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Macroscopic quantum tunneling escape of Bose-Einstein condensates
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Recent experiments on macroscopic quantum tunneling reveal a nonexponential decay of the number of atoms
trapped in a quasibound state behind a potential barrier. Through both experiment and theory, we demonstrate this
nonexponential decay results from interactions between atoms. Quantum tunneling of tens of thousands of 87Rb
atoms in a Bose-Einstein condensate is modeled by a modified Jeffreys-Wentzel-Kramers-Brillouin model, taking
into account the effective time-dependent barrier induced by the mean field. Three-dimensional Gross-Pitaevskii
simulations corroborate a mean-field result when compared with experiments. However, with one-dimensional
modeling using time-evolving block decimation, we present an effective renormalized mean-field theory that
suggests many-body dynamics for which a bare mean-field theory may not apply.
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I. INTRODUCTION

Quantum tunneling, first studied in α decay, is one of
the most significant and earliest effects observed in quantum
mechanics [1]. Tunneling provided a basis for the theory of
molecular spectra in the 1920s, when it was demonstrated that
transitions between chiral isomers occurred at measurable rates
[2]. This applies to biological systems, where the transition
rate between isomers is slow enough to allow stable life, and
even to cosmology, where the transition for polar molecules
such as ammonia shows a measurable rate [3]. Tunneling
has applications in many different systems, from two-proton
decay and double beta decay in nuclear physics to the
interdisciplinary study of tunneling in enzymes [4], with roots
in biology, chemistry, and physics. As electronic devices reach
the nanoscale, quantum tunneling will play a larger and larger
role in understanding and developing nanoelectronics, such as
tunneling diodes [5]. Moreover, with the advent of Josephson
junctions, the epitome of macroscopic quantum devices based
on tunneling, we can now measure voltage with unprecedented
accuracy [6].

The definitions and details of macroscopic quantum tun-
neling (MQT), quantum tunneling at macroscopic scales, is
discussed in Sec. II A. Studying MQT in the context of Bose-
Einstein condensates (BECs) presents many advantages in
terms of both fundamental explorations and future MQT device
design. First, BECs offer a high degree of controllability:
Interactions can be tuned over seven orders of magnitude using
Feshbach resonances [7]. Second, experimental advances in
radio-frequency (RF) magnetic traps [8], as well as optical
trapping [9], allow for greater access to controllable experi-
ments needed to study MQT. Third, BECs enable manipulation
of many-body states [10] that are inaccessible in other exper-
imental settings. Many-body simulations, which we discuss
next, elucidate the importance of this point. Fourth, BECs
have controllable statistics and spatial dimensions. Fifth, BECs
allow site-resolved microscopy in the context of optical lattices
in one, two, and three dimensions. Sixth, atomic interferometry

now permits observation of up to tenth-order correlators for
quasi-one-dimensional (quasi-1D) systems [11].

To complement experimental advances, numerically exact
simulations of bosonic Josephson junctions using the Bose-
Hubbard model demonstrate a substantial deviation from
mean-field theory [12]. However, until recently MQT has
largely been treated with semiclassical approximations, such
as in a double well [13,14], in Landau-Zener tunneling [15],
and in escape tunneling [16–18]. Theoretical methods for these
semiclassical estimations include Jeffreys-Wentzel-Kramers-
Brillouin (JWKB) and instanton approaches, along with the
nonlinear Schrödinger equation (NLS) and hydrodynamic
formulations thereof. Beyond these mean-field and instanton
techniques, matrix product state methods such as time-
evolving block decimation (TEBD) and multiconfigurational
time-dependent Hartree for bosons (MCTDHB) theory both
provide numerical solutions of many-body dynamics. For
example, the use of TEBD to simulate the Bose-Hubbard
model for superfluid decay, has confirmed numerical limits
on instanton computations [19,20]. Non-Hermitian quantum
mechanics, which is frequently used in scattering problems
and now applied to tunneling problems as an effective
model, is broadening the view of tunneling phenomena,
such as its use in asymmetric tunneling and interchain pair
tunneling [21,22]. Another possible many-body method, the
time-adaptive MCTDHB, was used in our Josephson example
above [12]. MCTDHB has also been applied to the quantum
escape problem [23,24]; though this work examined depletion,
the method has not yet produced predictions for entanglement.
Measures such as entropy, entanglement, and correlations
help illustrate when semiclassical or lower-order mean-field
approximations fail [25].

In this article, we present a combined theoretical and exper-
imental study of MQT. Single-particle quantum tunneling can
be modeled with the Schrödinger equation, with well-known
exponential decay in the number of atoms trapped over time
[1]. However, we have performed a macroscopic experiment
exhibiting nonexponential decay of BEC tunneling from a
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single trapping well to unbound space [26]. Figures 1(a) and
1(b) sketch the experimental process and the single well
trap. Figure 1(c) displays raw data from the experiment,
presenting an example of the observed nonexponential decay.
The experimental data demonstrates that atomic interactions
have participated in the tunneling process. Inspired by this
result, we develop an alternative theoretical model in which the
interactions cause the barrier to change dynamically, leading
the decay to deviate from the single-particle exponential case.
Subsequently we suggest an alternate interpretation in terms
of an effective or renormalized mean-field theory drawn from
TEBD simulations and accounting for the effects of condensate
fragmentation and depletion, which can be tested in future
MQT experiments.

