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The Kondo effect describes the spin-exchange interaction between localized impurities and itinerant fermions.
The ultracold alkaline-earth atomic gas provides a natural platform for quantum simulation of the Kondo model,
utilizing its long-lived clock state and the nuclear-spin exchange interaction between clock state and ground
state. One of the key issue now is whether the Kondo temperature can be high enough to be reached in current
experiments, for which we have proposed to use transverse confinement to confine atoms into a one-dimensional
tube and to use the confinement-induced resonance to enhance Kondo coupling. In this work, we further consider
the (1 + 0)-dimensional scattering problem when the clock state is further confined by an axial harmonic
confinement. We show that this axial confinement for the clock-state atoms not only plays a role for localizing
them, but can also act as an additional control knob to reach the confinement-induced resonance. We show that,
in the presence of both the transverse and the axial confinements, the confinement-induced resonance can be
reached in the practical conditions and the Kondo effect can be attainable in this system.

DOI: 10.1103/PhysRevA.96.063605

I. MOTIVATION AND BACKGROUND

In the past decades, experiments in cold-atom systems
have successfully explored many intriguing quantum many-
body phenomena of different paradigms, including fermion
pairing and the BCS-BEC crossover, the Bose and the Fermi
Hubbard models [1], the Kosterlize–Thouless transition [1],
one-dimensional integrable models [2], and spin-orbit cou-
pling [3] and topological models [4]. Exploring these phe-
nomena with cold atom systems has a list of advantages;
for instance, one can access physical quantities that have not
been measured before in their condensed-matter realizations,
and one can also study nonequilibrium dynamics in a highly
controllable way. However, until now there is still one
important category that has yet to be experimentally realized
with cold-atom systems, despite quite a few existing proposals
[5–14]; that is, Kondo physics.

The Kondo model describes the spin-exchange interaction
between localized impurities and itinerant fermions [15].
The alkaline-earth atomic gases have natural advantages for
performing quantum simulations of the Kondo model. The
schematic energy level of single alkaline-earth atoms is shown
in Fig. 1. First of all, there is a long-lived electronic excited
state known as the clock state, and usually denoted by |e〉.
Atoms in this clock state generically have a different ac
polarizability compared with atoms in their electronic ground
state, which is usually denoted by |g〉, except for lasers with
a magic wavelength [16,17]. Therefore, it is easy to realize a
situation in which lasers create a deep lattice for |e〉 atoms and
make them localized as impurities, while |g〉 atoms experience
quite a shallow lattice and remain itinerant, as shown in
Fig. 2(a).
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Second, in addition to the orbital degree of freedom
symbolized by |g〉 and |e〉, there is also a nuclear-spin degree
of freedom. Due to the nearly perfect decoupling between the
nuclear spin and the electronic degree of freedoms in these
two states of alkaline-earth atoms [18], the interaction has to
be invariant under nuclear-spin rotation. Thus, the interaction
has to be diagonal in the nuclear-spin singlet and three triplet
channels, and for the s-wave interaction subjected to the
symmetrization condition of the entire wave function, these
channels also have to be orbital triplet and singlet, respectively.
Considering the interaction between one atom in the |g〉 state
and one atom in the |e〉 state, we have the following relevant
basis [19,20]:

|+〉 = 1
2 (|ge〉 + |eg〉)(| ↑↓〉 − | ↓↑〉), (1)

| − ,0〉 = 1
2 (|ge〉 − |eg〉)(| ↑↓〉 + | ↓↑〉), (2)

| − ,1〉 = 1√
2
(|ge〉 − |eg〉)| ↑↑〉, (3)

| − , − 1〉 = 1√
2
(|ge〉 − |eg〉)| ↓↓〉, (4)

where + and − denote orbital triplet and singlet, respectively,
and in | − ,q〉, q denotes the total nuclear spin along the ẑ

direction.
In three dimensions, the two-body interaction can be written

as

V (r) = V+(r)|+〉〈+| +
∑

q=0,±1

V−(r)| − ,q〉〈−,q|, (5)

where r is the relative coordinate between a |g〉 and an |e〉
atom. V+ and V− are both short-ranged potentials, and they
are featured by two scattering lengthes of as,+ and as,−,
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FIG. 1. Schematic energy levels for alkaline-earth atoms. The
red ball and red dashed circle represent the |e〉 atom (long-lived clock
state). The blue ball and blue dashed circle represent the |g〉 atom
(ground state). Nuclear-spin exchange happens when the |e〉 atom
and |g〉 atom collide.

