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Goldstino in supersymmetric Bose-Fermi mixtures in the presence of a Bose-Einstein condensate
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We analyze the spectral properties of the Goldstino excitation in a Bose-Fermi mixture of cold atoms, whose
masses and interaction strengths are tuned so that the Hamiltonian is supersymmetric. We consider systems at zero
temperature and assume that, in the weak-coupling regime, the fermions form a Fermi sea, while the bosons form
a Bose-Einstein condensate. We study the excitation spectrum within a simple extension of the random phase
approximation, taking into account the mixing between the supercharge and the fermion caused by the condensate.
This mixing affects the fermion spectrum strongly. We argue that the corresponding modification of the fermion
spectrum, and the associated fermion distribution in momentum space, could be accessible experimentally and
potentially allow for a determination of the Goldstino properties.

DOI: 10.1103/PhysRevA.96.063617

I. INTRODUCTION

The possibility to prepare low-temperature Bose-Fermi
mixtures with tunable interactions [1,2] is offering new
playgrounds for the study of novel phenomena in many-body
systems. Of interest to us in the present paper are mixed sys-
tems of bosons and fermions exhibiting (a restricted form of)
supersymmetry [3], that is, an invariance under the interchange
of fermions and bosons [4]. In such systems, and when the
supersymmetry is explicitly broken [5],1 which occurs, for
instance, when the chemical potentials for the bosons and
the fermions are different, one expects a new type of long-
wavelength collective excitation carrying fermionic quantum
number. This excitation, which shares many properties with
the more familiar Nambu-Goldstone boson [9,10], has been
dubbed a Goldstino [11].2 The possible realization of the
Goldstino in cold atom systems was suggested in Ref. [13],
and the spectral properties of the Goldstino have been analyzed
in Refs. [14–17].

The special influence of a Bose-Einstein condensate (BEC)
on the spectral properties of the Goldstino has not been
thoroughly discussed so far, although it has been suggested
that the presence of a BEC could lead to an easier experimental
detection of the Goldstino [13]. This is because the operator
(q) that excites the Goldstino is essentially composed of the
boson creation operator (b†) and the fermion annihilation
operator (f ), q � b†f . In the BEC phase, b is dominated by
the condensate part, which is a c number. It follows therefore
that the Goldstino operator contains a term proportional to f .
This suggests that the spectral properties of the Goldstino are
reflected in those of the fermion, and the latter can be observed
in photoemission spectroscopy [18]. This provides motivation

*dsato@th.physik.uni-frankfurt.de
1Even in systems that have only an approximate supersymmetry,

such as the Yukawa model, quantum electrodynamics, and the quan-
tum chromodynamics at ultrarelativistic temperature, the existence of
a quasi-Goldstino was suggested and its properties studied in [6–8].

2In fact, the existence of a Goldstone fermion associated with the
spontaneous breaking of supersymmetry was considered already in
the early days of supersymmetry [12].

for further theoretical investigation of the spectral properties
of the Goldstino in the presence of a BEC. This is the purpose
of the present paper, which extends our previous work, limited
to two dimensions, and where therefore BEC was absent [14].

This paper is organized as follows: In the next section, we
briefly introduce a simple model for a Bose-Fermi mixture
of cold atoms. The model parameters can be tuned so as to
achieve supersymmetry, in which case a Goldstino excitation
emerges in the spectrum. In Sec. III, we discuss how the
interaction terms in the Hamiltonian are organized in order
to treat the BEC. Conditions on the physically acceptable
range of parameters are also discussed. In Sec. IV, we analyze
the components of the Goldstino spectral function, paying
particular attention to the mixing between the supercharge and
the fermion. This is done at weak coupling using a simple
extension of the random phase approximation (RPA), for zero
and finite momentum. In Sec. V, we argue on the modification
of the fermion spectrum and how it is reflected in the fermion
distribution function. Measurement of these quantities could
yield information on the Goldstino properties. The last section
contains a brief summary of the paper. In the Appendix, we
show that the contribution from the phonon to the modification
to the Goldstino spectrum is negligible compared with that
from the boson.

In this paper, we use units with h̄ = kB = 1.

II. A SIMPLE MODEL FOR THE GOLDSTINO

In this section, we introduce the simple model for a Bose-
Fermi mixture on which our discussion will be based. The
Hamiltonian of this model has the generic form

H = Hf + Hb + V, (2.1)
where

Hf = 1

2mf

∫
d3x[∇f †(x)]∇f (x), (2.2)

Hb = 1

2mb

∫
d3x[∇b†(x)]∇b(x), (2.3)

V =
∫

d3x
[
Ubb

2
b†(x)b†(x)b(x)b(x) + Ubf nb(x)nf (x)

]
,

(2.4)
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where nf (x) = f †(x)f (x) and nb(x) = b†(x)b(x) are the den-
sities of the fermions and the bosons. This Hamiltonian can be
viewed, for instance, as the long-wavelength limit of the lattice
Hamiltonian used in Ref. [13]. Note that there is no interaction
among the fermions: this is because we assume the fermion
spin to be polarized so that there is only one active spin degree
of freedom. By adding the chemical potential terms, we obtain
the grand canonical Hamiltonian,

HG ≡ H − μf Nf − μbNb = H − μN − �μ�N, (2.5)

where Nf ≡ ∫
d3xnf (x), Nb ≡ ∫

d3xnb(x), N ≡ Nf + Nb,
�N ≡ (Nf − Nb)/2, μ ≡ (μf + μb)/2, and �μ ≡ μf − μb.

The supercharge operator is defined as3

Q ≡ ∫
d3xq(x), q(x) ≡ f (x)b†(x). (2.6)

The operator q(x) replaces locally a fermion by a boson.
It is easy to show that the grand canonical Hamiltonian is
supersymmetric when mf = mb = m and Ubf = Ubb = U ,
except for the chemical potential difference term: [HG,Q] =
�μQ. In the rest of the paper, we focus on this particular case.
For the convenience of the reader, we also translate U into
the scattering strength, a: By introducing abb ≡ Ubbmb/(4π )
and abf ≡ Ubf mbf /(4π ), where mbf ≡ 2mf mb/(mb + mf ),
the condition of supersymmetry can be written as mbf = m and
abb = abf = a. Note that the action of the supercharge density
q† on a state with a given number of fermions and bosons
leaves the total number of atoms unchanged but increases �N

by one unit. Similarly, the action of q decreases �N by one
unit.

In order to study the excitations induced by the supercharge,
we shall focus on the retarded Green’s function,

GR(x) ≡ iθ (t)〈{q(t,x),q†(0)}〉, (2.7)

where the angular brackets denote an average over the ground
state of the system. Its Fourier transform is written as

GR(p) = i

∫
dt

∫
d3x eiωt−ip·xθ (t)〈{q(t,x),q†(0)}〉. (2.8)

Here we have introduced a four-vector notation to be used
throughout: xμ ≡ (t,x) and pμ ≡ (ω,p). The frequency ω is
assumed to contain a small positive imaginary part ε (ω →
ω + iε) in order to take into account the retarded condition.
Such a small imaginary part will not be indicated explicitly
in order to simplify the formulas. In fact, we shall also most
of the time drop the superscript R and indicate it only when
necessary to avoid confusion.