This article is organized in the following manner. We
offer a brief discussion covering the nuances and regimes
of quantum tunneling in Sec. II, including four subtopics:
statistical properties, the role of interactions, type of trapping
potential, and dimension of the system. The aim of this
discussion is to briefly touch on the vast tunneling landscape
and spark interest and ignite ideas for other physicists intrigued
by the many open questions in MQT research. Next, the
details of the MQT experiment are covered in Sec. III, with
its experimental settings, results, and a three-dimensional
(3D) mean-field simulation. Furthermore, we present a case
study analysis that exhibits excellent agreement with the
experimental nonexponential decay result and further verifies
the assumption of mean-field dynamics. In Sec. IV we then
address the question of simpler effective one-dimensional
(1D) models. The experiment proceeds through three distinct
regimes: initial transient classical spilling, quantum tunneling,
and decay dominated by background loss; we model the
tunneling and decay regimes, the main subject of this article.
We use a modified JWKB method in which the interparticle
interaction is taken into account via an effective mean-field
interaction parameter, and we include the background loss in
the tunneling rate. The model contains two fitting parameters
which help to illuminate the experimental findings. In Sec. V,
we propose an explanation for the effective mean-field used
in the JWKB model. Motivated by advances in nonlinear
optics, we demonstrate how a mean-field model can effectively
reproduce many-mode many-body dynamics of the quantum
tunneling process of a metastable state. Finally, we summarize
our conclusions and future research avenues in Sec. VI.

II. REGIMES OF MACROSCOPIC
QUANTUM TUNNELING

There are several factors that can affect the behavior of
quantum tunneling, which may push the tunneling process into
distinct tunneling regimes. These factors include, but are not
limited to, the following. First, the statistical properties of the
trapped particles are a primary concern, e.g., whether exploring
bosonic, fermionic, or anyonic tunneling [27,28], and whether
the system can be treated as few-body or macroscopic.
Second, interaction between particles—varying from zero to
nonzero [14,29–32], weak to strong [17,33,34], and attractive
to repulsive [25,35]—may suppress or enhance tunneling, or
even reform the barrier [36]. Third, the shape of the potential

FIG. 1. Macroscopic quantum tunneling experiment. (a)
Schematic of experimental time sequence to obtain MQT in a BEC.
(b) Experimental 3D potential with a barrier height of 190 nK (peak
height) in the weak configuration. The distance between saddle points
to the potential minimum is x0 = 18(1) μm. Sketched is a BEC
trapped in the local minimum of the potential (purple ellipse) escaping
via the weakest part of the potential (purple arrows). (c) Experimental
data, in number of trapped atoms N , exhibits a nonexponential decay,
in contrast to the exponential background decay due to atomic losses
(pink nearly horizontal dashed line). The vertical dashed lines divide
the experimental dynamics into the three dominant regions of classical
spilling, MQT, and background decay.
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well and assorted lattice and other geometries induce and alter
quantum phases, such as in spin chains and disordered systems
[37,38]. Fourth, the dimension of the system can give rise to
extra degrees of freedom which can, for instance, introduce
chaos in the tunneling dynamics [39,40].

These factors, together with the notion of macroscopicity,
delineate the extensive territory of MQT into distinct tunneling
behaviors. The term macroscopic may connect to an intuitive
concept of “large” objects. In fact the “macroscopic” in
MQT has abundant aspects beyond one’s first impression.
In the following, we lay out some of these possibilities,
as a motivation for our own particular investigation, and to
inspire future experiments and theory on the plethora of MQT
phenomena, mostly still unexplored.

A. Macroscopicity, statistical properties, and quasiparticles

Macroscopicity, which is a prominent characteristic of
MQT, features at least four facets. First, macroscopicity
separates phenomena in a semiclassical phase space, but
these phenomena are not necessarily describable by clas-
sical mechanics. However, sometimes an extension of the
semiclassical limit is apt. For example, the phase-space
analogy for a driven double-well BEC in a quantum two-mode
approximation suggests that it can be mapped to a macroscopic
superposition state of two pendulum rotor states [41]. Second,
macroscopicity can refer to a large quantity of particles, can
activate many degrees of freedom, and can lead to emergent
behavior. One example is ultracold bosons on a ring, where
from the weakly interacting semiclassical limit in terms of
dark solitons to the strongly interacting limit in terms of yrast
states, phase coherence can break down and phase slip enables
continuous winding and unwinding of the system [42–44].
Third, macroscopicity can be associated with the notion of
massive objects, where quantum mechanics meets gravity and
may lead toward quantum gravity. One theoretical avenue is
the Schrödinger-Newton equation, the Schrödinger equation
with an additional gravitational potential term [45–47]. Fourth,
macroscopicity may exemplify complexity, which is garnering
wider attention. For instance, recent studies of complex
networks relying on quantum mutual information examine
critical points for transverse Ising and Bose-Hubbard models
[48].

Tunneling bears a close relation to transport. Loosely
speaking, transport is above the barrier (often due to a
“push”) whereas tunneling is through the barrier. Thus, one
can consider tunneling of mass, charge, spin, etc. Quantum
tunneling is applicable far beyond the original concept of
particle tunneling. For instance, we may speak of tunneling
of magnetization in ferromagnetic films, or in a spin-1
BEC. Studies of the transverse spin wave, with and without
superflow, show different conditions for a certain anomalous
tunneling behavior where tunneling occurs without reflection
[49,50]. We can also consider the tunneling between molecular
states, such as ammonia and other pyramidal molecules
[3,51,52], and the Josephson junction serves as the simplest
possible model of such processes [53].

The statistical properties of particles can be divided into
fermions and bosons, and in lower dimensions include anyons;
whether they contain only a single component or are a mixture

of components; and whether the basic object exhibiting MQT
is best described as emergent quasiparticles like vortices,
solitons, or skyrmions. Most such possibilities are accessible
in cold quantum gases. The studies of few-particle systems
have already paved the way to some of these distinctions,
especially between bosons and fermions. Bose and Fermi
Tonks-Girardeau gases show different deviations from expo-
nential decay at short times as a direct consequence of different
ground-state energies [28], shown in Fig. 2(b). In few-fermion
tunneling, pairing needs to be considered, a distinction from
the boson case [27]. The influence of the interatomic interac-
tion in these systems is also investigated; details in Sec. II B.
Nonexponential decay of ultracold single-atom tunneling is
expected to occur in certain parameter regimes [54].

