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We study the small frequency behavior of the bulk viscosity spectral function using stochastic fluid dynamics.
We obtain a number of model independent results, including the long-time tail of the bulk stress correlation
function and the leading nonanalyticity of the spectral function at small frequency. We also establish a lower
bound on the bulk viscosity which is weakly dependent on assumptions regarding the range of applicability
of fluid dynamics. The bound on the bulk viscosity ζ scales as ζmin ∼ (P − 2

3E)2
∑

i D
−2
i , where Di are the

diffusion constants for energy and momentum and P − 2
3E , where P is the pressure and E is the energy density,

is a measure of scale breaking. Applied to the cold Fermi gas near unitarity, |λ/as | ∼> 1, where λ is the thermal
de Broglie wavelength and as is the s-wave scattering length, this bound implies that the ratio of bulk viscosity
to entropy density satisfies ζ/s ∼> 0.1h̄/kB . Here, h̄ is Planck’s constant and kB is Boltzmann’s constant.
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I. INTRODUCTION

Hydrodynamic tails reflect the fact that fluid dynamics
is an effective theory, in which the classical equations of
motions are the lowest order approximation to a more complete
theory involving averages over fluctuations of the fundamental
variables. The classical equations of motion in fluid dynamics
describe the evolution of conserved quantities such as mass,
energy, and momentum. These equations depend on the form
of the associated currents [1]. In fluid dynamics the currents
are expanded in gradients of hydrodynamic variables, and the
corresponding expansion coefficients are known as transport
coefficients. Transport coefficients control dissipative effects
and fluctuation-dissipation relations imply that dissipative
terms must be accompanied by stochastic forces. The presence
of stochastic terms manifests itself in the form of long-time,
nonanalytic, tails in correlation functions [2–4].

Long-time tails have been observed in computer simu-
lations of fluids [5,6], but they are more difficult to detect
experimentally. In the present work we will study correlation
function of the bulk stress, with an emphasis on dilute quantum
fluids, such as the dilute Fermi gas near unitarity. Bulk
stresses are interesting because the bulk viscosity can be
strongly enhanced near a phase transition [7], and quantum
fluids provide attractive applications because hydrodynamic
fluctuations are enhanced in systems in which the microscopic
transport coefficients are small. The existing literature contains
only very limited information on the bulk stress correlation
function. The only calculation of the bulk tail in a nonrela-
tivistic theory away from the critical point that we have been
able to find appears to be wrong [4]. There are a number
of studies of hydrodynamic tails near the liquid-gas endpoint
and the superfluid transition [8], and there is a calculation of
the bulk tail in a relativistic nonconformal fluid at zero mean
charge density in [9].

In this work we compute the long-time tail of the bulk stress
correlation function in a nonrelativistic fluid. We apply the
result to the dilute Fermi gas near unitarity, and derive a bound
on the bulk viscosity of a nonconformal fluid. This bound only
depends on the shear viscosity and thermal conductivity of
the fluid, combined with a measure of conformal symmetry
breaking in the equation of state. The bound is similar

to lower bounds on the shear viscosity in relativistic and
nonrelativistic fluids that have been derived in [10–12]. Finally,
we discuss constraints on the bulk viscosity spectral function
of a nonrelativistic fluid.

II. KUBO FORMULA

In this section we will determine the relation between the
bulk viscosity and the low frequency behavior of the retarded
correlation function of the stress tensor. This relation, known
as the Kubo formula, can be determined by matching the linear
response relation for the stress induced by an external strain
to the low-frequency behavior of the response predicted by
fluid dynamics. The Kubo formula for the shear and bulk
viscosity of a nonrelativistic fluid has been rederived many
times [1,13], but there are a number of subtleties that we would
like to emphasize. We will make use of a formalism developed
in [14–17], which is based on studying the response of the
fluid to a nontrivial background metric gij (t,�x). Correlation
functions of the stress tensor are determined using linear
response theory, and the constraints of Galilean symmetry can
be incorporated by requiring the equations of fluid dynamics
to satisfy diffeomorphism invariance.

The retarded correlation function of the stress tensor �ij is
defined by

G
ijkl

R (ω,k) = −i

∫
dt

∫
dx eiωt−ik·x�(t)

×〈[�ij (t,x),�kl(0,0)]〉. (1)

The retarded correlator determines the stress induced by a
small strain gij (t,x) = δij + hij (t,x),

δ�ij (ω,k) = − 1
2G

ijkl

R (ω,k)hkl(ω,k). (2)

In fluid dynamics the stress tensor is expanded in terms of
gradients of the thermodynamic variables. We write �ij =
�0

ij + �1
ij + · · · , where

�0
ij = ρvivj + Pgij (3)

is the ideal fluid part and �i
ij with i �= 0 are viscous

corrections. Here, ρ is the mass density of the fluid, vi is the
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velocity, and P is the pressure. At first order in the gradient
expansion �1

ij = −ησij − ζgij 〈σ 〉 with

σij = ∇ivj + ∇j vi + ġij − 2
3gij 〈σ 〉, (4)