respectively. Expanding V (r) into the basis of

|g ↑; e ↓〉 = 1√
2
(|+〉 + | − ,0〉), (6)

|g ↓; e ↑〉 = 1√
2
(| − ,0〉 − |+〉), (7)

and | − , ± 1〉, we can reconstruct the interaction as

V (r) = V+(r) + V−(r)

2
(|g ↑; e ↓〉〈g ↑; e ↓ |

+ |g ↓; e ↑〉〈g ↓; e ↑ |)
+ V−(r) − V+(r)

2
(|g ↑; e ↓〉〈g ↓; e ↑ |

+ |g ↓; e ↑〉〈g ↑; e ↓ |)
+V−(r)| − ,1〉〈−,1| + V−(r)| − , − 1〉〈−, − 1|. (8)

Here one can see that the key point is that the difference
of between V+ and V− gives rise to a spin-exchanging
interaction between |g〉 and |e〉 atoms, as shown in Fig. 2(b),
whose effect is most profound in the zero-field limit where
the single-particle energies of |g ↑; e ↓〉 and |g ↓; e ↑〉 are

a⊥

b

(a)

(b)
x

y
z

FIG. 2. (a) A pair of laser beams creates a deep lattice for atoms
in the clock state |e〉 and a weak lattice for atoms in the ground
state |g〉. (b) The key process responsible for the Kondo effect is the
spin-exchange scattering between impurity (localized |e〉 atom) and
the itinerant fermions (|g〉 atoms). The blue and red balls denote the
ground state and the clock state, respectively. The nuclear spins are
denoted by arrows.

degenerate. Actually, such spin-exchange processes have been
observed in experiments [19,20]. This magnetic-field regime,
when |g〉 atoms are itinerant and |e〉 atoms are localized, will
give rise to a Kondo model.

It looks like everything is ready. However, there is a last
challenge to overcome. That is, since in cold-atom systems
it is hard to achieve a temperature regime that is orders of
magnitude lower than the Fermi temperature, it is important to
increase the strength of the spin-exchange interaction such that
the Kondo temperature becomes high enough to be attainable
by current cooling capabilities.

To solve this problem, in the previous work, we propose a
scheme to use confinement-induced resonance to increase the
Kondo coupling [13]. The basic idea is to use lasers with magic
wavelength to create a two-dimensional lattice, with which
atoms in both the |g〉 and |e〉 state are confined into a one-
dimensional tube with the same transverse confinement radius
a⊥. With the standard formula of the confinement-induced
resonance [21], at zero field the reduced interaction in one
dimension still takes the form of Eq. (5), with Vξ = gξ δ(z)
(ξ = +,−), and

gξ = 4h̄2as,ξ

ma2
⊥

(
1 − C as,ξ

a⊥

)−1

, C ≈ 1.460 35 . . . . (9)

Thus, when a⊥ approaches either Cas,+ or Cas,−, one of the
gξ will diverge while the other remains finite. Hence, their
difference will become very large and the Kondo effect will be
enhanced. In Ref. [13] we have also considered the correction
due to a finite Zeeman field, and we find that the effect is
insignificant in the low-field regime. Thus, in this paper we
only consider the zero-field case for simplicity.

Nevertheless, it still does not complete the whole story
for two reasons: First, on the experimental side, to enforce
the system to be in the one-dimensional regime, a⊥ should
be sufficiently small; on the other hand, due to the practical
constraint of the laser power, a⊥ also cannot be arbitrarily
small. That is, there is a range over which a⊥ can be tuned
and, within this range, a⊥ may reach neither Cas,+ nor Cas,−.
Second, on the theory side, in Ref. [13] the axial confinement
for the localized |e〉 atoms is only treated at the level of
the lowest Wannier wave function approximation. Such an
approximation may fail in certain parameter regimes.