The tunneling of a BEC mixture or multicomponent BEC
also broadens the possibilities for MQT. A mixture can be
divided into several cases: several different atomic species,
each Bose condensed; different internal states of the same
atomic species, such as different hyperfine states of 87Rb;
or use of different external states of a trap, in, for instance,
MQT of quantum vortices [55]. For example, a study of
MQT describes the mixing of two weakly linked superfluids
of interacting fermions, making it possible to obtain atomic
Josephson junction equations describing the system as a whole
[56]. In general the MQT of domain walls, skyrmions, etc., in
such mixtures may carry different information and different
decoherence properties from a bulk BEC.

Understanding the nature of the particles involved is a
vital step in understanding any tunneling regime. Calculations
can be remarkably simplified, for instance, if a quasiparticle
representation is valid, or if a many-body system can be
analyzed on a single-particle basis or a single-particle-like ba-
sis. Sometimes, a quasiparticle also induces new phenomena.
For instance, the tunneling of nonequilibrium quasiparticles
through a Josephson junction brings decoherence and pro-
duces energy decay in superconducting qubits and resonators
[57,58]. However, strongly interacting systems may not exhibit
quasiparticle representations, as we will discuss in the next
section.

B. The role of interactions

Interatomic interaction poses crucial considerations for
quantum tunneling. A well-known example is Josephson
dynamics [14,30–32], which occurs in systems of weakly
coupled macroscopic quantum states. For weak interaction
strengths, tunneling dominated effects such as the ac and dc
Josephson effects [13,59] and coherent temporal oscillations
[60] occur, where condensates tunnel between two wells.
When the interaction exceeds a critical value, the populations
become self-trapped [14], where tunneling is suppressed and
condensates are mainly located in one potential well. Similar
effects also happen in exciton and polariton condensates [32].
However, by biasing a more strongly interacting system it is
still possible to reduce tunneling times by tens to hundreds of
orders of magnitude [61,62].

Repulsive and attractive interatomic interactions can lead
to different tunneling dynamics. Again, few-body tunneling
presents several precursors to these effects in many-body sys-
tems. Fermionization of two distinguishable fermions occurs

063601-3



XINXIN ZHAO et al. PHYSICAL REVIEW A 96, 063601 (2017)

(a)

(b)

(c)

FIG. 2. Considerations beyond single-particle tunneling. (a) In-
teratomic interaction reforms a square barrier, creating an effective
potential (dashed lines). (b) Statistical properties of particles in
Tonks-Girardeau gas, fermion (upper red curve) vs boson (lower blue
curve), produce different short-time deviations in particle number
from single-particle exponential decay. (c) Trajectories of atoms in the
trapping potential can become chaotic for many geometries including
ours. Despite these complications, effective 1D models can still be
useful, as we demonstrate in this article.

during the tunneling dynamics of a repulsively interacting
system [63–65]. Sequential single-particle tunneling is found
in both repulsive and attractive systems [66], while pairing
phenomena can be investigated in the strongly attractive in-
teraction region [27,65,66]. As interparticle interaction varies

from strongly attractive to strongly repulsive, tunneling rates
diverge within a wide range of orders of magnitude [65,66].

The strength of the interaction in a system determines
the appropriate tunneling theory. For instance, bosons with
weak interactions can often be described by mean-field theory,
where the many-body wave function is dominated by a
semiclassical field, i.e., a complex scalar field [17,33,35].
Even weak interactions produce an effective barrier, which
deforms as the wave function escapes, as depicted by the
blue curve in Fig. 2(a), where repulsive atomic interactions
change the barrier the wave-function encounters, resulting in
a nonexponential decay.

Increased interaction strength can lead to correlations,
fluctuations, and entanglement [67], which render mean-field
theory ineffective. We include here a nonexhaustive list of
resulting effects on MQT. First, the BEC may be fragmented
or depleted. When the energy of the system exceeds a threshold
as a consequence of strong interactions, fragmentation—
macroscopic occupation of more than one mode of the
single-particle density matrix—is induced [34]. The tunneling
of an initially parabolically trapped ultracold Bose gas in a
coherent state into open space develops fragmentation after
some propagation time [24,25]; the fragmented components
are not said to be phase-coherent, as the notion of phase is tied
to a single macroscopically occupied mode. Thus semiclassical
wave theory becomes less and less applicable, and tunneling
does not proceed in the same manner as the original concept.
Nevertheless, particles with an energy below that of a potential
barrier tunnel, so the term, even in this nonsemiclassical
context, still applies. Apart from fragmentation, condensates
can also deplete, where there is nonmacroscopic occupation
of many modes [25]. Second, interactions can enhance or
decrease tunneling rates. The tunneling rate of a quasibound
many-body state is sped up (slowed down) by repulsive
(attractive) interactions [25]. Third, fluctuations affect the
tunneling rate. Quantum fluctuations of the Josephson-Leggett
mode in a Josephson junction drastically enhances the MQT
escape rate [68,69]. Finally, dissipation may also alter the
tunneling behavior. In the Josephson-Leggett mode, quantum
dissipation suppresses MQT [69].

For strong interactions, 1D bosons can show similar trans-
port properties as noninteracting fermions, due to the boson-
fermion dual representation in one dimension [70]. A famous
example is a Tonks-Girardeau gas, a strongly interacting
system, where bosonic atoms exhibit fermionlike behavior
[71]. A nonexponential decay regime arises in a bosonic Tonks-
Girardeau gas for short times, which exhibits few-body decay
features. A fermionic Tonks-Girardeau gas, on the other hand,
shows bosonization and deviations from exponential decay at
long times [28]. As an extreme example of strong interactions,
consider the unitary Fermi gas, and its holographic dual in a
weakly curved gravitational representation [72]. The MQT of a
unitary Fermi gas remains an exciting and untested prediction
of dynamical holographic approaches [73].