〈σ 〉 = ∇ · v + ġ

2g
, (5)

where σij is the shear stress tensor, η is the shear viscosity,
ζ is the bulk viscosity, g is the determinant of the metric,
and ∇i is the covariant derivative associated with gij . The
terms involving time derivatives of the metric are fixed by
diffeomorphism invariance [15]. Roughly, we can think of
these terms as arising from the nonrelativistic reduction of a
generally covariant stress tensor, σij ∼ ∇iuj ∼ u0�

0
ij ∼ ġij ,

where u0,ui are the temporal and spatial components of the
four-velocity and �α

μν is the Christoffel symbol.
We will consider a harmonic perturbation of the form

hij (t,x) = δijh e−iωt . At the level of ideal fluid dynamics
this perturbation induces two terms in the stress tensor. The
first, δ�ij = Phij , arises from the direct coupling of �0

ij to
the background metric. The second term follows from the
equations of ideal fluid dynamics in a nontrivial background.
The continuity equation implies δρ = iω

2 hρ0, where ρ0 is the
unperturbed mass density. This leads to a shift in the pressure
δP = (∂P )/(∂ρ)sδρ.

At first order in gradients the response is carried by the
coupling to the background metric in Eq. (4). As expected, the
response to a bulk strain hij ∼ δij is independent of the shear
viscosity. At order O(ω) we get

1

9
G

iijj

R (ω,0) = −
[

2

3
P −

(
∂P

∂ρ

)
s

ρ

]
− iωζ, (6)

where repeated indices are summed over. The Kubo relation is

ζ = − lim
ω→0

1

9ω
Im G

iijj

R (ω,0). (7)

In the following we will derive a slightly more convenient
version of this Kubo relation. Bulk viscosity is a measure of
scale breaking, and we would like to find a version of the Kubo
relation in which this property is manifest. In the local rest
frame of the fluid the trace of the stress tensor is proportional
to the pressure. In [17] we showed that in equilibrium scale
breaking can be characterized by the quantity1

�TrP = P − 2
3E

0. (8)

Here, we use E0 to denote the energy density in the rest frame
of the fluid. In ideal fluid dynamics the total energy density
is given by E = E0 + 1

2ρv2. We can now make use of the fact
that the energy density of the fluid is conserved,

∂E
∂t

+ ∇ · jε = 0, (9)

where jε is the energy current. This relation implies that for
ω �= 0 the retarded Green function Gεii

R (ω,k) of the energy
density and the trace of the stress tensor must vanish as k → 0.

1We use the subscript Tr to distinguish the trace anomaly �TrP

from the quantity �P , which is a fluctuation in the pressure.

A more formal proof of this statement using Ward identities
was given in [18]; see also [19,20]. We conclude that we can
use any linear combination of the form O = 1

3�ii + cE to
define the Kubo relation for the bulk viscosity. Here, we will
use c = − 2

3 . This choice has the nice property that the Kubo
relation

ζ = − lim
ω→0

1

ω
Im GOO

R (ω,0), O = 1

3

(
�ii − 2E

)
(10)

involves an operator which is manifestly sensitive to the trace
anomaly in the hydrodynamic limit, O = �TrP = P − 2

3E0.

III. HYDRODYNAMIC FLUCTUATIONS

There are many possible strategies for evaluating the
retarded correlation function of O = �TrP . An example is
the microscopic calculation in [21], where we compute the
bulk viscosity in a dilute Fermi gas based on a perturbative
calculation of quasiparticle properties. In this work we will
employ a different strategy and compute the retarded correla-
tion using a macroscopic theory of the long distance properties
of the fluid. This theory is stochastic fluid dynamics [13]. As
we will show this theory provides a universal prediction of
the leading nonanalyticity in GOO

R (ω,0) as ω → 0. It also
provides a lower bound on ζ , but this bound is sensitive to
microscopic physics.

In order to explore the role of hydrodynamic fluctuations we
will expand �P to second order in hydrodynamic variables.
Higher-order terms can be computed, but they provide correc-
tions that are subleading in ω/ωbr. Here ωbr is the breakdown
scale of hydrodynamics, which we will define more carefully
below. The probability of a fluctuation of the hydrodynamic
variable is proportional to exp(�S), where �S is the change
in entropy of the fluid [22]. We can write

S =
∫

d3x s(ρ,E0), (11)

so that

�S =
∫

d3x

{(
∂s

∂ρ

)
E0

�ρ +
(

∂s

∂E0

)
ρ

�E0

+ 1

2

(
∂2s

∂ρ2

)
E0

(�ρ)2 + ∂2s

∂ρ∂E0
�ρ�E0

+ 1

2

(
∂2s

∂(E0)2

)
ρ

(�E0)2 + · · ·
}

. (12)

We can use the conservation laws for the mass density ρ and
the energy density E to show that the linear terms vanish.
The quadratic terms can be simplified by using a set of
thermodynamic variables that diagonalizes the quadratic form.
A suitable set of variables is provided by (ρ,T ) [13,23]. The
entropy functional that governs fluctuations in ρ, T , and v is