Motivated by the experimental efforts along this direction
[22], the present work treats a (1 + 0)-dimensional scattering
problem that solves these two problems simultaneously. Here
we treat the axial confinement for |e〉 atoms beyond the
Wannier wave function approximation and will show that
it indeed gives rise to much richer features. In particular,
we show that this axial confinement length b [as shown in
Fig. 2(b)] plays a role as an extra control parameter to reach
confinement-induced resonance. That is, even if a⊥ is not very
close to Cas,+ or Cas,−, one can still reach resonance by tuning
b with the axial confinement.

II. MODEL

To be numerically tractable, we simplify the problem from
the lattice case as shown in Fig. 2(a) to a (1 + 0)-dimensional
problem, as shown in Fig. 2(b). This simplification includes
following assumptions: (i) For |e〉 atoms, we assume that it
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is always localized in one of the lattice sites, and we expand
the potential to the quadratic order nearby its minimum. That
is, we ignore the anharmonic part of the lattice potential. The
axial-confinement problem is treated as a harmonic trap with
frequency ωz. (ii) The laser beam still induces a weak lattice
potential for the |g〉 atom, although the ac polarizabilities of the
|g〉 state and |e〉 state can differ a lot. Here we take this effect
into account by an effective mass approximation; that is, we
still assume single-particle dispersion for |g〉 atom is a parabola
but with an effective mass denoted by mg . In general mg > m

(m is the bare mass). Since in one dimension the density
of state diverges at zero energy and the low-energy states
contribute most to the scattering problem [23], we believe
that the effective-mass approximation is reasonably good in
one dimension.

We will show that, even with these two approximations,
the results should be qualitatively good, and the results can be
systematically improved later by including the anharmonicity
for the localized atoms and other lattice effects for the itinerant
atoms. Furthermore, in principle, we should solve the problem
in three dimensions by including the transverse confinement
for both states and the axial confinement solely for |e〉 atoms
on the equal footing. However, here we simplify the procedure
by first treating the transverse confinement with Eq. (9), and
subsequently studying the (1 + 0) dimension. We believe this
treatment is sufficiently good because the resonances induced
by transverse confinement and the axial confinement are
two different physical processes and they generally will not
strongly interfere with each other.

We now start with the one-dimensional Hamiltonian of the
form

Ĥtot = Ĥ+|+〉〈+| +
∑

q=0,±1

Ĥ−| − ,q〉〈−,q|. (10)

Here

Ĥξ = − h̄2

2mg

d2

dz2
g

− h̄2

2m

d 2

dz2
e

+ 1

2
mω2

zz
2
e + gξ δ(ze − zg)

(11)

for ξ = +,−, with zg and ze being the positions of the |g〉 state
and |e〉 state, respectively.

III. METHOD

Previously, scattering problems in mixed dimensions such
as 3 + 0, 3 + 1, or 3 + 2 were studied theoretically [24–27]
and experimentally [28]. Here the problem we considered a
(1 + 0)-dimensional. Since the Hamiltonian is diagonal in the
basis chosen in Eq. (10), we only need to solve the Hamiltonian
(11), and the difference in the effective interaction strength
between the |+〉 and | − ,0〉 channels gives rise to the spin-
exchange strength.

Because of the additional harmonic trap along the axial
direction for the |e〉 atom, the relative motion of the |g〉 atom
and |e〉 atom is not separable from their center-of-mass motion.
Here we consider the scattering between a moving |g〉 atom
with momentum h̄k (k > 0) along the z direction and an |e〉
atom in the ground state of the trap. The incident wave function

is given by

ψ0
k (zg,ze) = 1√

2π
eikzgφ0(ze), (12)

where φ0(ze) = exp(−z2
e/2b2)/(π1/4b1/2) is the ground-state

wave function of the harmonic trap. b = √
h̄/mωz is the

harmonic trap length for the axial trap. For our system
the two-body scattering wave function ψ+

k (zg,ze) is given by
the Lippmann–Schwinger equation

ψ+
k (zg,ze) = ψ0

k (zg,ze) + gξ

∫
dz′G0(zg,ze; z′,z′)ψ+

k (z′,z′).