C. Trapping potential

The potential dictates the tunneling environment, and plays
an essential role in characteristic tunneling times. An important
case across many fields of physics, chemistry, etc., is tunneling
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from one or a few single-well discrete modes to continuous
modes in free space, i.e., the quasibound or escape problem.
This is exactly the system studied in this article, where in
our case tunneling escape from a single well is assisted by
interatomic interactions [26]. For a harmonic trap, power law
behavior in MQT of BECs is observed near the critical point
of collapse, while for an anharmonic trap, there is no power
law behavior [74].

Double-well tunneling stands in strong contrast to the
quantum escape problem, since, for instance, a small bias in
the system can lead to an exponential suppression of tunneling.
Both wells contain discrete modes for atoms, thereby the
tunneling process describes motion from discrete modes in
one well to discrete modes in the second well. Josephson
effects [13,14,30–32,59], including the well-known ac and
dc Josephson effects [13,59], which arise in double-well-type
systems, epitomize this form of MQT. Related contexts in
this direction range from adiabatic transport of BECs [75] to
interaction supported transport of BECs [76], and polarized
fermion tunneling in three dimensions [77]. Under common
assumptions, only a few modes in each well are required for
consistent analysis with experiments.

In addition to these examples, other potentials to consider
include periodic potentials, like lattices. In a static periodic
lattice potential, the expansion of matter waves is quadratic
for short times [78]. Other than potential shapes, barrier
materials also modify the tunneling process. Comparing
two different barrier materials, pillared silicon and aerogel,
quantum reflection is suppressed differently by mean-field
interactions at low velocity [79]. In addition to the bare
potentials above, there are also dressed potentials, such as
radio frequency dressed potentials [80]. Studies show that
on-site interactions in neutral atoms are dramatically enhanced
in radio frequency dressed traps, which can affect the tunneling
behavior [81].

Beyond static potentials, dynamic potentials, such as those
directly influenced by a time-dependent force, provide a unique
milieu for tunneling dynamics. A ring trap with a driven space-
time reflection symmetry breaking (PT symmetry) potential
can induce chaos in the system [82,83]. Shaking a lattice can
reduce the tunneling rate, and even completely suppress it for
certain values of the shaking or driving parameter [78,84–86];
the same phenomenon also occurs in a driven double-well
system [87]. In a single potential well with a periodically
modulated amplitude, dynamical tunneling is suppressed by
nonlinear interaction, in comparison to the noninteracting
case [88]. A less obvious dynamic barrier can form indirectly
by other means. For instance, interactions between particles
can deform the barrier, rendering a previously static barrier
dynamic, as shown in Fig. 2(a).

D. Dimension of the system

Tunneling usually occurs at the weakest points of a trap,
where the escape rate is the largest and most favorable.
For instance, in this article, tunneling proceeds through the
weakest points of the potential well, the two saddle points
as depicted schematically in Fig. 1(b). This is similar to a
dam breaking; water begins to spill out from the structurally
weakest points. In this view, tunneling can be recast as a

1D or quasi-1D problem. But, higher dimensions can elicit
new phenomena. One such phenomenon is chaos, which can
significantly complicate the dynamics [39]. The cluttered paths
in Fig. 2(c) sketch possible chaos in the experimental trap,
and dashed lines at the saddle points indicate MQT. Chaos-
assisted tunneling sometimes gives rise to tunneling oscillation
[40], and produces irregular fluctuations in the tunneling rate
[89,90]. Another consequence, due to the presence of extra
degrees of freedom, is incoherent oscillations of a large number
of polarized fermions in a 3D double well [77].

III. A MACROSCOPIC QUANTUM
TUNNELING EXPERIMENT

We have made the first step in reporting a nonexponential
decay in a single-well tunneling experiment due to interatomic
interactions [26]. In this section, we offer a description of
the experiment, present previously unpublished findings from
both the experiment and supporting 3D mean-field simulations
showing reasonable agreement with the data, and finally
exhibit a case study of the experiment using an effective 1D
modified JWKB model derived in detail in Sec. IV.

A. Experimental design

The experiment studied tunneling of a 87Rb BEC prepared
in a quasibound state with repulsive interatomic interaction.
The trapping potential had harmonic confinements in the x

and z directions with trapping frequencies ωx and ωz. Due to
gravity and a magnetic field gradient, there was a tilt in the y

direction (vertical direction) with a constant acceleration a. A
slice through the y-z plane of the potential well is shown in
Fig. 1(b), with complete trapping potential as follows:

V (x,y,z) = 1
2mω2

xx
2 + 1

2mω2
zz

2 − may + Vb(x,y,z),

Vb(x,y,z) = V0 exp(−2y2/ω(z)2) (1)

ω(z) = ω0(1 + (z/zR)2)
1
2 .

Here V0 is the peak height of the barrier, zR = 8 μm is the
Rayleigh range, ω0 is the barrier waist, ω0 = 1.3(0.1) μm, and
ω(z) is the Gaussian beam waist.

The experiment uses two trapping configurations: weak
and tight. The parameters of the trap in the weak config-
uration are ωx = 2π×32.7(0.24) Hz, ωz = ωx/2, and a =
2.08(0.04) m/s2, while for the tight configuration, ωx =
2π×86.6(0.6) Hz, ωz = ωx/2, and a = 8.40(0.06) m/s2. As
a result of a tighter confinement in the latter, the initial
total number of atoms trapped in the potential is around
one-fifth of that in the weak configuration. This decrease
of particle number affects the validity of the Thomas-Fermi
approximation in our previous mean-field calculation [26], and
requires an offset of the kinetic energy term. The details of this
correction are described in Sec. IV B. Although the first report
of our experiment focused on the tight trapping configurations
[26], our theory starts with the weak configuration and then
covers the tight configuration afterward, expanding the reach
of our study to different regimes.