�S = − 1

2T0

∫
d3x

{
1

ρ0

(
∂P

∂ρ

)
T

(�ρ)2

+ cV

T0
(�T )2 + ρ0v2 + · · ·

}
, (13)

where (T0,ρ0) denote the mean values of the temperature and
density and (�T,�ρ,v) are local fluctuations. We can expand
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O = �TrP to second order in (�T,�ρ),

O = O0 + aρ�ρ + aT �T + aρρ(�ρ)2

+ aρT �ρ�T + aT T (�T )2 + · · · . (14)

The hydrodynamic tails are determined by the second-order
terms. The corresponding coefficients can be expressed in
terms of thermodynamic quantities. We find

aρρ = 1

2

∂

∂ρ

[
c2
T − 2

3

(
h

m
− T ακT

ρ

)]
T

, (15)

aρT = ∂c2
T

∂T

∣∣∣∣
ρ

− 2

3

∂cV

∂ρ

∣∣∣∣
T

, (16)

aT T = 1

2

[
1

T

(
1 − ρ

∂

∂ρ

)
T

− 2

3

∂

∂T

∣∣∣∣
ρ

]
cV . (17)

Here, cT is the isothermal speed of sound, h is the enthalpy
per particle, α is the thermal expansion coefficient, κT is the
bulk modulus, and cV is the specific heat at constant volume.
We define these quantities in the Appendix. The coefficients
aαβ with α,β = (ρ,T ) are sensitive to conformal symmetry
breaking and vanish in the ideal gas limit. A numerical estimate
of aαβ therefore requires a nontrivial equation of state. As an
example we consider a dilute Fermi gas governed by an s-wave
interacting with scattering length as . In the high-temperature
limit the trace anomaly is given by [21]

�TrP = 2π

3m4as

ρ2

T
, (18)

where we employ units h̄ = kB = 1. In the limit as → ∞
the dilute Fermi gas is scale invariant and the trace anomaly
vanishes. Using Eq. (18) we find

(aρρ,aρT ,aT T ) = 2π

3m4T 3as

(T 2,−2ρT ,ρ2). (19)

IV. HYDRODYNAMIC TAILS: FORMALISM

In order to study hydrodynamic tails we consider the correla-
tion function of �TrP expanded to second order in (�ρ,�T ).
In statistical field theory it is convenient to start from the
symmetrized correlation function

GOO
S (ω,k) =

∫
d3x

∫
dt ei(ωt−k·x)

〈
1
2 {O(t,x),O(0,0)}〉.

(20)

This function is related to the retarded correlator by the
fluctuation-dissipation theorem. For ω → 0 we have

GS(ω,k) 	 −2T

ω
Im GR(ω,k). (21)

At second order in (�ρ,�T ) and at the level of the Gaus-
sian entropy functional the symmetrized correlation function
factorizes into a set of two-point functions:

GOO
S (ω,0) =

∫
dω′

2π

∫
d3k

(2π )3

[
2a2

ρρ�
ρρ

S (ω′,k)�ρρ

S (ω − ω′,k)

+ a2
ρT �

ρρ

S (ω′,k)�T T
S (ω − ω′,k)

+ 2a2
T T �T T

S (ω′,k)�T T
S (ω − ω′,k)

]
, (22)

where �
ρρ

S is the symmetrized density correlation function

�
ρρ

S (ω,k) =
∫

d3x

∫
dt ei(ωt−k·x)

〈
1
2 {ρ(t,x),ρ(0,0)}〉 (23)

and �T T
S is the temperature correlation function. Note that

by working with (�T,�ρ) we avoid off-diagonal correlation
functions such as �

ρT

S . Also note that in hydrodynamics the
symmetrized function �S reduces to the statistical correlation
function.

The Kubo relation involves the retarded, not the sym-
metrized, correlation function. We can reconstruct the re-
tarded function using the fluctuation-dissipation relation (21).
Consider the first term in Eq. (22). At low frequency the
contribution to GR can be written as [10,11]

GOO
R (ω,0)

∣∣
ρρ

= 2a2
ρρ

∫
dω′

2π

∫
d3k

(2π )3

[
�

ρρ

R (ω′,k)�ρρ

S (ω − ω′,k)

+�
ρρ

S (ω′,k)�ρρ

R (ω − ω′,k)
]
. (24)

This is an example of a more general relation that one can
prove using hydrodynamic effective actions, which shows
that the retarded correlation functions can be derived using
a perturbative expansion based on a combination of retarded
and symmetrized propagators [8,9,24–29].