Let us recall some general features of this Green’s function
by looking at its spectral representation in terms of the excited
states ψn and ψm that can be reached from the ground state by
acting respectively with q†(p) and q(p), where

q(p) =
∑

k

fkb
†
k−p. (2.9)

3Note that we interchange here the definitions of q and q† that we
used in our previous work [14]: in the present definition, q creates a
boson instead of a fermion. In the presence of BEC, this convention
turns out to be more convenient. In particular, it makes the fermion
propagator appear naturally in the decomposition of the Goldstino
propagator, see Eq. (5.1) below.

We obtain from Eq. (2.8),

G(ω,p) = − 1

�

{∑
n

〈ψ0|q(p)|ψn〉〈ψn|q†(p)|ψ0〉
ω − (En − E0 − �μ)

+
∑
m

〈ψ0|q†(p)|ψm〉〈ψm|q(p)|ψ0〉
ω + (Em − E0 + �μ)

}
, (2.10)

where � is the volume of the system. This expression shows
that G(ω,p) has poles at ω = En − E0 − �μ corresponding
to the free energies of the states |ψn〉 that have nonvanishing
overlap with q†(p)|ψ0〉, and at −ω = Em − E0 + �μ corre-
sponding to the free energies of the states |ψm〉 that overlap
with q(p)|ψ0〉. Stability (in Fock space) requires that the two
sets of poles sit respectively at positive or negative values of
ω. Note that ω always appears as ω̄ ≡ ω + �μ in G(ω,p).

In the supersymmetric case, it can be shown that G(ω,p =
0) has the following form [14]:

G(ω,p = 0) = − ρ

ω + �μ
= −ρ

ω̄
, (2.11)

where we have set ρ ≡ 〈n(x)〉 = 〈nf (x) + nb(x)〉, the equilib-
rium density 〈n(x)〉 being assumed uniform, i.e., independent
of x. Since the density can be expressed as ρ = 〈{Q,q†(x)}〉 =
〈{Q†,q(x)}〉, ρ plays the role of the order parameter associated
with the spontaneous breaking of supersymmetry. Note that
although both Q and Q† are broken charges, this does
not mean that there appears two independent Goldstinos.
The nonvanishing expectation value of the anticommutator
between charges, 〈{Q,Q†}〉/� �= 0, implies indeed that Q and
Q† are canonically conjugate [19], and each charge does not
generate an independent Goldstino. Such a mode is referred
to as a type-B mode [20].4 The expression (2.11) reveals
that the retarded propagator has a single pole at ω = −�μ,
i.e., at ω̄ = 0, with �μ being the source of the explicit
breaking of supersymmetry. This is the Goldstino pole. The
existence of this pole follows directly from the conservation
law and the canonical (anti-) commutation relations [13,14].
It does not depend on the details of the Hamiltonian. This is
the Goldstino’s counterpart to the gapped Nambu-Goldstone
modes [21–23]. In the following, we shall often refer to G(ω,p)
as the Goldstino propagator.

We shall also be interested in the associated Goldstino
spectral function

σ (ω,p) = 2Im G(ω,p). (2.12)

This spectral function obeys simple sum rules [14]. The
first sum rule determines the zeroth moment of the spectral
function. It is valid regardless of the details of the Hamiltonian,
and reads ∫

dω̄

2π
σ (p) = ρ. (2.13)

4We note that unlike Nambu-Goldstone modes, a type-B Goldstino
does not necessarily have a quadratic dispersion relation [17], even
though we shall find out that our Goldstino has a quadratic one.
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Another sum rule (analog to the“f -sum rule”) gives the first
moment of the spectral function

∫
dω̄

2π
ω̄σ (p) = αs

p2

2m
ρ, αs ≡ ρb − ρf

ρ
. (2.14)

Note that the right-hand side is independent of the interaction
strength U .

If we were to assume that the spectral function is dominated
by a single peak, the sum rules (2.13) and (2.14) would give
us

σ (p) = 2πρ δ

(
ω̄ − αs

p2

2m

)
. (2.15)

In this case, αs would completely determine the dispersion
relation of the Goldstino [24]. However, we will see that this
assumption is not valid, at least in the weak-coupling case (see
Sec. IV).

III. BOSE-EINSTEIN CONDENSATE

In order to progress further, we need to specify the ground
state of the system through which the Goldstino propagates.
We shall assume in this paper that this ground state is, in
the absence of interactions, the product of a Fermi sea of
fermions and a coherent state of bosons, with the boson
occupying the zero-momentum state. We shall then proceed to
the analysis of the effects of the interactions, assuming that the
coupling is small. As we shall see, we need to go beyond strict
perturbation theory and implement various resummations in
order to account properly for the relevant processes.

The calculations to be presented in the next sections depend
on a number of parameters. Because of the assumed supersym-
metry, the Hamiltonian itself depends on two parameters, the
mass m of the atoms, the same for the bosons and the fermions,
and the coupling strength U . The system, in addition, depends
on the densities of the fermions and the bosons, respectively
ρf and ρb. We shall focus on cases where the densities are of
comparable orders of magnitude. Thus, in all the calculations
we have chosen ρb = 2ρf , as in our previous work [14]. The
Fermi energy, εF = k2

F /(2m), provides a convenient unit for
the energies. Here kF is the Fermi momentum related to the
fermion density via ρf = k3

F /(6π2). The quantity Uρ has the
dimension of an energy, and the ratio Uρ/εF can be used as a
measure of the strength of the coupling, with weak coupling
implying Uρ 	 εF .

In order to treat the condensate in the weak-coupling
approximation, it is convenient to isolate the operator b0 ≡
bp=0 from the finite-momentum operators bp. Recall that the
expectation value of b0 in the Bose condensate is nonvanishing,
〈b0〉 = √

N0, with N0 the number of bosons in the condensate.
One may then write

bp=0 = 1√
�

∫
d3x b(x) →

√
N0 + b̃p=0, (3.1)

where b̃p=0 represents the fluctuation part of the operator.
For the approximations that we shall use later, it can be
neglected. Similarly, the depletion of the condensate due to
the interactions will be ignored in leading order, so that the
boson density is simply ρb = N0/�.

We now rewrite the interaction Hamiltonian, isolating the
contributions of the operators b0 and b

†
0 (which may be

eventually replaced by
√

N0). We then get

�
V

U
= 1

2
b
†
0b

†
0b0b0 + 1

2

′∑
k

(b†0b
†
0bkb−k + 4b

†
0b0b

†
kbk + b

†
kb

†
−kb0b0) + b

†
0b0

∑
k

f
†
k fk +

′∑
k1,k2

f
†
k1

fk2 (b†k2−k1
b0 + b

†
0bk1−k2 )

+
′∑

k1···k4

δk1−k2+k3−k4 f
†
k1

fk2b
†
k3

bk4 +
′∑

k1,k2

(b†0b
†
k1+k2

bk1bk2 + b
†
k1

b
†
k2

bk1+k2b0) + 1

2

′∑
k1···k4

δk1−k2+k3−k4b
†
k1

b
†
k3

bk2bk4 , (3.2)

where the prime on the momentum sums indicates that zero-
momentum boson operators are excluded. In the approxima-
tions to be considered later, the last two terms will be ignored.
In the first line, the bosonic terms proportional to b

†
kb

†
−k

or bkb−k are the terms that lead, in the Bogoliubov theory,
to the phonon spectrum at small momenta (see Appendix).
However, the corresponding modification of the spectrum
concerns only a small momentum region, |k| � kc, with kc

defined by the condition k2
c /(2m) = Uρb. As we shall see in

the Appendix, the momenta in the relevant loop integrals are of
order kF , and the weak-coupling condition Uρb 	 εF implies
kc 	 kF . We shall therefore neglect the contribution of the
terms bkb−k and b

†
kb

†
−k and use the boson spectrum given by

the simple mean-field approximation, eventually corrected by
the boson-fermion interaction.