Figure 1(a) depicts the time sequence of the experimental
procedures. First, a cloud of 87Rb atoms in the |F =2,mF =2〉
ground state is loaded into the trapping potential from a
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TABLE I. Experimental and estimated parameters. From the
weak configuration, with peak height, saddle height, horizontal
distance from local potential minimum to saddle point (x0), and initial
total particle numbers trapped behind the barrier (N0).

Peak (nK) Saddle (nK) x0 (μm) N0/103

146 ± 10 46 ± 3 16 ± 1 423 ± 21
170 ± 11 52 ± 10 17 ± 2 548 ± 37
190 ± 13 58 ± 4 18 ± 1 559 ± 33
221 ± 16 69 ± 5 20 ± 1 630 ± 26
260 ± 18 81 ± 6 21 ± 1 583 ± 32
299 ± 21 92 ± 6 23 ± 1 663 ± 54

hybrid trap. Next, evaporative cooling techniques lower the
temperature of the atoms until they form a BEC. Then, the
barrier height is ramped down nonadiabatically in 20 ms (5 ms)
for the weak (tight) configuration. After ramping procedure,
the condensate is held in the trap for a variable time from
0.1 ms to 1.2 s. Finally, the trapping potentials are abruptly
turned off and the cloud is imaged after time-of-flight (TOF)
expansion.

Table I shows major parameters in the weak configuration.
The relative saddle heights are about one-third of their
corresponding peak heights, where we note that MQT occurs
through the two saddles or weak points of the potentials,
not the peak. All the plots in this article reference peak
heights. In the trap, x0 is the horizontal distance from the
bottom (local minimum point) to one saddle point. We will
see in Sec. IV that our theoretical fit parameters agree well
with this parameter. N0 is the total particle number in the
trap at the beginning of experimental observation of the
dynamics, after the nonadiabatic ramp down of the barrier.
Figure 1(c) shows a typical raw data set from the experiment.
We find clear nonexponential decay in the number of atoms.
Further presentation and analysis of the data is deferred to the
following two sections.

B. Experimental data and 3D mean-field model

Data for the chemical potential as a function of atom number
and time dependence of the number of atoms trapped in the
quasibound state are shown in Figs. 3 and 4 for both weak
and strong trapping configurations. Mean-field simulations are
then performed for comparison, using the split-step operator
method for the 3D Gross-Pitaevskii equation (GPE); imaginary
time evolution is used to find the ground state. Measured
trap parameters and initial atom numbers are used as input
parameters to the simulations without any free parameters.
To mimic the experimental procedure in Fig. 1(a), the barrier
height is linearly ramped down to a final value. Absorbing
boundary conditions are introduced to avoid reflections of
escaped atoms from the edge. Finally, the chemical potential
extracted from the experiment uses a Thomas-Fermi approxi-
mation [26]. This leads to good agreement in the weak trapping
case in Fig. 3(a) but a systematic error in Fig. 3(b) where
the Thomas-Fermi approximation is less applicable due to
a larger kinetic or zero-point energy. In contrast, in Fig. 4
the mean-field time sequence is qualitatively close but is up
to a factor of 2 off in both trapping configurations. These

(a)

(b)

FIG. 3. Experimental and numerical 3D Gross-Pitaevskii chemi-
cal potential. Chemical potential μ as a function of the total number
of atoms N . (a) Weak configuration barrier heights: V0 = 460(30) nK
(red circles), 260(18) nK (blue diamonds), and 170(11) nk (green
squares). (b) Tight configuration: V0 = 330(35) nK (red circles),
290(30) nK (blue diamonds), and 240(25) nK (green squares).
Mean-field simulations predict a chemical potential (black line) in
agreement with experimental data, using barrier heights (a) 350 nK
and (b) 300 nK.

studies suggest a mean-field model can reproduce the main
features of this experiment, but may bear some correcting
either due to characterization of the trapping potential or due
to other beyond mean-field effects, as we will explore in
Sec. V.

Both experimental data and mean-field predictions clearly
show nonexponential decay in both trapping configurations.
Figure 4(a) covers the weak configuration with barrier heights
V0 = 260(18) nK (blue circles), V0 = 190(13) nK (purple
diamonds), and V0 = 170(11) nK (teal squares), and Fig. 4(b)
the tight configuration with barrier heights V0 = 330(35) nK
(red circles), V0 = 290(30) nK (blue diamonds), and V0 =
240(25) nK (green squares). From bottom to top, 3D GPE
simulations are shown by the solid gray lines with barrier
heights for Fig. 4(a), 120, 130, 140, 210, and 220 nK; and for
Fig. 4(b), 230, 240, 290, 300, 340, and 350 nK. The barrier
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(a)

(b)

(c)

FIG. 4. Numerical 3D Gross-Pitaevskii and experimental data.
Semilog plot for decay in number of trapped atoms for (a) weak
and (b) tight trapping configuration. Data from the classical spilling
regime around the first 40 ms (20 ms) in weak (tight) configuration is
also included. Gray lines are 3D GPE simulations. Beyond (a) 0.8 s
and (b) 0.6 s, the dynamics become loss dominated. (c) 3D simulations
reproduce gross features of decay rate as a function of chemical
potential, where gray data points are classical spilling transients, and
dashed black lines are fitting results. All data points are from the
experiment.