The two-point functions of the temperature and density in
first-order dissipative hydrodynamics are well known [1]. The
temperature correlation function is dominated by a diffusive
heat wave. The symmetric and retarded correlation functions
are

�T T
S (ω,k) = 2T 2

cP

DT k2

ω2 + (DT k2)2
, (25)

�T T
R (ω,k) = T

cP

−DT k2

−iω + DT k2
, (26)

where cP is the specific heat at constant pressure, DT =
κ/cP is the thermal diffusion constant, and κ is the thermal
conductivity. The two-point function of the density is more
complicated, because the density couples to both propagating
sound modes and diffusive heat modes. The symmetric
correlation function is [1]

�
ρρ

S (ω,k) = 2ρT

{
�k4(

ω2 − c2
s k

2
)2 + (�ωk2)2

+ �cP

c2
s

DT k2

ω2 + (DT k2)2

− �cP

c2
s

(
ω2 − c2

s k
2
)
DT k2(

ω2 − c2
s k

2
)2 + (�ωk2)2

}
, (27)

where k2 = k2, cs is the speed of sound, and �cP = (cP −
cV )/cV . We have also defined the sound attenuation constant

� = 4

3

η

ρ
+ ζ

ρ
+ κ

(
1

cV

− 1

cP

)
= 4

3

η

ρ

[
1 + 3

4

ζ

η
+ 3

4

�cP

Pr

]
,

(28)

where Pr = (cP η)/(ρκ) is the Prandtl number, the ratio of
the momentum and thermal diffusion constants. At high
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FIG. 1. Diagrammatic representation of the leading contribution of thermal fluctuations to the bulk stress correlation function. The dashed
line corresponds to the operator O = P − 2

3E . Solid lines denote the diffusive temperature correlator and wavy lines denote the density
correlation function, determined by the sound pole and the diffusive heat mode.

temperature �cP = 2/3 and Pr = 2/3 [30], and at low
temperature �cP /Pr → 0.

The two-point function of the density has a complicated
pole structure and the calculation of loop diagrams can be
simplified by separating the different terms. We will also
separate the contributions from sound and diffusive modes,

�
ρρ

R,S(ω,k) = �sd
R,S(ω,k) + �ht

R,S(ω,k) + �m
R,S(ω,k). (29)

In the long-wavelength limit the sound contribution can be
written as

�sd
S (ω,k) = ρT

�k3

2ωcs

{
1

(ω − csk)2 + (
�
2 k2

)2

− 1

(ω + csk)2 + (
�
2 k2

)2

}
, (30)

�sd
R (ω,k) = ρ

�k

2cs

{
1

ω − csk + i �
2 k2

− 1

ω + csk + i �
2 k2

}

(31)

and the diffusive heat mode is

�ht
S (ω,k) = 2ρT

�cP

c2
s

DT k2

ω2 + (DT k2)2
, (32)

�ht
R (ω,k) = ρ

�cP

c2
s

−DT k2

−iω + DT k2
. (33)

Finally, there is a term that is sensitive to both sound and
diffusive modes

�m
S (ω,k) = −2ρT

�cP

c2
s

kDT

2cs

{
ω − csk

(ω − csk)2 + (
�
2 k2

)2

− ω + csk

(ω + csk)2 + (
�
2 k2

)2

}
, (34)

�m
R(ω,k) = ρ

�cP

c2
s

iωkDT

2cs

{
1

ω − csk + i �
2 k2

− 1

ω + csk + i �
2 k2

}
. (35)

V. HYDRODYNAMIC TAILS: ONE-LOOP DIAGRAMS

In this section we will compute the leading infrared
behavior of the three one-loop diagrams shown in Fig. 1.
The two-point function of the density has three distinct
contributions, see Eq. (29), and as a result there are ten
one-loop diagrams total. As we will see, only four of them
contribute to the low-frequency behavior of GR(ω,0).

(1) The simplest diagram involves diffusive fluctuations
of the temperature only. We consider Eq. (24) with (ρρ) →
(T T ) and use the retarded and symmetrized functions given
in Eqs. (25) and (26). We perform the frequency integral by
closing the contour in the complex ω plane. We find

GOO
R (ω,0)|ht

T T = −2a2
T T T 3

c2
P

∫
d3k

(2π )3

k2

k2 − iω
2DT

, (36)

where T T refers to the presence of two temperature correlation
functions and ht indicates that these modes are dominated by
a diffusive heat mode. The integral in Eq. (36) is ultraviolet
divergent. We will regularize the integral using a momentum
cutoff �. We will see that there are two types of terms.
Hydrodynamic tails are nonanalytic in ω and independent of
the cutoff. Fluctuation terms are sensitive to the cutoff and
contribute to GR in the same way as transport coefficients.
This implies that the cutoff dependence can be absorbed into
the bare transport parameters. However, we will see that this
procedure implies bounds on the transport coefficients.

After introducing a cutoff we can compute the integral in
Eq. (36) by expanding in ω. The leading terms are

GOO
R (ω,0)|ht

T T = −2a2
T T T 3

c2
P

L(ω,�,2DT ), (37)

where we have defined

L(ω,�,2DT ) = 1

2π2

{
�3

3
+ iω�

2DT

− π

2
√

2
(1 + i)

(
ω

2DT

)3/2

+ · · ·
}

. (38)

Note that the small parameter in the low-frequency expansion
is ε ≡ ω/(DT �2). We observe that the �3 term can be viewed
as a contribution to the compressibility term in Eq. (6) and
the iω� term is a contribution to the bulk viscosity. This term
is sensitive to scale breaking via the coefficient aT T and it
scales inversely with the thermal conductivity. The last term
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is a hydrodynamic tail. The imaginary part can be viewed as
a

√
ω contribution to the frequency-dependent bulk viscosity

ζ (ω) and the real part is a 1/
√

ω contribution the bulk viscosity
relaxation time. This term signals the breakdown of second-
order deterministic fluid dynamics in the low-frequency limit.