Finally, we recall that Bose-Fermi mixture can suffer from
instability for some values of the respective densities of bosons

and fermions, and a strong enough interaction strength (see,
e.g., [25,26]). Although the present calculations are a priori
blind to these instabilities which occur in channels distinct
from the Goldstino channel, we note that the static stability
condition of Ref. [25] implies

U <
2

3

εF

ρf

≡ Uc1 (3.3)

in the current supersymmetric setup. In terms of the scattering
length, this condition amounts to kF a < π/2 � 1.6.

IV. EXPLICIT CALCULATION AT WEAK COUPLING

We turn now to the explicit evaluation of the Goldstino
propagator in the weak-coupling case.
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q†q
q† q

FIG. 1. The one-loop diagrams contributing to G0. The full
(dashed) line represents a fermion (boson) propagator. The convention
used for these diagrams, and those below that contain arrows, is as
follows. The time flows from left to right. An arrow pointing to the
right indicates a “particle” while an arrow pointing to the left indicates
a “hole.” The boson hole propagator is disconnected and represented
by the diagram on the left, where the dashed lines terminated by a
cross denote an expectation of b0 if the arrow points away from the
cross and b

†
0 if the arrow points towards the cross. It corresponds to

the first term of the first line of Eq. (4.1), while the diagram on the
right corresponds to the second term.

A. Free case (U = 0)

We start the analysis with the noninteracting limit, U = 0.
In this case, G is given by the one-loop diagrams in Fig. 1,
whose evaluation yields

G0(p) = −ρb(1 − np)

ω̄ − ε0
p

− 1

�

∑
k

nk + npN0δp+k

ω̄ + ε0
k+p − ε0

k

,

= − ρb

ω̄ − ε0
p

− 1

�

∑
k

nk

ω̄ + ε0
k+p − ε0

k

, (4.1)

where ε0
k ≡ k2/(2m), ω̄ = ω + �μ0 with �μ0 = k2

F /(2m),
and N0 = �ρb, while np ≡ θ (kF − p) denotes the fermion
occupation number.

The second contribution in the first line of Eq. (4.1)
corresponds to excitations induced by q(p), which produces
a hole with momentum k in the Fermi sea, turning the
corresponding fermion into a boson with momentum k + p
(see Figs. 1 and 2, right). The corresponding poles lie
at −ω = Em − E0 + �μ0 = ε0

k+p − ε0
k + �μ0 = p2/(2m) +

p · k/m + k2
F /(2m) � 0. These excitations actually form a

FIG. 2. Particle-hole excitations contributing to the Goldstino.
The process on the left represents q†, which replaces a boson with
a fermion, while the one on the right represents q, which replaces a
fermion with a boson. The blue square represents the Fermi sea.

-2

-1

 0

 1

 2

 0  0.2  0.4  0.6  0.8  1  1.2

ω- /ε
F

p/kF

FIG. 3. The continuum (red shaded area) and the pole (blue
dashed and solid line) in σG. The pole leaves the continuum at
|p| = kF .

continuum in the range

− p2

2m
− kF |p|

m
< ω̄ < − p2

2m
+ kF |p|

m
. (4.2)

The corresponding contribution to the Goldstino spectral
function reads

σcont(p) = m

4π |p|
(
k2
F − k2

cf

)
θ (kF − kcf ), (4.3)

where kcf ≡ m|ω̄ + p2/(2m)|/|p|. The existence of the con-
tinuum is directly related to the presence of a Fermi sea, and its
support is indeed directly related to the magnitude of the Fermi
momentum kF . The range of this continuum is displayed in
Fig. 3 and its shape is in Fig. 4. We have used there kF (εF ) as
a unit of momentum (energy).

The first term in the first line of Eq. (4.1) corresponds
to excitations induced by q

†
p, which turns a boson in the

condensate (with momentum k = 0) into a fermion above the

 0

 0.4

 0.8

 1.2 -3 -2 -1  0  1

 2

 4

p/kF

ω- /εF

FIG. 4. The spectral function of the Goldstino in the noninteract-
ing case. The full (red) line represents the continuum contribution,
Eq. (4.3), which is peaked at ω̄ = −p2/(2m). The dotted (blue) line
represents the location of the pole, ω̄ = p2/2m, Eq. (4.4). The pole out
of the continuum is plotted with the full (blue) line. As the momentum
decreases, the peak in the continuum sharpens and eventually turns
into a δ function δ(ω̄) at p = 0. The unit of σG is ρf /εF .
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Fermi sea, i.e., with momentum |p| � kF (see Figs. 1 and
2, left). There exists another pole contribution hidden in the
second term of the first line of Eq. (4.1); it corresponds to
a hole in the Fermi sea with a momentum p such that the
associated boson fills the condensate (see Fig. 2, right). Such a
process is amplified by the presence of the condensate, hence
the factor N0 accompanying this excitation. This particular
contribution is canceled by the term proportional to np in the
first term in the first line of Eq. (4.1). The net result is the first
term of the second line of Eq. (4.1), which yields the following
contribution to the spectral function:

σpole(p) = 2πρbδ

(
ω̄ − p2

2m

)
. (4.4)

The pole position is displayed in Fig. 3. Aside from the
factor ρb, which reflects the degeneracy of the condensate, this
spectral function is that of a free fermion with the associated
dispersion relation ω = p2/(2m) − �μ0. This is natural since
the corresponding excitations involve adding or removing a
particle in the condensate, which costs no energy (momentum).

The behavior of the Goldstino spectral function is illustrated
in Fig. 4. More precisely, what is plotted in Fig. 4 is the
continuum contribution, corresponding to the second line of
Eq. (4.1), that is σcont(p) given by Eq. (4.3). This continuum
contributes as a pole at |p| = 0, whose location at ω̄ = 0
coincides with that in Eq. (4.4), and whose residue is ρf .
At finite momentum, this turns into a peak that broadens
as |p| increases. In addition to the peak in the continuum,
the location of the pole, with constant residue ρb, is also
indicated [see Eq. (4.4)]. When |p| > kF , this pole is out of the
region occupied by the continuum. Note that at this level, the
spectral function is essentially the same as in the case without
BEC [14].

At |p| = 0, Eq. (4.1) reduces to G0(ω,0) = −ρ/ω̄, which
exhibits a pole at ω̄ = 0 with residue equal to the total density.
This is in agreement with the general expression (2.11), which
is a consequence of the underlying supersymmetry. Note that
at p = 0 only one of the two types of processes displayed
in Fig. 2 contribute. To see that, it is useful to consider how
things evolve as we change ρf keeping ρ fixed. When ρf = 0,
only boson hole excitations are allowed, and their degeneracy
is proportional to ρb = ρ. As soon as ρf �= 0, however, these
excitations are blocked and replaced by fermion hole excitation
with zero momentum. This transition is amplified by the Bose
enhancement factor and hence its contribution is proportional
to ρb. In addition, there are the excitations involving a fermion
hole and a boson particle with nonzero and identical momenta
which contribute to the residue a factor proportional to ρf . In
summary, as soon as ρf �= 0, only the process displayed in the
right part of Fig. 2 contributes with the factor ρf + ρb = ρ.