FIG. 5. Case study: theoretical model fit to macroscopic quantum
tunneling data. Experimental number of trapped atoms as a function
of time (red circles, mean values with 1σ error bars) with theoretical
fit (solid blue curve), exponential fit through tunneling dominated
regime (dash dot black line), and experimental background loss
(dashed pink nearly horizontal line). We divide the decay curve into
three subregions (indicated by dashed vertical lines): initial transient
classical spilling, (A) mean-field assisted quantum tunneling region
with nonexponential decay, and (B) background loss dominated
region. The green (dark gray) envelope indicates uncertainty in fitting
parameters from modified JWKB. The yellow (light gray) envelope
indicates combined uncertainty due to uncertainty in experimental
parameters, uncertainty in data, and uncertainty in fit parameters.

heights used in the simulations were chosen to match the
results from the experiment. In the case of the tight config-
uration [Fig. 4(b)], we see that the barrier heights for which
the simulation closely matches the data are consistent with the
experimentally measured barrier height. However, in the case
of the weak configuration [Fig. 4(a)], there is a discrepancy.
This could be possibly be due to aberrations developed in the
barrier beam off-axis, which results in an incorrect estimation
of the barrier height. Quantum tunneling starts at around 40 ms
(20 ms) in weak (tight) configuration. The nonexponential
decay feature of this quantum tunneling region [shown in
Figs. 4(a) and 4(b)] will be emphasized in Fig. 5.

We further consider the relation between decay rate and
chemical potential in Fig. 4(c) for the tight trapping configura-
tion, with barrier heights of V0 = 240(25) nK (green squares),
V0 = 290(30) nK (blue diamonds), and V0 = 330(35) nK
(red circles). Their corresponding 3D mean-field simulations
are shown for barrier heights of 230 and 240 nK, 290 and
300 nK, and 340 and 350 nK. The 3D mean-field simulations
fit the tight configuration well, which did not exhibit strong
classical spilling in the initial stages of the dynamics, but not
the weak trapping configuration, which had well-identified
distinct classical tunneling and quantum tunneling regimes,
and is discussed further in Sec. IV. We observe that the decay
rate can be fitted with a simple exponential function of the
chemical potential of form,

� = �bg + exp(α + βμ). (2)
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Here �bg is the background loss rate, and �bg = 0.31(0.02) Hz
in the experiment. These fits are included in Fig. 4(c) as dashed
black lines.

C. Effective 1D JWKB description: An experimental case study

In the weak configuration, there is spilling dominated
dynamics for approximately the first 40 ms, quantum tunneling
from about 40 ms to about 1 s, and background loss dominates
thereafter, while in the tight configuration, there is spilling
dominance until around 0 ∼ 20 ms, quantum tunneling from
20 ms to 1.1 s, and experimental background loss thereafter.
During the escape, trapped atoms tunnel from a quasibound
state into the continuum via the weakest points, the saddle
points, as the rate is largest and favorable. Figure 1(b) schemat-
ically shows the corresponding representative trajectories. An
intriguing question is whether or not, in this rather com-
plicated potential possibly supporting chaotic semiclassical
trajectories, one can capture the basic dynamics of MQT with
the well-known JWKB model in an effective 1D picture. To
explore such an idea, as illustrated in Fig. 1, we choose the
most probable direct path for MQT, from the local minimum
behind the barrier to the saddle points.

Figure 5 presents one case study with a barrier height of
190(13) nK in the weak configuration and serves to convey the
details of our approach. We divide the dynamical process into
three main parts: transient spilling, mean-field assisted MQT,
and background loss dominated dynamics, division indicated
by the vertical dashed lines. In our analysis we discard the
classical spilling transients. MQT is defined as beginning when
the chemical potential is equal to Vs, the difference in potential
energy between the saddle points and the local minimum of the
potential. For the weak configuration, this is at about t = 20 to
40 ms, beginning of region A. In this region, the decay process
slows down and shows a nonexponential decay feature; an
exponential fit (solid black line) has χ2 = 3.32 as opposed to
our model fit χ2 = 1.21. This nonexponential decay is caused
by the mean-field effect, or atomic interactions, as confirmed
by the effective JWKB model fit and the 3D GPE simulations.
As we show in Sec. IV, this fit requires the interactions to
match the data. As the decay process progresses, the number
of atoms and the chemical potential decreases, and so does the
mean-field effect. Thus, we obtain an effectively dynamical
barrier height, which decreases with time. Combined, these
factors produce a faster decay at the beginning of region A and
a much slower decay by the end of the region. Finally, in region
B, the decay process is dominated by the background loss. The
blue curve is our theoretical fit and red points with error bars
are the experimental data. The error region for our fit, from the
uncertainty in our resulting fit parameters (a and w as discussed
in Sec. IV A), is shown in green. The error region shown in
yellow is the combined error including uncertainty in (i) fit
parameters, (ii) atom number (error bars for red points), and
(iii) experimental parameters; errors added in quadrature. The
major contributions to the experimental error are the standard
deviations of initial particle numbers (δN0) at the start of the
tunneling regime, and uncertainty in the peak barrier height
(δVs), about 6% (11%) in the weak (tight) configuration. For
early times, t < 100 μs, both δN0 and δVs contributed about
O(103 ∼ 104) to the total error envelope. After this time, the

contribution from δN0 decreases 1–2 orders of magnitude,
while δVs contribution remains about the same. All other error
contributions are generally at least one order of magnitude
smaller than δVs. We found similar results for the tight con-
figuration, but the smaller particle numbers resulted in larger
error envelopes relative to particle numbers; see Sec. IV B for
details. We also calculate the reduced chi squared of our model
for all the data sets in both configurations, which confirms that
our theoretical fits are well within experimental error.

In fact, this pattern in Fig. 5 occurs in all the experimental
data sets, in both weak and tight configurations, as we discuss
in the following section.

IV. EFFECTIVE 1D JWKB MODEL OF MACROSCOPIC
QUANTUM TUNNELING

In this section, we derive and explore in detail an effective
1D modified JWKB model, comparing quantitatively to
experimental results. The term “modified” refers to inclusion
of mean-field effects not normally considered in based JWKB
analysis, which turn out to be key to the nonexponential decay
observed in the experiment.

