

]
,

(B4)

with the definition
√−1 = i. The function A is well defined

for equal masses, where

A(1) = 8
√

2

3π
, (B5)

which leads to �F
2 (0) = 32

√
2a2n0/(3mξ0).

Similarly to the Fröhlich diagrams, we evaluate the “bub-
ble” contribution. We note that again there is a contribution
which is present even at T = 0. Specifically, this is the
term which does not contain a Bose distribution in any of
the momentum summations. This term, however, arises from
bosons excited out of the condensate (see Fig. 1), and is thus
suppressed by a factor

√
n0a

3
B compared with the Fröhlich

diagrams. This suppression only increases at finite temperature
and therefore we ignore this term in the following. Instead,
using Eq. (5) we define

�̃B
2 (T ) = T 2

v

∑
k

{
fk
[
v2

k�11(k, − Ek) + u2
k�11(k,Ek) − ukvk�12(k,Ek) − ukvk�12(k, − Ek)

]
+ v2

k�̃11(k, − Ek) − ukvk�̃12(k, − Ek)
}

= �F
2 (T = 0)

√
n0(0)a3

B

(
n0(T )

n0(0)

)2 (1 + 1/α)(8π )5/2

2A(α)

×
∫

d3kd3p

(2π )6

{
−f̄kf̄p

[
v̄2

kū
2
p + ūkv̄kūpv̄p

Ēk + Ēp + ε̄k+p
+ v̄2

kv̄
2
p + ū2

kū
2
p + 2ūkv̄kūpv̄p

−Ēk + Ēp + ε̄k+p
+ ū2

kv̄
2
p + ūkv̄kūpv̄p

−Ēk − Ēp + ε̄k+p

]

−f̄k

[
ū2

kv̄
2
p + v̄2

kū
2
p + 2ūkv̄kūpv̄p

Ēk + Ēp + ε̄k+p
+ v̄2

kv̄
2
p + ū2

kū
2
p + 2ūkv̄kūpv̄p

−Ēk + Ēp + ε̄k+p
− ū2

k + v̄2
k

(1 + α)ε̄p

]}

≡ �F
2 (T = 0)

√
n0(0)a3

B

(
n0(T )

n0(0)

)2

IB(ξ/λ,α). (B6)

Here, we made the integral in the first line dimensionless by ex-
tracting a factor 2mB/ξ 4, and defining the dimensionless func-

tions Ēk = k
√

2 + k2, ε̄k = k2/α, ūk =
√

k2+1
2Ek

+ 1
2 , and v̄k =√

k2+1
2Ek

− 1
2 . �̃ij refers to the pair propagator including only

those terms involving the Bose distribution function fk, as we
ignore the term which is suppressed at zero temperature (see
discussion in the main text). Comparing Eq. (B6) with Eq. (B1)
explicitly shows that it is suppressed by a factor (n0a

3
B)1/2.

The bubble diagrams contain several simple poles, which
we treat numerically by introducing a small imaginary part,
i.e., by taking z → z + iδ (in the above, this can be achieved by
shifting ε̄k slightly below the real axis), and then extrapolating
our results to δ = 0. We estimate the relative error in
the evaluation of the bubble diagrams resulting from this
procedure to remain well below 1% for all ξ/λ considered.

In Fig. 4, we show the result for the dimensionless functions
IF and IB for equal masses. In this case, the Fröhlich diagrams

are purely real, and we see that they are larger than the bubble
diagrams except at very small (outside the range shown) or
large temperature.

For unequal masses, the main qualitative difference is that
the Fröhlich diagram develops a simple pole when mB > m.
This is easily integrated over, and in Fig. 5 we show the
resulting functions for the particular case of a 40K atom
immersed in a 87Rb condensate.

APPENDIX C: IMAGINARY PART OF
THE FRÖHLICH SELF-ENERGY

The imaginary part of the Fröhlich self-energy for zero
momentum and frequency is found from Eq. (4) of the main
text to be

Im�F
2 (T ) = −n0(T )T 2

v

∑
k

εB
k

Ek
fkδ(εk − Ek). (C1)
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FIG. 4. The functions IF (solid, black) and the real (green,
dashed) and imaginary (green, dot-dashed) parts of IB , calculated
for equal masses mB = m. The latter two are negative; therefore, we
take the absolute values of these.

It follows that the imaginary part is nonzero only if εk = Ek
has a solution, i.e., if m < mB . Doing the integral (C1) yields

Im�F
2 (T ) = − 2

π

α3

(1 − α2)3/2
T 2

v n0(T )3/2m
3/2
B T 1/2

B fk0 , (C2)

where k0 is the k vector which solves εk = Ek.