(2) A similar diffusive heat contribution appears in the two
point function of the density. Comparing Eqs. (25) and (26) to
Eqs. (32) and (33) we observe that this contribution is equal to
the previous term up to an overall factor. We get

GOO
R (ω,0)|ht

ρρ = −2a2
ρρTρ2(�cP )2

c2
s

L(ω,�,2DT ). (39)

In the case of a dilute gas Eq. (39) and Eq. (37) are comparable
in magnitude, but in general the two contributions can be
different.

(3) Another diffusive heat contribution is contained in the
mixed �ρρ�T T term, shown as the third diagram in Fig. 1. We
get

GOO
R (ω,0)|ht

ρT = −a2
ρT ρT 2�cP

cP c2
s

L(ω,�,2DT ). (40)

(4) The two point function of the density also contains a sound
contribution. This term is quite different, because sound is a
propagating mode and sound attenuation is controlled by �,
which is not only sensitive to κ but also to the shear viscosity
η and a possible microscopic contribution to ζ . We determine
this term using the two point functions in Eqs. (30) and (31). We
observe that there are two types of contributions, characterized
by the relative sign of the real part of the pole position, ω′

± =
±csk + O(ω,k2). We first consider diagrams where the poles
are on opposite sides of the real axis. We get

GOO
R (ω,0)|sd

ρρ = −a2
ρρTρ2

c4
s

L(ω,�,�), (41)

where the index sd indicates the contribution from the sound
mode. The diagram where the two poles are on the same side
gives

GOO
R (ω,0)

∣∣sd

ρρ

= −a2
ρρTρ2

4c2
s

∫
d3k

(2π )3

k2

(ω − 2csk + i�k2)
(
csk − i �k2

2

) .

(42)

This integral is UV divergent, but it is less IR sensitive than
Eq. (36). In particular, the low-frequency behavior is governed
by csk  �k2. As a result, the contribution to the iω term
in GOO

R (ω,0) is suppressed by a factor (��/cs) relative to
Eq. (37).

(5) The remaining diagrams fall into two categories. The
first class involves mixed diagrams in which a diffusive heat
mode is coupled to a propagating sound mode. These diagrams
are suppressed because if one of the propagators is put on
shell the other propagator is far off shell, and the diagram is
not infrared sensitive. The other diagrams involve the mixed
sound-heat propagator in Eq. (34). The on-shell residue of this
propagator is suppressed. We finally collect the contributions
from Eqs. (37)–(43). We get

GOO
R (ω,0) = −AT L(ω,�,2DT ) − A�L(ω,�,�), (43)

where we have defined

AT = 2a2
T T T 3

c2
P

+ 2a2
ρρρ

2T (�cP )2

c4
s

+ a2
ρT ρT 2�cP

cP c2
s

,

A� = a2
ρρρ

2T

c4
s

. (44)

VI. PHENOMENOLOGICAL ESTIMATES

A. Hydrodynamic tail

In the previous section we showed that the ω3/2 term in the
retarded correlation function is uniquely determined in terms
of the equation of state and the transport parameters. This term
has several physical effects: it determines the long-time tail of
the correlation function, it governs the small frequency limit
of the bulk viscosity spectral function, and it determines the
ω → 0 divergence in the relaxation time. We first consider the
correlation function

Cζ (t) =
∫

dω

2π
GOO

S (ω,0)e−iωt . (45)

For t → ∞ we obtain a t−3/2 tail

Cζ (t) = T

4π3/2

(
AT

(2DT )3/2
+ A�

�3/2

)
1

t3/2
. (46)

This contribution is computed most easily by starting from
the momentum integral in Eq. (36), and then performing
the frequency integral before the momentum integral. The
hydrodynamic tail in the bulk stress correlator was first
computed by Pomeau and Résibois [4], but their result does
not appear to be correct. In particular, the expression for Cζ (t)
given in [4] does not vanish for a scale-invariant fluid. In
our work Cζ (t) ∼ a2

αβ ∼ (�TrP )2 automatically vanishes for
a scale-invariant fluid.