The nature of the Goldstino is particularly simple in the
two limits where ρf = 0 or ρb = 0. In the first case, ρf = 0
and �μ0 = 0. The system is therefore supersymmetric. The
Goldstino propagator is given by the first term of the second
line of Eq. (4.1). The Goldstino in that case is like a free
fermion excitation. In the other limit, ρb = 0, supersymmetry
is explicitly broken by the nonvanishing value of �μ0. In
addition, the Goldstino exists as a pole only at p = 0. The
Goldstino pole at ω̄ = 0 for p = 0, with strength ρf , turns

FIG. 5. The diagrams contributing to the mean-field correction to
the fermion (full line) and the boson (dashed line) excitation energies.
The cross attached to a dashed line represents the contribution of the
condensate

√
ρb. We ignore the anomalous contributions to the boson

self-energy. Note that the last diagram contributes a correction 2ρb

to the energy of a boson outside the condensate and only ρb to the
energy of a boson in the condensate.

into a branch cut singularity, corresponding to the continuum
of finite-momentum fermion hole excitations, as illustrated
in Figs. 3 and 4. However, we will see that this behavior is
completely changed if one considers the effect of interactions.

B. Interacting case (U �= 0)

Let us now proceed to the interacting case, U �= 0, and
focus on the leading order at weak coupling. We first analyze
how the chemical potentials and the single-particle energies are
modified by mean-field effects. The mean-field approximation
corresponds to the following effective interaction Hamiltonian:

V

U
= ρbρf � + ρ2

b

�

2
+ ρb

∑
k

: f
†
k fk :

+ ρf

′∑
k

b
†
kbk + ρb

2

′∑
k

4b
†
kbk, (4.5)

where the normal ordering of the fermion operator is with
respect to the noninteracting Fermi sea (〈∑k : f

†
k fk :〉 = 0).

The first two terms in this expression are the expectation value
of the interaction terms for the noninteracting ground state.
After adding the kinetic energy of the fermions, this expression
of the ground-state energy can be used to determine the chem-
ical potentials from the usual relation μi = ∂〈H 〉/∂Ni . In the
present mean-field approximation, 〈H 〉 = 〈Hf 〉 + U [Nf Nb +
N2

b /2]/�, where 〈Hf 〉/� = 3ρf εF /5 denotes the kinetic
energy of the Fermi sea. By taking the derivatives with respect
to Nf and Nb, one gets

μf = εF + Uρb, μb = Uρ, (4.6)

so that �μ = εF − Uρf . Note that �μ, responsible for
the explicit breaking of supersymmetry, vanishes when the
fermion density vanishes or U = Uc2 ≡ εF /ρf . This value of
U is translated to kF a = 3π/4 � 2.4.

The corrections to the single-particle energies can be read
off the effective Hamiltonian (4.5). That of the fermion is
coming from the left diagram in Fig. 5, while that of the boson
energy comes from the last two diagrams. The contribution of
these diagrams amounts to a simple shift of the single-particle
energies of the fermion (δεf ) and the boson (δεb) given by

δεf = Uρb, δεb = U (ρf + 2ρb). (4.7)

Note that in the case of bosons, the correction above applies
only to particles with nonzero momentum. For a particle in the
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condensate, the correction is

δεb
0 = U (ρf + ρb). (4.8)

The missing factor 2 in Eq. (4.8), as compared to Eq. (4.7),
reflects the absence of an exchange term in the former case. As
a result, particles in the condensate experience less repulsion
than particles outside the condensate. This generates a gap in
the boson spectrum, which would disappear if phonons were
taken into account (see Appendix).

In the mean-field (MF) approximation, G is still given by
the one-loop diagrams in Fig. 1, with the MF single-particle
energies. It is again convenient to separate the contribution
from the pole from that of the continuum. The contribution
from the continuum reads

GMF
cont(p) = − 1

�

′∑
k

nk

ω̄ + εb
k+p − ε

f

k

= − 1

�

′∑
k

nk

ω̄ + Uρ + ε0
k+p − ε0

k

, (4.9)

and that of the pole is

GMF
pole(p) = − ρb

ω̄ − ε0
p + Uρf

, (4.10)

where we have used Eqs. (4.7) and (4.8) for the single-particle
energies, and here nk = θ (μf − ε

f

k ). The shifts in the particle-
hole energies are different in Eqs. (4.9) and (4.10) (Uρ versus
Uρf ). This is because the boson appearing in the former
equation is not in the condensate, while it is in the latter
equation, and the corresponding boson self-energies differ.

As can be seen from the previous formulas, the pole
structure is affected by the mean-field corrections to the
single-particle energies (except when ρf = 0). In the case
of ρb = 0, for instance, the Goldstino pole is shifted away
from ω̄ = 0 by an amount Uρf . However, the mean-field
approximation is not consistent in this case, and particle-hole
interactions need to be taken into account. These are generated
by the following two terms in the effective Hamiltonian:

H3 = U

�

′∑
k1,k2

f
†
k1

fk2 (b†k2−k1
b0 + b

†
0bk1−k2 ),

H4 = U

�

′∑
k1···k4

δk1−k2+k3−k4 f
†
k1

fk2b
†
k3

bk4 . (4.11)

In order to study the effects of these interactions, we shall
examine first the cases where one of the two densities
vanishes. In these cases, the two contributions to the Goldstino
propagator decouple, which makes the analysis simpler. Then
we consider the general case.

1. Case ρb = 0

When ρb = 0, the one-loop contribution reduces to the
continuum contribution, Eq. (4.9), with Uρ → Uρf . At |p| =
0, the pole lies at ω̄ = −Uρf , corresponding to the shift
in the particle-hole continuum, Uρf = δεb − δεf . However,
as we have already indicated, the mean-field (one-loop)
approximation is in this case not consistent. Indeed, when
we analyze the small ω̄ region, one finds that additional

+= + +...q†q

FIG. 6. The ring diagrams that are summed in the RPA calculation
of GRPA, Eq. (4.12). Note that the propagators are full mean-field
propagators. The interaction joining two successive bubbles is the
one in the second line of Eq. (4.11), namely, H4.

diagrams contribute with the same order of magnitude as
the one-loop diagram. From the expression (4.9) above, we
see that GMF

cont(ω,p = 0) ≈ U−1 when ω̄ 	 Uρf . The diagram
with two rings drawn in Fig. 6 is of order U × U−2 ≈ U−1,
where U comes from the vertex and U−2 from the two rings.
Thus this two-ring diagram has the same order of magnitude
as the one-loop diagram. The same result is obtained also for
the ring diagrams containing more loops, so all of them need
to be summed in order to get a correct result [14,15]. Such
a resummation, commonly referred to as the random phase
approximation (RPA), yields the following expression for the
Goldstino propagator,

GRPA(p) = 1[
GMF

cont(p)
]−1 + U

, (4.12)

which, at zero momentum, reduces to

GRPA(ω,0) = −ρf

ω̄
. (4.13)

This is now the correct result (2.11). This provides a beautiful
illustration of the collective nature of the Goldstino in this case:
the degenerate particle-hole excitations (a fermion hole and a
boson particle with the same momenta, producing an excitation
with energy ω̄ = −Uρf ) being pushed up at ω̄ = 0 by the
particle-hole interaction. In other words, the particle-hole
interaction cancels the shift of the single-particle energies,
thereby shifting back the excitation to ω̄ = 0, as expected
from symmetry considerations. Furthermore, the shift caused
by the particle-hole interaction pushes the Goldstino out
of the continuum at finite momentum, hindering its natural
broadening as the momentum increases.