APPENDIX D: SELF-ENERGY ABOVE Tc

Above Tc, the second-order self-energy reduces to the term
from the bubble diagrams

�2(T > Tc)

= T 2
v

∑
k

fk�11(k,Ek)

= T 2
v

∑
k

fk

∑
p

(
1 + fp

εB
k − εB

p − εk−p + i0
+ 1

εB
p + εp

)

= T 2
v 8m2

BmrT
2
∑

k

1

ek2
/zid − 1

×
∑

p

[(
1

p2
− 1

p2 − k2/γ 2 − i0

)

+ 1

e[p+k/(1+α)]2
/zid − 1

1

k2/γ 2 − p2 + i0

]
, (D1)

FIG. 5. The dimensionless integrals for a 40K impurity immersed
in a 87Rb BEC. We show the real (black, solid) and imaginary
(black, dotted) parts of IF together with the real (green, dashed)
and imaginary (green, dot-dashed) parts of IB . These are all negative
within the range shown.

where in the second line we shifted p → p + k/(1 + α) in
all terms except the renormalization (last term of the first
line). We also measured momenta in units of

√
2mBT and

defined the ratio mB/mr ≡ γ . The quantity zid ≡ eμid/T is the
fugacity of the ideal Bose gas. It is related to the density
through

nλ3 = λ3
∑

k

fk = Li3/2(zid), (D2)

and can be further related to T/Tc through the ideal gas
expression

T/Tc = [ζ (3/2)]2/3(nλ3)−2/3. (D3)

To proceed, we note that the integral over the angle between
k and p in Eq. (D1) can be performed analytically:∫ 1

−1
dx

1

ea+bx − 1
= 1

b
log

ea − e−b

ea − eb
, (D4)

assuming a > b > 0. Since the integral over the term in
parentheses in the second line of Eq. (D1) is purely imaginary,
we have

Re[�2(T > Tc)]

�F
2 (T =0)

= T 2
v 4m2

BmT 2

�F
2 (T =0)

1

8π4

∫ ∞

0

k dk

ek2−μb/T − 1

∫ ∞

0

p dpP
k2/γ 2 − p2

log
ep2+k2/(1+α)2−μb/T − e−2kp/(1+α)

ep2+k2/(1+α)2−μb/T − e2kp/(1+α)

= −1√
n0(0)1/3aB

√
2

π3

1 + α

A(α)

(T/Tc)2

ζ 4/3(3/2)

∫ ∞

0

k dk

ek2−μb/T −1

∫ ∞

0

p dpP
p2 − k2/γ 2

log
ep2+k2/(1+α)2−μb/T −e−2kp/(1+α)

ep2+k2/(1+α)2−μb/T −e2kp/(1+α)︸ ︷︷ ︸
IN (T/Tc,α)

,

(D5)

where P indicates that only the principal part of the integral should be evaluated. The prefactor which scales as 1/
√

aB arises
from the normalization by �F

2 (T = 0). The integral IN is evaluated numerically, and the result is shown in Fig. 6. The function
referenced in the main text Eq. (13) is IN (T/Tc) ≡ IN (T/Tc,1).

For equal masses, the imaginary part of the self-energy can be determined analytically for all T > Tc:

Im[�2(T > Tc)]

�F
2 (T = 0)

= − 3
√

π

16ζ 4/3(3/2)

1√
n0(0)1/3aB

(
T

Tc

)2[
Li2(z) + 1

2
log2(1 − z)

]
. (D6)

063622-7



LEVINSEN, PARISH, CHRISTENSEN, ARLT, AND BRUUN PHYSICAL REVIEW A 96, 063622 (2017)

FIG. 6. The dimensionless integral appearing in the self-energy
for temperatures above Tc. We show the result both for equal masses
(blue, solid) and for a 40K impurity immersed in a 87Rb BEC (red,
dashed).

For a 40K impurity in a 87Rb condensate, we evaluate the
imaginary part of the self-energy numerically, again using
Eq. (D4).

Logarithmic divergence of �B
2 above Tc

For concreteness, we focus on equal masses. One can
rewrite the integral appearing in Eq. (D5) at Tc as

∑
k,p

fkfp

εk − εp − εk−p + i0

= −2T 2m3

(2π )4

∫
dp

∫
dk

pk

(ek2/2 − 1)(ep2/2 − 1)

× log

[
p + k − i0

p − k − i0

]
(D7)

� T 2m3

π4

∫
dr

1

r

∫
dφ

1

sin φ cos φ
log

[
cos φ + sin φ − i0

cos φ − sin φ − i0

]
(D8)

→ −(19.71 − 21.78i) T 2m3

π4 log(r). (D9)

Here we have made the transformation p = r cos φ, k =
r sin φ, and then considered the regime r � 1. Thus, we see
that this integral diverges logarithmically as r → 0.
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