(13)

Here, G0(zg,ze; z′
g,z

′
e) is the two-body free Green’s function.

In this paper we consider the low-energy scattering process
where h̄2k2/(2mg) < h̄ωz. For this case we have

G0(zg,ze; z′
g,z

′
e) = −i

mg

h̄2

eik|zg−z′
g |

k
φ0(ze)φ∗

0 (z′
e)

− mg

h̄2

∞∑
n=1

e−
√

2mgnωz/h̄
2−k2|zg−z′

g |√
2mgnωz/h̄

2 − k2

×φn(ze)φ∗
n(z′

e), (14)

with φn(z) = (b
√

π2nn!)−1/2 exp(−z2/2b2)Hn(z/b) (n =
1,2, . . . ) being the nth eigen wave function of the harmonic
trap.

Equations (13) and (14) imply that, in the limit of |zg| →
∞, the scattering wave function ψ+

k (zg,ze) can be expressed
as

ψ+
k (|zg| → ∞,ze) = 1√

2π

[
eikzg + f even

ξ (k)eik|zg |

+ f odd
ξ (k)sign(zg)eik|zg |]φ0(ze). (15)

Here f even
ξ (k) and f odd

ξ (k) are the effective one-dimensional
(1D) scattering amplitudes for the even and odd partial waves,
respectively, and are given by

f �
ξ (k) = −i

√
2π

mg

h̄2

gξ

k

∫
dz′F�(kz′)φ∗

0 (z′)ψ+
k (z′,z′), (16)

for � = (even, odd), respectively, with Feven(kz′) = cos(kz′)
and Fodd(z′) = −i sin(kz′). Here the function ψ+

k (z′,z′) satis-
fies the integral equation

ψ+
k (z′,z′) = ψ0

k (z′,z′)

+ gξ

∫
dz′′G0(z′,z′; z′′,z′′)ψ+

k (z′′,z′′), (17)

which is a straightforward result of Eq. (13).
In this paper we focus on the low-energy limit of k → 0.

In this limit the scattering amplitude for the odd partial wave
is negligible and the scattering of the even partial wave is
described by the effective one-dimensional scattering length
aeff

ξ , which is defined as

aeff
ξ = lim

k→0

i

k

[
1 + 1

f even
ξ (k)

]
. (18)
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Explicitly, for k → 0 we have

f even
ξ (k) ≈ − 1

1 + ikaeff
ξ

, f odd
ξ (k) ≈ 0. (19)

This scattering amplitude can be reproduced by an effective
one-dimensional delta potential

geff
ξ δ(zg) ≡ − h̄2

mga
eff
ξ

δ(zg). (20)

Thus, at low energy the itinerant |g〉 atoms experience an
effective potential geff

ξ δ(zg). Hence, the place where geff
ξ

diverges (i.e., aeff
ξ = 0) is the location of the scattering

resonance in the channel ξ .
By scale zg → zg/b, k → kb, and φ → φ

√
b, one can

show that Eqs. (13), (16), and (17) become dimensionless,
in which the only parameters are the mass ratio mg/m and the
dimensionless interaction strength g̃ξ defined as

g̃ξ ≡ gξmb

h̄2 . (21)

The strength of effective potential geff
ξ also becomes dimen-

sionless, which is defined as

g̃eff
ξ ≡ geff

ξ mgb

h̄2 = − b

aeff
ξ

. (22)

g̃eff
ξ and aeff

ξ are universal functions of mg/m and g̃ξ .
In our calculation, we first numerically solve Eq. (17) to

derive the function ψ+
k (z′,z′). Substituting the solution into

Eqs. (16) and (18), we obtain the one-dimensional scattering
length aeff

ξ . By using this result and Eqs. (20)–(22) we finally
obtain the universal relation between g̃eff

ξ and g̃ξ , mg/m.