At small |p|, the Goldstino then appears as a single pole:
To find the corresponding dispersion relation ω̄(p), we expand
Eq. (4.9) in the vicinity of the Goldstino pole, i.e., in powers
of |p| and ω̄. We obtain, up to quadratic order,

GMF
cont(p) � − 1

U

(
1 + aω̄ + b

p2

2m
+ a2ω̄2 + cω̄

p2

2m

)
,

(4.14)

where the coefficients a,b,c are given by

a = − 1

Uρf

, b = 1

Uρf

(
−1 + 4

5

εF

Uρf

)
,

c = 2

(Uρf )2

(
1 − 6

5

εF

Uρf

)
. (4.15)

The resulting expression for the Goldstino propagator reads

GRPA(p) � − ZG

ω̄ − αf p2/2m
, (4.16)
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where

ZG ≡ ρf

[
1 − 4

5

( |p|
kF

εF

Uρf

)2
]
, (4.17)

αf ≡ −1 + 4

5

εF

Uρf

. (4.18)

We note that the dispersion relation is quadratic, but the
coefficient αf differs from the coefficient αs in Eq. (2.14).
In contrast to αs , which in the present case contributes to the
term −1 in Eq. (4.18), αf depends on the interaction strength
and it can turn positive for small enough values of U .

2. Case ρ f = 0

The situation is different in the case ρf = 0, to which we
now turn. Then, only the pole term contributes, that is,

GMF
pole(p) = − ρb

ω̄ − ε0
p
. (4.19)

This is identical to the expression obtained without interac-
tions: the energy of a fermion particle receives a mean-field
correction, which is identical to that of the energy of a
particle of the condensate, and both corrections cancel in the
denominator. In this case the one-loop approximation gives
the correct result.

There is therefore a profound asymmetry between the
two types of excitations. In the first case, when ρb = 0,
the Goldstino appears as a superposition of particle-hole
excitations (with the hole being a fermion), and the particle-
hole interaction plays an essential role in the emergence of the
collective mode. In the second case, ρf = 0, the hole is a boson
in the condensate, and the Goldstino appears as a fermion
propagating in the field of the condensate: its properties are
entirely captured by the mean-field approximation.

When both densities are finite, the two types of excitations
couple. We shall now analyze the effect of this coupling. For
simplicity, we shall focus first on the case p = 0.

3. General case, p = 0

In the general case, the two types of processes mix, thanks
to the fermion-boson interaction that involves one particle
in the condensate, namely, the term H3 in Eq. (4.11). The
mixing arises from the fact that the interaction can couple a
fermion hole and a fermion particle. New types of diagrams
such as the ones in Fig. 7 then appear. That there is a need for
extra contributions can be seen from the following argument.
Consider again the RPA. For general ρf and ρb, Eq. (4.13)
becomes

GRPA(ω,0) = − ρf

ω̄ + Uρb

. (4.20)

Thus when ρb �= 0, the pole of GRPA is no longer at ω̄ = 0,
which is in conflict with the symmetry argument. We shall see
that the problem is cured by extra contributions to which we
now turn.

For a systematic classification of the diagrams, we decom-
pose the Goldstino Green’s function into three components, G̃,
G3, and GS . Such a decomposition naturally emerges if in the
expression of the supercharge operators q(p) and q†(p) [see

q

q

q
q

q

q

q

q

FIG. 7. The new types of diagrams that are allowed by the
interaction. In these diagrams, the bubble is the mean-field bubble
GMF

cont(p), Eq. (4.9), while the single line is the propagator GMF
pole(p),

Eq. (4.10). The single bubble can be replaced by the RPA bubble
sums, while the diagrams on the top can be iterated.

Eq. (2.9)], we replace the zero-momentum boson operators b
†
0

and b0 by shifted operators according to Eq. (3.1). The three
components G̃, G3, and GS correspond then to contributions
to the Goldstino propagator that are respectively independent,
linear, or quadratic in b

†
0 and b0. Furthermore, from now on,

we shall focus on the topology of the new diagrams without
distinguishing the difference between particle and hole by
arrows.

The first contribution, G̃, corresponds to diagrams whose
two ends are connected with bosons with finite momenta (i.e.,
a boson particle, not a particle of the condensate). In the special
case ρb = 0, this coincides with the full Goldstino propagator
GRPA. In the more general case, it is corrected by the diagrams
in Fig. 8. The second diagram in this figure is of order U 2 ×
U−2 × U−1, where the factor U 2 comes from the two vertices,
the factor U−2 from the two bubbles, and U−1 from the mean-
field propagator near ω̄ = |p| = 0, i.e.,

GMF
pole(p) = − ρb

ω̄ − ε0
p + Uρf

≈ − ρb

Uρf

. (4.21)

This diagram has the same order of magnitude ∼ U−1 as the
RPA diagrams, and the same holds for the entire family of

FIG. 8. The diagrams containing the mixing between between
the RPA diagrams (GRPA) and GMF

pole contributing to G̃. The blob
represents the RPA diagrams.
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+ + +...

FIG. 9. The diagrams containing the mixing between the RPA
diagrams (GRPA) and GMF

pole contributing to GS .

diagrams displayed in Fig. 8. Their sum yields

G̃(p) = 1

[GRPA(p)]−1 − U 2GMF
pole(p)

, (4.22)

where GRPA(p) is given by Eq. (4.12). At zero momentum, it
reduces to

G̃(ω,0) = −
[

ρ2
f

ρ

1

ω̄
+ ρf ρb

ρ

1

ω̄ + Uρ

]
. (4.23)

Here we have one pole with no gap, and another one with a
finite gap (ω̄ = −Uρ), whose existence is due to the presence
of a BEC. One may interpret this result in terms of level
repulsion: Before the mixing caused by the diagrams of Fig. 7,
the poles were located at ω̄ = −Uρb for GRPA [Eq. (4.20)]
and at ω̄ = −Uρf for GMF

pole [Eq. (4.21)]. The mixing causes a
repulsion between these two poles, leading eventually to the
result just mentioned. Of course, the supersymmetry plays an
important role here in insuring, for instance, that the mixing
yields a Goldstino pole at ω̄ = 0.

A similar phenomenon is observed for the other compo-
nents of the Goldstino propagator. We consider now GS , the
component whose two ends are connected with the condensate.
In the special case ρf = 0, it agrees with the total Goldstino
propagator given in Eq. (4.19). The corrections at general
densities are given by the diagrams shown in Fig. 9. Following
the same reasoning as for G̃, one can see that these diagrams
contribute with the same order of magnitude when ω̄ and |p|
are small.

The resulting expression reads

GS(p) = 1[
GMF

pole(p)
]−1 − U 2GRPA(p)

. (4.24)

At zero momentum, this reduces to an expression very similar
to Eq. (4.23), viz.

GS(ω,0) = −
[
ρ2

b

ρ

1

ω̄
+ ρf ρb

ρ

1

ω̄ + Uρ

]
. (4.25)

The remaining part of the total Goldstino propagator is
G3(p). It is given by the diagrams whose two ends are
connected with one condensate and one boson with finite
momentum and which are displayed in Fig. 10. The resulting
expression of G3(p) reads

G3(p) = −2UGMF
pole(p)G̃(p), (4.26)

which reduces to

G3(ω,0) = −2
ρf ρb

ρ

(
1

ω̄
− 1

ω̄ + Uρ

)
(4.27)

at zero momentum. The factor 2 reflects the fact that the
condensate can be attached to either of the two ends of the
diagrams.