The contribution of critical fluctuations to the tail in the bulk
stress correlation function was computed by Onuki [8], both
in model H (liquid-gas end point) and model F (superfluid
transition). In principle the model F result for T > Tc is
directly applicable to the Fermi gas near unitarity. Model F
contains two hydrodynamic variables, a linear combination
of the energy density E and the density ρ, as well as the
superfluid density. Above Tc only the energy density–like
variable contributes. In this regime there are two differences
compared to our analysis: (1) we keep both both E and ρ; (2)
the model F analysis uses a more complicated functional form
of the thermal conductivity κ(k2,t) with t = (T − Tc)/Tc,
which reduces to a simple constant for t  1. This implies
that the model F tail should be similar to our tail for large
t . This is difficult to verify, because the coupling between
the energy density–like variable to the bulk stress does
not manifestly respect scale invariance. The bulk tail in a
relativistic nonconformal fluid was computed by Kovtun and
Yaffe [9]. These authors assume that the mean density of
the fluid vanishes, so that we cannot directly compare to the
nonrelativistic limit.
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B. Spectral function

A second quantity of interest is the spectral function

ζ (ω) = − 1

9ω
ImGOO

R (ω,0). (47)

The existence of a hydrodynamic tail implies that

ζ (ω) = ζ (0) −
(

AT

(2DT )3/2
+ A�

�3/2

) √
ω

36
√

2π
. (48)

This result can be combined with other model independent
information about the spectral function. The high-frequency
tail of the bulk viscosity was determined using the operator
product expansion [31]

ζ (ω) = C
36π

√
mω

1

1 + a2
s mω

, (49)

where C is the contact density [32,33]. The contact density is
directly related to the trace anomaly near unitarity

�TrP = C
12πmas

. (50)

In the high-temperature limit C can be computed using the
virial expansion [34]. Near unitarity we find

C = 4πn2λ2

{
1 + 1√

2

(
λ

as

)
+ · · ·

}
, (51)

which implies

ζ (ω) ∼ λ−3

(
zλ

as

)2(
T

ω

)3/2

, (52)

where λ = [(2π )/(mT )]1/2 is the thermal de Broglie wave-
length and z = 1

2nλ3 is the fugacity of the gas. Finally, there
is a sum rule for the bulk viscosity spectral function [35–37],

1

π

∫
dω ζ (ω) = 1

72πma2

∂C
∂a−1

s

∣∣∣∣
s/n

. (53)

In the next section we will combine these constraints with the
fluctuation bound to provide a simple model of the viscosity
spectral function.

C. Fluctuation bound

The cutoff dependent term in the bulk viscosity,

ζ� = 1

18π2

(
AT �

2DT

+ A��

�

)
, (54)

has to combine with the bare bulk viscosity to determine the
physical bulk viscosity of the fluid. We can view this result as
arising from a renormalization-group procedure, where fluid
dynamics is matched to a microscopic theory at the scale �,
and then the evolution of GR(ω) below the scale � is computed
using stochastic fluid dynamics. For this procedure to be
consistent the bare viscosity at the cutoff scale must be positive,
and the physical viscosity must be larger than ζ�. This bound
increases with the cutoff scale �. The largest possible � is
determined by the breakdown scale of fluid dynamics, because
above that scale stochastic fluid dynamics is not reliable. Of
course, the viscosity at the cutoff scale must depend on �,
so that the physical viscosity ζ (0) is cutoff independent. The

same conclusion also follows from the spectral density given in
Eq. (48). We observe that the nonanalytic

√
ω term is negative.

If this term is the dominant correction to the spectral density
below the breakdown scale of fluid dynamics, ω ∼< ωbr, then
spectral positivity implies that ζ (0) cannot be arbitrarily small.

In order to determine the maximum momentum where fluid
dynamics can be trusted we can study the dispersion relation
of diffusive heat modes and propagating sound waves, and
determine the maximum momentum for which higher-order
corrections are small compared to leading-order terms.

(1) Diffusive modes: heat modes are characterized by
ω ∼ DT k2. Corrections arise from higher-order terms in
the derivative expansion. For nonzero frequency the leading
correction is due to the relaxation time. We get ω ∼ DT k2 �
τ−1
κ . For this relation to be maintained for all k < � we have to

require that � ∼< �T with �T = (τκDT )−1/2. In kinetic theory
τκ = (mκ)/(cP T ) and

�T 	 1

DT

(
T

m

)1/2

. (55)

Equation (55) implies that the expansion parameter of the
low-frequency expansion, ε = ω/(DT �2), is of order ε ∼
(mDT )(ω/T ). For a nearly perfect fluid DT ∼ m−1 [38] and
the low-frequency expansion is valid all the way up to ω ∼ T .
In the case of a poor fluid DT  m−1 and the range of validity
of the low-frequency expansion is smaller. We also note that
Eq. (55) ensures that the expansion parameter (DT �/cs) is
indeed small.

(2) Sound channel: in the sound channel we have ω ∼
csk � �k2. This implies k ∼< �� with

�� 	 1

�

(
∂P

∂ρ

)1/2

s/n

. (56)

For a weakly interacting gas we get (∂P )/(∂ρ)s/n 	
(5T )/(3m). We can either use the two estimates Eqs. (55) and
(56) in the respective channels, or use the smaller of the two
values. In the weak-coupling limit, where Pr ∼ 1, these two
estimates are numerically very similar. Using the first method,
we obtain the bound

ζmin =
(

AT

2D2
T

+
√

5A�√
3�2

)√
T

m
. (57)

We observe that there is a minimum value of ζ that is solely
controlled by (�TrP/DT )2 and (�TrP/�)2. This implies that
if there is scale breaking in the equation of state, and if the
shear viscosity and thermal conductivity are finite, then the
bulk viscosity cannot be zero. Fluctuation bounds on the shear
viscosity were studied in [11,12]. We observe that the bound
on ζ has the same structure as the bound on η, but is suppressed
by a factor (�TrP/P )2.