A. Modified JWKB model

Our initial hypothesis was that we could capture nonex-
ponential tunneling simply through barrier shape. A triangle
barrier is the simplest case with a barrier width which increases
as the particles escape and the chemical potential decreases,
leading to a slowdown in tunneling. The triangle also has
the advantage of being analytically tractable. We found that
a square barrier does not reproduce the experimental data,
while a Gaussian increases the analytical difficulty without
improving the accuracy of the model. We take the triangle
height to be the saddle height Vs and triangle centers at
x = ±x0, both as determined in the experiment, and single
free parameter, the full width at half maximum (FWHM), w

(i.e., its slopes are ±Vs/w):

Vtri(x) =
{−Vs

w
|x ± x0| + Vs, |x ± x0| < w

0, otherwise
, (3)

as shown in Fig. 6. Using Eq. (3), the JWKB tunneling
probability is given by

Ptri = exp

(
− 8

3h̄
w

√
2mVs

(
1 − E

Vs

)3/2)
, (4)

the semiclassical oscillation time in the potential by

τtri =
√

2m
(x0 − w)√

E
+ 2

√
2m

w
√

E

Vs
, (5)

and the tunneling rate through the saddle by

�tri = Ptri

τtri
. (6)

The experimentally measured background loss rate is �bg ≈
0.31(0.02) Hz. The number of atoms remaining behind the
barrier as a function of time is given by a decay equation,

Ṅ (t) = −(�tri + �bg)N (t) = −�N(t). (7)
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FIG. 6. JWKB potential schematic. Tunneling in the full 3D
experimental potential can be modeled with a much simpler 1D
approach. The minimal feature set required to fit the data is (1) a
bare 1D triangle potential of height Vs and width 2w (gold, solid); (2)
inclusion of the mean field to create an effective potential of height
Vs(1 + a) with a ∝ N (t) (teal, dotted); and (3) use of the Thomas-
Fermi approximation for the chemical potential μ ∝ N1/3 (red dashed
line). Such a choice of model provides self-consistency between the
replacement of E with μ in the usual JWKB treatment, together with
the bare V (x) with the effective potential Veff (x) = V (x) + g|ψ |2.

We further assume our system can be described by the
Thomas-Fermi picture, which justifies using the analytical
approximation for the chemical potential [26], from which
we obtain

μ = bN1/3, (8)

with constant of proportionality b = 1.15(8) nK [3.03(5) nK]
as measured for the weak (tight) configuration. Note that
any dependence on barrier height is negligible within the
experimental and model fitting parameter error.

The next logical step to adapt JWKB to this context is
to replace E in Eqs. (4) and (5) with the appropriate single-
particle energy in the presence of the effective potential and
interactions from Eq. (8). However, this approach alone fails to
accurately reproduce the experimental results over the entire
experimental time window: Tunneling stops too soon and the
dynamics of the final half of the tunneling process are not ac-
counted for. Instead, along with replacing E with μ in Eq. (8),
the explicit inclusion of mean-field effects is also required
to fit the data, which makes the tunneling rate � in Eq. (7)
time dependent, similar to results from the complex scaling
method [91]. In order to take into account the time-dependent
mean-field effects, we add time dependence to the height of our
triangle potential, capturing a mean-field effective potential
from the GPE of form Veff(x) = V (x) + g|ψ(x,t)|2, as is
also necessary to be self-consistent with the Thomas-Fermi
approximation underlying Eq. (8); see also [16,17]. The
simplest model capturing such effects is a potential of form,

Veff(x,t) =
{−Vmf

w
|x ± x0| + Vmf, |x ± x0| < w,

0, otherwise,

Vmf = Vs

[
1 + a

N (t)

N0

]
. (9)

Here, N0 is the initial particle number in the trap when quantum
tunneling regime begins (tQT), a > 0 is a unitless mean-field fit
parameter, and Vmf is the time-dependent potential prefactor
that captures the mean field. The effect of a in Vmf is to

introduce a dynamic effective barrier which decreases to
the bare potential as the atoms escape. A schematic of the
bare triangle barrier Eq. (3) and effective mean-field triangle
Eq. (9), at the beginning of the tunneling regime Veff(x,tQT),
are shown in Fig. 6. Note, mean-field interaction would
necessarily alter the ground-state wave function of the system;
the JWKB model used here is a minimal model which is able
to reproduce the experimental findings with only two free
parameters, w and a, and may hint at many-body dynamics as
will be discussed in Sec. V. Finally, we make the appropriate
replacements of Eqs. (8) and (9) into Eqs. (4) and (5) to give

Peff = exp

(
− 8

3h̄
w

√
2mVmf

(
1 − bN1/3

Vmf

)3/2)
, (10)

τeff =
√

2m
(x0 − w)√

bN1/3
+ 2

√
2m

w
√

N1/3

Vmf
, (11)

the modified JWKB tunneling probability and semiclassical
oscillation time, which are subsequently substituted into
Eqs. (6) and (7).

Figure 7 contains the fitted potential FWHM parameter w,
the saddle height Vs, and the initial (t = tQT) mean-field saddle
height Vmf = Vs(1 + a). The increasing trend in w reflects the
fact that the experimental trap widens with increasing height,
as shown in Table I. The trend in Vmf overall increases with
increasing peak height, leading to a deeper potential well in
Fig. 7(a). Deeper wells are able to hold larger number of atoms,
and the more atoms the stronger the mean-field effect (larger
barrier). These larger barriers cause slower maximal tunneling
rates as shown in Fig. 8(b), except for 260 nK. The case of
peak height 260 nK has a smaller increase from bare saddle
height Vs to Vmf than expected; Vmf for 260 nK is close to that
of 221 nK even though the bare height Vs is more than 10%
larger, indicating additional unaccounted for systematic error
in the experimental setup for this barrier height. The initial
number of atoms for V0 = 260 nK (N0 ≈ 583 000) is much
closer to V0 = 190 nK (N0 ≈ 560 000) than V0 = 221 nK
(N0 ≈ 630 000). This is further supported by the results in
the tight configuration runs; see Sec. IV B.