+ + +...

FIG. 10. The diagrams containing the mixing between between
the RPA diagrams (GRPA) and GMF

pole contributing to G3. There is
another family of diagrams where the RPA vertex (the black dot) is
attached to the left. This gives an identical contribution, and hence
the factor 2 in Eq. (4.26).

The full Goldstino propagator is obtained by summing the
three separate contributions that we have analyzed. By adding
Eqs. (4.23), (4.25), and (4.27), one observes that the poles at
ω̄ = −Uρ cancel among themselves, leaving, as expected, a
single pole at ω̄ = 0 with a residue equal to the density, in
complete agreement with Eq. (2.11). The final result is the
same as that obtained without BEC [14], but how it emerges
is completely different.

4. Finite-momentum case

We proceed now to the finite-momentum case. First, we
consider the energy (momentum) region near the Goldstino
pole, where we can safely expand GRPA and GMF

pole as we did in
Eq. (4.14). As a result, we obtain

G(p) � − Z

ω̄ − αp2/(2m)
(4.28)

with

Z = ρ − 4

5
ρf

( |p|
kF

εF

Uρ

)2

, (4.29)

α ≡ ρb − ρf

ρ
+ 4

5

ρf

ρ

εF

Uρ

= αs + 4

5

ρf

ρ

εF

Uρ
. (4.30)

These formulas reduce to Eqs. (4.17) and (4.18) [(4.19)] when
ρb = 0 [ρf = 0], as they should. Also, that the expression for
α is the same as that obtained in the absence of BEC [14].

The location of the Goldstino pole obtained numerically is
plotted in Fig. 11 and compared to the approximate expression
ω̄ = αp2/(2m). The interaction strength is set to a small value,
Uρf /εF = 0.1, or kF a = 0.3π/4 � 0.24 in terms of a, for
which the weak-coupling analysis is reliable. One sees on
Fig. 11 that the approximate expression is accurate as long as
|p| � 0.16kF . This is indeed the expected range of validity of
the expansion, namely, Uρ � kF |p|/m, as can be seen from
the denominator of the expression of GMF

cont, Eq. (4.9). This
condition leads to |p| 	 Uρm/kF � 0.15kF for the current
values of the parameters. Note that because the continuum is
shifted down by the MF correction Uρ, as compared to the free
case (4.2), the Goldstino pole remains out of the continuum as
long as |p| is smaller than ∼0.21kF .

Also plotted in Fig. 11 are the dispersion relations cor-
responding to the poles of GMF

pole [Eq. (4.21)] and GRPA

[Eq. (4.12)]. This illustrates the effect of the level repulsion
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-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  0.05  0.1  0.15  0.2  0.25

ω- /ε
F

p/kF

FIG. 11. The range of the continuum (red shaded area), the
numerical result for the pole position of the Goldstino propagator
(black solid line), and the pole position obtained from the small |p|
expansion, Eq. (4.30) (blue long-dashed line). For illustration of the
“level repulsion,” the pole positions of GMF

pole (green dashed line) and
GRPA (magenta dotted line) are also plotted. Note that at p = 0 the
tip of the continuum corresponds to the fictitious pole at ω̄ = −Uρ,
carrying no spectral weight. The densities are the same as in Sec. IV A,
i.e., ρb = 2ρf , and the interaction strength is Uρf /εF = 0.1.

already discussed in the case |p| = 0, eventually yielding the
distribution of spectral weight between the continuum and the
Goldstino pole. Of course, the supersymmetry plays a crucial
role here in putting the Goldstino pole at ω̄ = 0 for p = 0.

The spectral function is analyzed in more detail in Fig. 12.
The contributions to the zeroth moment of σ from the
pole and the continuum are displayed in the upper panel
of this figure. At small momenta, |p| � 0.11kF , these are
well accounted for by the expansion (4.29). In the same
plot, we see that the continuum contribution is suppressed
for small momentum, with all the spectral weight being
carried there by the Goldstino. The lower panel of Fig. 12
reveals a large cancellation between the pole and continuum
contributions to the first moment of the spectral function. This
can be understood as follows: At small momentum, the pole
contribution is found to be αρp2/(2m) by using Eq. (4.29).
On the other hand, the sum rule (2.14) requires the sum of
the pole and the continuum contributions to be αsρp2/(2m),
so the continuum contribution should be (αs − α)ρp2/(2m).
At weak coupling, the second term in Eq. (4.30) dominates
over the first term, i.e., α � αs . Thus, the pole (continuum)
contribution is approximately αρp2/(2m) (−αρp2/(2m)). This
behavior is the same as for the case without BEC [14].

When |p| becomes larger than ∼0.21kF , the pole contribu-
tion vanishes since the pole merges with the continuum (see
Fig. 11). The sum of the pole and the continuum contributions
to the zeroth moment equals ρ, as it should because of the sum
rule (2.13). It implies that the spectral weight of the continuum
increases rapidly around the momentum at which the pole is
absorbed, which is demonstrated in Fig. 12. These behaviors,
namely, the suppression (enhancement) of the continuum at
small |p| (above |p| � 0.21kF ), can be seen also from the
spectral function σ plotted in Fig. 13.

 0

 1

 2

 3

-0.1

-0.05

 0

 0.05

 0.1

 0  0.1  0.2  0.3

p/kF

FIG. 12. Upper panel: the contributions to the zeroth moment
of σ from the pole (green dotted line), the continuum (red dashed
line), and their sum (black solid line). The pole contribution in the
small momentum (energy) expansion (blue long-dashed line) is also
plotted. Lower panel: the contributions to the first moment of σ from
the sources listed above. The unit of energy is εF and that of σ is
ρf /εF . Densities and coupling are the same as in Fig. 11.

V. PHENOMENOLOGICAL IMPLICATION

The strong coupling between the fermion and the Goldstino
may offer a possibility to infer the properties of the Goldstino
from the study of the fermion propagator. This is what we
explore in this section.

 0
 0.2

 0.4
-0.4

-0.2
 0

 0.2 50

 100

 150

p/kF

ω- /εF

FIG. 13. The spectral function of the Goldstino (in units of
ρf /εF ). Densities and coupling are the same as in Fig. 11. At very
small p the continuum carries no spectral weight, this being entirely
taken by the Goldstino pole. As the momentum increases, a peak
develops in the continuum, eventually merging with the pole, leading
to a broad peak whose width decreases with increasing momentum.

063617-9



BLAIZOT, HIDAKA, AND SATOW PHYSICAL REVIEW A 96, 063617 (2017)

FIG. 14. The fermion self-energy.

A. Fermion spectrum

As was mentioned in the Introduction, the experimental
observation of the fermion spectrum at small momentum by
using the photoemission spectroscopy technique [18] seems to
be the most direct way to investigate the Goldstino spectrum.
Actually, one of the components of the Goldstino propagator
introduced in the previous section, GS , is proportional to the
fermion propagator:

GS(p) = ρbS(p). (5.1)

This is reflected in the fact that all the diagrams in Fig. 9
have this particular structure. The corresponding fermion self-
energy is given by the diagram in Fig. 14. Note that the two-
loop self-energy drawn in Fig. 15 is not taken into account
here, although formally it is of the same order as the one in
Fig. 14, namely, O(U 2). This is because in the small ω̄ and
|p| region, the contribution from the diagram in Fig. 14 is
enhanced, as we have seen in the previous section, while that
from Fig. 15 is not.5

The fermion-retarded propagator and its spectral function
σS can be deduced from Eq. (4.24). By doing the small ω̄ and
p expansion, we get

S(p) � − ZS

ω̄ − αp2/(2m)
, (5.2)

where

ZS ≡ ρb

ρ

[
1 − p2

k2
F

4εF ρf

Uρ2

(
−1 + 3εF

5Uρ

)]
. (5.3)

We see that the dispersion relation is the same in the total
Goldstino propagator, which is natural because of the strong
mixing discussed in the previous section. This property

5In two dimensions, the contribution of this diagram has an infrared
divergence. Although this was not considered in [14] and we have
not carried out a detailed analysis, it is possible that this leads
to an enhanced contribution of the corresponding process in two
dimensions, similar to that of a BEC in the three-dimensional setup
considered in the present paper.