Finally, we provide some numerical estimates. For this
purpose we assume that the bare bulk viscosity is zero and that
the shear viscosity and thermal conductivity are described by
kinetic theory, η = η0(mT )3/2 and κ = κ0m

1/2T 3/2 with η0 =
15/(32

√
π ) and κ0 = 225/(128

√
π ) [30,39]. In the case of the

shear viscosity this is known to be a good approximation even
close to the critical temperature [40]. We also use the results
for c2

s , cP , and �cP in the dilute limit; see the Appendix.
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FIG. 2. Fluctuation bound (blue line) on ζ/s for the dilute Fermi
gas as a function of T/TF . We show the regime T > Tc with Tc/TF 	
0.17. As explained in the text we estimate the equation of state and
transport properties using results in the high-temperature limit. We
have also chosen as/λ = 1. The error band corresponds to a 50% error
in �T and �� . For comparison we show the kinetic theory result for
ζ/s as the green line.

The bound on ζ/s as a function of T/TF is shown in Fig. 2.
The width of the band reflects a 50% error related to the choice
of �. For comparison we also show the kinetic theory result
ζ/n = z2/(24

√
2πλ3)(λ/as)2 [21]. At high temperature the

fluctuation bound is very small, but near Tc 	 0.17TF [41] the
bound is comparable to the kinetic theory result, indicating that
the bulk viscosity must be at least as big as predicted by kinetic
theory. Note that we have extrapolated the bound on ζ/s all
the way to Tc, despite the fact that several estimates involve
approximations that are only reliable for T  Tc. Similar to
the kinetic theory estimates discussed above, it is known that in
the case of η/s this procedure provides a numerically accurate
estimate of the bound near Tc.

We note that ζ/s is given in units of h̄/kB . Both the
hydrodynamic and the kinetic theory calculation are com-
pletely classical. Planck’s constant enters the hydrodynamic
calculation via the equation of state, and it appears in the
kinetic theory calculation in terms of both the equation of
state and the quasiparticle dispersion relation.

In Fig. 3 we summarize the available information on the
spectral function ζ (ω). We plot ζ (ω)/s as a function of
ω/T . For small ω we show the hydrodynamic prediction
in Eq. (48) where ζ (0) is assumed to be the fluctuation
bound. For large ω we show the tail predicted by the operator
product expansion; see Eq. (49). We have chosen T/TF = 0.2
and λ/as = 1. We conclude that a smooth extrapolation of
the large frequency tail to ω = 0 is consistent with a bulk
viscosity ζ (0) which is somewhat larger than the fluctuation
bound. As an example we show the green dotted line which
corresponds to ζ = ζmin + ζmicro − c

√
ω with ζmicro/s = 0.04

and c given by Eq. (49). This function smoothly matches
the high-frequency tail. Integrating the low-frequency model
and the high-frequency tail over the entire range ω ∈ [0,∞]
saturates 65% of the sum rule in Eq. (53). We conclude that
a reasonable model of the bulk viscosity spectral function
can be obtained by matching the high-frequency tail to
the hydrodynamic spectral function combined with a small
microscopic viscosity.

(
)/s

0 2 4 6 8 10
0.001

0.005

0.010

0.050

0.100

/T

FIG. 3. Schematic form of the bulk viscosity spectral function.
This figure shows ζ/s as a function of the frequency ω in units of
T . We have chosen as/λ = 1 and T/TF = 0.2. The low-frequency
part shows the function ζ (ω) = ζmin − c

√
ω, where ζmin is the bound

in Eq. (57) and c is the universal coefficient given in Eq. (48). The
high-frequency part is the function given in Eq. (49). The green
dotted line shows a model for the low-frequency spectral function
where we have added a microscopic contribution ζmicro/s = 0.04 to
the hydrodynamic result. The microscopic contribution was chosen
to smoothly match the high-frequency tail.

VII. OUTLOOK

In this work we have studied the role of hydrodynamic
fluctuations in the bulk stress correlation function. We have
shown that fluctuations provide a lower bound on the bulk vis-
cosity that only depends on the thermal conductivity and shear
viscosity as well as scale breaking in the equation of state. The
physical mechanism for the bound can be understood in terms
of the rate of equilibration of thermal fluctuations. Consider a
fluid in equilibrium at density ρ and temperature T . Fluctua-
tions in this fluid are controlled by the entropy functional in
Eq. (13). If the fluid is compressed then the equilibrium density
and temperature change, and as a result the mean-square
fluctuations in ρ,T ,v have to change as well. However, the
mechanism for fluctuations to adjust involves diffusion of heat
and momentum, and does not take place instantaneously. As
a consequence the fluid is slightly out of equilibrium, entropy
increases, and the effective bulk viscosity is not zero. This
mechanism is particularly relevant in fluids which have no
significant microscopic sources of bulk viscosity.