IV. RESULTS AND ANALYSIS

In Fig. 3 we show g̃eff
ξ as a universal function of g̃ξ , for

the mass ratio mg/m = 1 and mg/m = 2, respectively. Here
we can see multiple resonances, and the nth of them occurs at
g̃ξ = αn. For instance, for mg/m = 1 we have α1 = 1.71, α2 =
−2.07, α3 = −3.49, . . . , while for mg/m = 2, we have α1 =
0.73, α2 = −1.36, α3 = −2.62, . . . . Similar phenomenon has
been obtained in other mixed-dimension systems [24,25].

The occurrence of a series of resonances with negative
g̃ξ can be understood as follows: Our problem is essentially
an infinite-channel scattering problem, and the nth channel
corresponds to the |e〉 atom being in the nth eigenstate of
the axial harmonic trap. The threshold energy for the nth
channel is nh̄ωz (here we have ignored the zero-point energy
of the harmonic trap). Thus, when the kinetic energy of the
incoming particle h̄2k2/(2mg) < h̄ωz, only the zeroth channel
is open, and all the other channels are closed. For g̃ξ < 0,
this interaction potential can support one bound state in
each closed channel. When the energy of this bound state
matches the threshold of the open channel, a resonance occurs.
Therefore, each closed channel will give rise to one resonance
in the negative g̃ξ side. The higher the resonance, the less
the wave functions overlap and, consequently, the narrower
the resonance width.

Note that the effective spin exchanging interaction is
proportional to the difference between geff

+ and geff
− , as shown in

-5 -3 -1
-6

-2

2

6

-5 -3 -1

1 3 5

1 3 5
-6

-2

2

6

FIG. 3. The dimensionless strength for the effective potential g̃eff
ξ

as a universal function of the dimensionless bare interaction strength
g̃ξ with (a) mg/m = 1 and (b) mg/m = 2.

Eq. (8). Thus, the place where one of the geff
ξ (ξ = ±) diverges

[i.e., the place where g̃ξ = αn (n = 1,2,3, . . . )] locates a
spin-exchange scattering resonance. Combining Eqs. (9) and
(21), one can express g̃ξ in term of two physical tunable
parameters as,ξ /a⊥ and b/a⊥ as

g̃ξ = 4as,ξ b

a2
⊥

(
1 − C as,ξ

a⊥

)−1

, (23)

and the resonance position in the as,ξ /b − as,ξ /a⊥ plane is
determined by the following identity:

4
( as,ξ

a⊥

)2

as,ξ

b

(
1 − C as,ξ

a⊥

) = αn, n = 1,2,3 . . . . (24)

In Fig. 4(a) we show the resonance positions given by
Eq. (24) as physical parameters as,ξ /b and as,ξ /a⊥ for mg = m.
We notice that, in the limit as,ξ /b → ∞, all the resonance
positions will converge to a⊥/as,ξ = C. That is because, in this
limit, the energy difference of the harmonic oscillator is much
larger than the kinetic energy, so that the lowest Wannier wave
function approximation in Ref. [13] is valid, and the resonance
is precisely where g̃ξ diverges.
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FIG. 4. (a) The position for resonant spin-exchange interaction
in the as,ξ /a⊥ − as,ξ /b plane for mg = m. The black dotted rectangle
indicates the regime that can be attainable with a set of typical
parameters for 173Yb atoms. (b) Zoom-in plot of panel (a) for the
regime inside the black dotted rectangle. (c) The same plot as in panel
(b) with the axes as,ξ /a⊥ and as,ξ /b converted into the optical lattice
depth v⊥ and vz, respectively, when the confinement is provided by
optical lattice potentials. v⊥ is the transverse lattice depth for both
|g〉 and |e〉 atoms, and vz is the axial lattice depth for |e〉 atoms. In
panel (c), we choose ξ = + and as,+ = 2000a0 with a0 being the
Bohr radius.