FIG. 15. The fermion self-energy at the two-loop order, which
we do not take into account.

 0
 0.2

 0.4
-0.4

-0.2
 0

 0.2
 20

 40

p/kF

ω- /εF

FIG. 16. The fermion spectral function σS as a function of |p| and
ω̄. The unit of σS is 1/εF . Densities and coupling are the same as in
Fig. 11. At p = 0, the continuum ends in a pole with spectral weight
ρf /ρ, while the spectral weight of the other pole is ρb/ρ.

suggests that, for experimental investigation of the dispersion
relation of the Goldstino, it is sufficient to focus on detecting
the fermion spectrum. The presence of BEC is important here:
in the absence of BEC, the mixing process between GRPA and
GMF

pole, which yields the self-energy in Fig. 14, disappears.
In addition to this Goldstino pole, the fermion spectral

function contains also a continuum, as can be seen from the
plot for σS in Fig. 16. For |p| smaller than ∼0.21kF , the fermion
spectral function is well described by

σS(p) = 2πZSδ

(
ω̄ − α

p2

2m

)
+ θ (kF − kcf )σ cont

S (p). (5.4)

Here kcf ≡ m|ω̄ + p2/(2m) + Uρ|/|p|, which is shifted by the
MF effect compared with the free case. We do not write the
expression for σ cont

S (p) since it is not relevant to our discussion.
We see that the continuum and the pole have comparable
spectral weights, as can be seen from Fig. 17. This is quite
different compared with the total Goldstino propagator that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

p/kF

FIG. 17. Continuum and pole contributions to the zeroth moment
of σS . The contributions from the pole (green dotted line), the
continuum (red dashed line), and their sum (black solid line) are
plotted. The pole contribution in the small momentum (energy)
expansion (blue long-dashed line) is also plotted for comparison.
Densities and coupling are the same as in Fig. 11. Thus, the
respective spectral weights of the pole and the continuum at p = 0
are respectively ρb/ρ = 2/3 and ρf /ρ = 1/3.
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FIG. 18. The range of the continuum (red shed area), the pole
position (black solid line), and the pole position of GMF

pole (green dashed
line) are plotted. The blue long dashed line represents the small
momentum approximation to the dispersion relation. The densities
are the same as in Fig. 11, and U = Uc1.

we discussed in the previous section, in which the continuum
is suppressed for small |p|. Here the continuum ends at p = 0
in a pole which carries a fraction ρf /ρ of the spectral weight.
The “regular” pole carries a fraction ρb/ρ, as can be deduced
from Eq. (5.3). The total spectral weight is equal to unity, in
agreement with the well-known sum rule,∫

dω̄

2π
σS(p) = 1. (5.5)

When the momentum exceeds ∼0.21kF , the pole merges with
the continuum, and the whole spectral weight is then carried
by the continuum. The width of the peak in the continuum
is decreasing function of |p| for |p| � 0.3kF . This is to
be expected since, when |p| becomes large, the interaction
becomes negligible in Eq. (4.24), and the fermion spectral
function approaches the free value,

σS(p) = 2πδ

(
ω̄ − p2

2m

)
, (5.6)

whose width is zero. When the momentum exceeds 0.85kF ,
the peak leaves the continuum and it becomes a pole with
zero width. One can see this point in the upper-right panel
of Fig. 20. Thus we have seen the crossover of the fermion
spectrum from small p (Goldstino pole and the continuum) to
large p (pole in the free limit).

Finally, let us see how the fermion spectrum is modified
when we increase the interaction strength to the maximum
allowed value U = Uc1 [see Eq. (3.3)]. As can be seen
in Fig. 18, the Goldstino pole now always lies outside
the continuum because the gap between the pole and the
continuum at |p| = 0, which is equal to Uρ, is large enough.
We also see that the position of the pole is approximately
equal to the value obtained in the small momentum expansion
[ω̄ = αp2/(2m)] for quite a large range of momenta, |p| �
0.7kF , and it approaches the MF value [ω̄ = p2/(2m) − Uρf ]
for |p| � 1.9kF . We also plot the contributions from the pole
and the continuum to the zeroth moment for σS in Fig. 19. The
pole contribution agrees with the value in the small momentum
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FIG. 19. The contributions from the continuum (red dashed line)
and the pole (green dotted line) to the zeroth moment of σS and
their sum (black solid line) at U = Uc1. The pole contribution in the
small momentum expansion (blue long-dashed line) is also plotted.
The densities are the same as in Fig. 11 (ρb = 2ρf ). Thus, the
respective spectral weights of the pole and the continuum at p = 0
are respectively ρb/ρ = 2/3 and ρf /ρ = 1/3.

expansion (5.3) quite well at small momentum. Because the
pole is never absorbed by the continuum, its contribution does
not decrease as a function of |p| but increases, in contrast to the
weak-coupling case. At large momentum, it carries the total
spectral weight.

B. Fermion distribution

The other quantity that may have the possibility of exper-
imental observation is the fermion momentum distribution.
This is related to the spectral function by

nf (p) =
∫ ∞

−∞

dω

2π
nf (ω)σS(ω,p), (5.7)

where nf (ω) = θ (−ω). In the free limit, where the spectral
function is given by σS(ω,p) = 2πδ(ω − ε

f
p ) with ε

f
p = ε0

p −
μf , the distribution nf (p) reduces to

nf (p) = θ (kF − |p|). (5.8)

Such a situation is visualized in the upper-left panels of Fig. 20.
Note that the pole position is plotted there in terms of ω instead
of ω̄, in order to show explicitly the physical excitation energy
without the constant shift coming from the chemical potential
difference.

When we turn on the interaction, the fermion spectrum is
modified. This is illustrated in Fig. 20. When the interaction
is weak (Uρf /εF = 0.1), there is not much modification of
the momentum distribution. This is because the entire spectral
weight resides mostly at negative ω. The contribution of the
Goldstino pole crosses the line ω = 0 for a momentum nearly
equal to kF and stops to contribute for larger momenta. A
tiny contribution to the momentum distribution is visible just
above kF .