An example of a very good fluid that does not have a simple
microscopic mechanism for generating bulk viscosity is the
dilute Fermi gas near unitarity. Our estimates indicate that
the ratio of bulk viscosity to entropy density near the phase
transition and for |λ/as | ∼> 1 is ζ/s ∼> 0.1. This is within reach
of experiments involving hydrodynamic expansion [42]. The
effects might be even more significant in two-dimensional
gases. In these systems bulk viscosity has been studied using
the damping of monopole oscillations [43,44]. It may also be
possible to observe the nonanalyticity of the spectral function
or the long-time tail in the Kubo integrand using numerical
simulations [45].

Our work can be extended in several directions. One
interesting question is the role of critical fluctuations in the
vicinity of a second-order phase transition [7,8]. In that case
loop diagrams similar to the graphs studied in this work lead
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to an enhancement of the bulk viscosity near the critical point.
Another important problem is the study of fluctuations in
relativistic fluids; see [9,10,46,47]. In that case it has been
conjectured that the quark gluon plasma phase transition has
a critical end point which is in the universality class of model
H [26,48], and that critical fluctuations can be observed in the
relativistic heavy-ion collisions [49].
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APPENDIX: THERMODYNAMIC QUANTITIES

We assume that the equation of state is given in the form
P = P (μ,T ). A specific example is the virial expansion which
provides the equation of state in the form

P = νT

λ3
(z + b2(T )z2 + · · · ), (A1)

where ν is the number of degrees of freedom (ν = 2 in
the unitary Fermi gas), λ = [(2π )/(mT )]1/2 is the thermal
wavelength, and z = exp(μ/T ) is the fugacity. Note that we
have set h̄ = kB = 1. Near unitarity b2 = b0

2 + δb2, where
b0

2 = −1/(4
√

2) is due to quantum statistics and [21]

δb2 = 1√
2

(
1 + 2√

πmT as

+ · · ·
)

. (A2)

Derivatives of the pressure with respect to μ and T determine
the entropy density and pressure

s = ∂P

∂T

∣∣∣∣
μ

, n = ∂P

∂μ

∣∣∣∣
T

. (A3)

The energy density is determined by the relation

E = μn + sT − P (A4)

and the enthalpy per particle is h = (E + P )/n. In order to
compute the specific heat at constant volume we use V = N/n

and write

cV = T

V

∂S

∂T

∣∣∣∣
V

= ∂(s,V )

∂(T ,V )
= ∂(s,V )/∂(T ,μ)

∂(T ,V )/∂(T ,μ)

= T

[
∂s

∂T

∣∣∣∣
μ

− [(∂n/∂T )|μ]2

(∂n/∂μ)|T

]
, (A5)

where we have defined the Jacobian

∂(u,v)

∂(x,y)
=

∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣. (A6)

In order to compute cP we make use of the relation between
cP − cV and the thermal expansion coefficient α =
(1/V )(∂V/∂T )|P . This relation is given by

cP − cV = −T

V

[(∂V/∂T )|P ]2

(∂V/∂P )|T . (A7)
The partial derivatives are

1

V

∂V

∂T

∣∣∣∣
P

= 1

n

[
s

n

∂n

∂μ

∣∣∣∣
T

− ∂n

∂T

∣∣∣∣
μ

]
,

1

V

∂V

∂P

∣∣∣∣
T

= − 1

n2

∂n

∂μ

∣∣∣∣
T

. (A8)

The second of these relations defines the bulk modulus κ−1
T =

−V −1(∂V )/(∂P )|T . We get

cP = cV + T

[
s
n

(∂n/∂μ)|T − (∂n/∂T )|μ
]2

(∂n/∂μ)|T . (A9)

The isothermal and the adiabatic speed of sound are defined
by

c2
T = ∂P

∂ρ

∣∣∣∣
T

, c2
s = ∂P

∂ρ

∣∣∣∣
s/n

. (A10)

We have

c2
T = n

m

[
∂n

∂μ

∣∣∣∣
T

]−1

, c2
s = cP

cV

c2
T , (A11)

and the thermal expansion coefficient can be written as

α = 1

T

[
1

c2
T

T

m

cP − cV

n

]1/2

. (A12)

Finally, we can determine the first-order derivatives that appear
in the expansion in Eq. (14). We get

∂P

∂ρ

∣∣∣∣
T

= c2
T ,

∂E
∂ρ

∣∣∣∣
T

= h

m
− ακT T

ρ2
,

∂P

∂T

∣∣∣∣
ρ

= ακT ,

∂E
∂T

∣∣∣∣
ρ

= cV , (A13)

where h = (E + P )/n is the enthalpy per particle. Partial
derivatives of these results with respect to T and ρ determine
the second-order coefficients in Eqs. (15)–(17).
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