In practice, the confinements are provided by an op-
tical lattice. Considering an optical lattice of the form
v⊥E⊥

R [cos2(k⊥,0x) + cos2(k⊥,0y)] for both states, with E⊥
R =

h̄2k2
⊥,0/(2m), and an optical lattice of the form vzE

z
R cos2(kz,0z)

for the |e〉 state, with Ez
R = h̄2k2

z,0/(2m), we have a⊥ =
λ⊥/(

√
2πv

1/4
⊥ ) and b = λz/(2πv

1/4
z ), where λ⊥ = 2π/k⊥,0

and λz = 2π/kz,0. Taking the 173Yb atom as an example, we
have as,+ ≈ 2000a0, and we use the magic-wavelength laser
with λ⊥ = 759 nm for the transverse confinement, and for the
axial lattice we choose the laser with wavelength λz = 670 nm
where the ac polarizabilities of both states differ a lot.

With the parameters shown above, the ranges of as,+/a⊥
and as,+/b that can be reached with the tunability of lattice
depth are indicated by the black dotted rectangle in Fig. 4(a),
where one can see that several resonances fall into the
rectangle. The zoom-in plot inside the box is shown in
Fig. 4(b). Then, with these parameters, we can convert as,+/a⊥
and as,+/b into v⊥ and vz. The resonance locations as a
function of v⊥ and vz is shown in Fig. 4(c).

Figure 5 shows the same plot as Fig. 4, except for the
mass ratio is mg = 2m. This is a typical effective mass
for a lattice depth of about 5ER. One can see that more
higher resonances move into the box. Here we only show
up to the seventh resonance, because the higher one will get
narrower and narrower. Nevertheless, we should also remark
that, although these resonances are already quite narrow in
the as,+/a⊥ − as,+/b plot, they can be reasonably wide in the
v⊥-vz plot because a⊥ and b are not quite sensitive to v⊥ and vz.

0 2 4 6
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20

30

40

1.2 1.6 2 2.4
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1.6

FIG. 5. The same plot as Fig. 4 except for mg = 2m. We plot the
resonances up to the seventh one, and other more narrower ones are
not shown.

V. SUMMARY AND OUTLOOK

In summary, we have considered a scattering problem
for alkaline-earth atoms in a (1 + 0)-dimensional geometry
where the ground-state atom is mobile along the tube, while
the clock-state atom is confined by an axial harmonic trap,
with both atoms subjected to a transverse confinement. We
have shown that, in the presence of both proper transverse
and axial confinements, the confinement-induced resonance
can be reached in 173Yb atoms with practical parameters,
where the nuclear-spin exchange interaction can be enhanced
significantly. This will lead to a Kondo effect at relatively
higher temperature that can be reached in current experiments.
Further work along this line will discuss how to detect
the Kondo effect in this system and how to utilize this
system to enrich our physical understanding of the Kondo
effect.

It is also pointed out that our calculation is done for a
pure (1 + 0)-dimensional model. In the realistic experiments,
the atoms are trapped in a “quasi (1 + 0)-dimensional”
system with a strong harmonic transverse confinement in the
x-y plane. Nevertheless, in many current experiments the
frequency ω⊥ of the transverse confinement is much larger
than Fermi energy EF of the ultracold gas. For instance, in
the experiment of Ref. [29] the transverse frequency is about
ω⊥ ∼ 2π × 80 kHz, while the typical Fermi energy EF of
an ultracold gas in quasi-1D could be of the order of 2π kHz.
For these systems the atoms are almost frozen in the transverse
ground state, and thus the main characters of the spin-exchange
process (e.g., the appearance of the resonance induced by the
longitudinal trapping potential of the |e〉 atom, as shown in
Fig. 3) is dominated by the physics of our (1 + 0)-dimensional
model. On the other hand, to further improve the quantitative
accuracy of the current results, we need to take in account the
contributions from the transverse excited states. This will be
done in future works.
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