In order to see more clearly the modification of the
fermion momentum distribution induced by the coupling to
the Goldstino, we increase the coupling up to U = Uc1. The
results are displayed in the lower left in Fig. 20. The Fermi sea
is largely distorted, so that the new Fermi surface is located at
|p| ≈ 0.7kF . Also, the momentum distribution extends above
the Fermi surface by a small contribution which decreases with
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FIG. 20. Upper parts of the panels: The continuum region (red
shaded area) and the pole position (black solid curve). The line ω =
0 is also plotted. Lower parts of the panels: Fermion distribution
in momentum space. The upper-left panels describe the free limit
(U = 0). The remaining panels, upper-right, lower-left, and lower-
right ones, correspond to the case of Uρf /εF = 0.10, U = Uc1, and
U = Uc2, respectively.

|p|. To understand these results, recall that the spectral function
at small momentum is well described by the Goldstino pole
and the continuum, Eq. (5.4). Equation (5.7) yields then

nf (p) = ZSθ

(
�μ − α

p2

2m

)
+ (1 − ZS), (5.9)

where the first term comes from the Goldstino pole and the
second one from the continuum. Here we have used the fact
that the continuum is always in the negative energy region
(maximum value: ω = −Uρb at |p| = kF ), and the property∫ ∞

−∞

dω

2π
θ (kF − kcf )σcont(p) = 1 − ZS, (5.10)

which follows from the sum rule (5.5). As for the Goldstino
pole contribution, we note that this vanishes when the
Goldstino pole sits at positive ω, which occurs when |p| >

kα ≡ √
2m�μ/α. When |p| < kα , the entire spectral weight

resides at negative ω and contributes unity to the momentum
distribution function. When |p| > kα , the Goldstino pole
stops to contribute to the momentum distribution, only the
continuum also does by an amount equal to 1 − ZS . As the
momentum increases, so does ZS . Eventually, at large enough
momentum, the Goldstino carries the entire spectral weight
and the momentum distribution vanishes.

As the interaction strength grows, kα decreases and even-
tually vanishes. This occurs when �μ = εF − Uρf changes
sign from positive to negative, i.e., when U exceeds the critical
value Uc2 ≡ εF /ρf . Strictly speaking, since Uc2 > Uc1 this
value of the coupling constant is outside the region allowed
by the condition (3.3). It is nevertheless interesting to explore
what happens then, since the fermion distribution function
drastically changes, as can be seen in the lower-right panels
of Fig. 20, in particular in the right panel where the Fermi
surface has disappeared. As the interaction strength increases,
moving from the left to the right panel of the lower part of
Fig. 20, the discontinuity of the Fermi surface decreases. This
discontinuity is given by the residue ZS evaluated at the new
Fermi momentum. (Note that the momentum distribution stays
equal to unity for momenta below this momentum.) When
the interaction strength reaches the value Uc2, the location
of the Fermi surface (i.e., the singularity in the momentum
distribution) has moved to |p| = 0 (the fermion pole touches
the ω = 0 line at |p| = 0) and the residue there is ρb/ρ = 0.66
[see Eq. (5.3)], while it is � 0.8 at U = Uc1, as can be
seen from Fig. 20. Note that the discontinuity remains finite
as its location reaches |p| = 0. From that point on, as one
continues to increase the coupling, the entire contribution to
the momentum distribution comes from the continuum and the
momentum distribution is completely smooth.

VI. CONCLUSIONS AND OUTLOOK

We have analyzed the spectral properties of the Goldstino
excitation in a supersymmetric mixture of Bose and Fermi cold
atoms, with the bosons forming a BEC at zero temperature.
At leading order in the weak-coupling regime, the excitations
can be studied within the RPA, taking into account the mixing
processes between the supercharge and the fermion. The way
the collective excitation develops, depending on the values
of the various parameters characterizing the system, turned
out to be in itself an interesting investigation in many-body
physics. However, it would be even more interesting if such
excitations could be observed in appropriate experimental
setups. In this perspective, we have noted that the mixing
between the fermion and the Goldstino produces a strong
modification of the fermion spectral function. This could be
reflected in experimental observables, such as the fermion
spectrum and the fermion momentum distribution.

Our analysis is well founded at small coupling but, as we
have discussed, the possible interesting effects on the fermion
properties manifest themselves more visibly when the coupling
gets stronger. It would therefore be useful to consider the
corrections to the present picture that arise when the coupling
is pushed to the maximum strength allowed by stability
considerations. Among these corrections, an important one
could be that arising from the phonons. Finite temperature
effects or damping mechanisms of the Goldstino are also worth
investigating. We leave these interesting tasks for the future.

As a final remark, we comment on the possible realization
of the supersymmetric setup for the Bose-Fermi mixture. As
was mentioned in Sec. II, having equal boson and fermion
masses, and tuning the two interaction strengths equal, are
necessary to realize supersymmetry. Among the Bose-Fermi
mixtures realized currently, a 6Li-7Li mixture [1] may provide

063617-12



GOLDSTINO IN SUPERSYMMETRIC BOSE-FERMI . . . PHYSICAL REVIEW A 96, 063617 (2017)

us with a chance to realize supersymmetry, since tuning their
interaction strengths is relatively easy and the mass ratio,
7/6 � 1.17, is not very different from unity. Another candidate
is a 173Yb-174Yb mixture [2]. Though tuning the interaction
strength is not as easy as the other candidate, their masses are
almost equal.
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APPENDIX: CONTRIBUTION FROM PHONONS

In this Appendix, we estimate the contribution of the
low-momentum bosonic excitations to the Goldstino retarded
Green’s function G̃ at the one-loop order. At small momentum
the bosonic excitations are phonons and are well described by
Bogoliubov theory. The phonon operators (αk,α

†
k) are related

to the original boson operators (bk,b
†
k) by the Bogoliubov

transformation

bk = ukαk + v∗
−kα

†
−k, (A1)

b
†
k = u∗

kα
†
k + v−kα−k, (A2)

with the coefficients uk and vk given by

u2
k = 1

2

[
1 + (k2/(2m) + Uρb)

εk

]
, (A3)

v2
k = 1

2

[
−1 + (k2/(2m) + Uρb)

εk

]
. (A4)

The phonon dispersion relation reads

ε2
k = k2

2m

(
k2

2m
+ 2Uρb

)
. (A5)

It becomes linear (εk � c|k|) for small momentum, where c ≡√
Uρb/m. At large momentum, the interaction effect becomes

negligible and the dispersion relation remains that of a free
boson, εk � k2/(2m). The characteristic momentum at which
the behavior of the spectrum changes from linear to quadratic
is kc ≡ √

mUρb.
In terms of the phonon excitations, the one-loop propagator

G̃ reads

G̃(p) = −
∫

d3k
(2π )3

[
|uk−p|2

nf

(
ε

f

k

)
εk−p − ε

f

k + ω

+ |vk−p|2
1 − nf

(
ε

f

k

)
−εk−p − ε

f

k + ω

]
, (A6)

where ε
f

k ≡ ε0
k − μf + Uρb. In the weak-coupling limit, the

characteristic momentum kc is much smaller than the Fermi
momentum, kc 	 kF . Then the numerator in the second term
makes the contribution of this term to the low-momentum
region, |k| < kc, negligible. Consider, for instance, the case
|p| = 0, where the contribution of the soft modes (k � kc) to
Eq. (A6) reduces to

G̃(ω,0) = − 1

2π2

∫ kc

0
d|k||k|2 |uk|2

εk − ε
f

k + ω
. (A7)

In the integration region, |uk|2 is of order Uρ/(c|k|) and the
denominator of the integrand is of order Uρ when ω̄ is small.
Combining these estimates, one finds that G̃ is of order k2

c /c ≈
m3/2√Uρ. This is much smaller than the contribution from the
momentum region |k| > kc, which is shown to be 1/U in the
main text, as long as U is small enough. This is, of course, due
to the small phase-space volume occupied by the soft modes,
which is of order k3

c .
The contribution of the low-momentum region to other

quantities such as GS and G3 can also be shown to be small in
a similar way.
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