In the experiment, we were able to fit a nearly exponential
relation between the experimental tunneling rate �exp and the
chemical potential, Eq. (2), for weak [Fig. 8(a)] and tight
[Fig. 4(c)] configurations. Figure 8(b) shows both experiment
and 3D mean-field simulations for the weak configuration
with barrier heights of V0 = 170(11) nK (teal squares), V0 =
190(13) nK (purple diamonds), and V0 = 260(18) nK (blue
circles). From the modified JWKB fits, we calculate the
instantaneous decay rate � as a function of chemical potential
μ, and use Eq. (2) to fit to this relation, Fig. 8(b); in light of
the discussion in Sec. IV B, we omit tight configuration data.
By examining Fig. 8, one finds that the fit captures the gross
features of both the experimental data and modified JWKB
curves, especially when comparing curves which correspond
with the same barrier height (teal, purple, and blue curves
between both subfigures. In Fig. 8(b), for barrier heights
V0 � 221 nK, it can be seen that quantum tunneling is still
contributing, as the tails for the fits strongly deviate from the
modified JWKB curves.
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(a)

(b)

FIG. 7. Fitting results in quantum tunneling regime. Optimized
values of (a) effective saddle height (teal squares) at start of tunneling
dynamics in comparison to the experimentally measured bare saddle
height (red triangles) vs the bare peak height, showing how mean-field
effects significantly correct the tunneling dynamics. (b) Effective
potential width w for the weak configuration. Both the effective
width and height increase as a function of bare experimental barrier
height V .

Finally, we demonstrated the power of the resulting JWKB
prediction for N (t) in our case study in Fig. 5. Figure 9 shows
N (t) predictions from the theoretical fitting results from Fig. 7
for the other five sets of data in the weak configuration, with
the same trends of nonexponential MQT behavior. For brevity,
we do not illustrate complete error bar analyses here, but they
show similar trends to the case study.

In Sec. III C we put forth the question of whether or not an
effective 1D JWKB model could reproduce the experimental
findings, and in this section we have demonstrated that it is
indeed possible. Two underlying assumptions were used, that
we could simplify to a 1D model and that the JWKB was
applicable. JWKB is applicable when the spatial derivative of
the de Broglie wavelength λdB = h̄/p(x) is small, dλdB/dx �
1, where p(x) is the semiclassical momentum. Clearly this
is the case here since our model fits the data well. How
can this be true for a 3D system? It turns out that the 3D
potential used here can be efficiently treated by averaging over
all semiclassical paths, and using the JWKB approximation
for tunneling through the barriers, as established in [92].
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(b)

FIG. 8. Experimental data and theoretical curves comparison:
decay rate vs chemical potential. (a) Experimental data for the weak
trapping configuration (colored points), 3D GPE simulations (gray
lines), and fit results to an exponential plus a constant, Eq. (2) (dashed
black lines). (b) Modified JWKB curves modeling this data (solid
colored lines) and fit curves to our model, again based on Eq. (2)
(dashed black lines), showing that the basic exponential dependence
on chemical potential is captured by a much simpler 1D modified
JWKB approach. Numbers in (a) and (b) represent barrier height Vs.

Our effective JWKB potential, Eq. (9), uses a flat potential
inside the well, while a true 1D path would necessarily
include the harmonic and Gaussian contributions from Eq. (1).
However, this allowed the model to capture, on average, the
classical oscillation frequency with the barriers caused by the
complicated semiclassical trajectories in the true 3D well.
The key point is that our JWKB approach is an effective model,
not a first principles calculation, and the results fit the data well.

B. The tight configuration

According to our calculations from the 3D GPE simulations
for the kinetic energy term, the chemical potential needs to be
modified for the tight configuration potential. This is because
we estimate the chemical potential with the Thomas-Fermi

063601-10



MACROSCOPIC QUANTUM TUNNELING ESCAPE OF BOSE- . . . PHYSICAL REVIEW A 96, 063601 (2017)

FIG. 9. Theoretical fits of trapped particle number for weak
configurations. All fits demonstrate the same trends as the case study
in Fig. 5. Gray dashed lines represent background loss for each barrier
height. Colors indicate barrier heights for weak configuration, in
nanokelvin.

approximation [26]. But, for the tight configuration, due to
the tighter confinement, we have a smaller particle number
in the potential, which is almost one-fifth of that in the
weak configuration. This makes the kinetic energy term larger
in the tight configuration where the acceleration is large,
which leads to a modification of chemical potential of about
6–21 nK for different barrier regimes in the tight configuration.
Figure 10 shows the kinetic energy term in the weak and tight
configuration. These are calculated by numerically solving
the full 3D GPE equation using imaginary time propagation.
For the weak configuration, the kinetic term is much smaller,
Thomas-Fermi is an excellent approximation and indeed it fits
the data well. While on the contrary, the kinetic term becomes
larger and can’t be neglected in the tight configuration. All the
plots which include the chemical potential in this article are
already fixed with its kinetic energy term according to Fig. 10.

The tight configuration has larger fluctuations and the traps
deviate from their ideal shape in Eq. (1), an effect to which
our theoretical model is sensitive; Vts in the tight configuration
had about twice as much uncertainty as the weak configuration.
Similar to the weak configuration, the largest contribution to
the error envelopes was the uncertainty in barrier height and
the fluctuation in the particle number, with all other errors
typically 1–2 orders of magnitude smaller. Particle number
error dominated early times (t < 100 ms) with errors up
to O(103 ∼ 104) before dropping 1–2 orders of magnitude,
and the barrier error dominated thereafter with errors up
to O(103 ∼ 104). So, although the error contributions were
not significantly larger in the tight configuration, due to the
fewer total particles involved in tunneling these experimental
uncertainties resulted in larger error envelopes relative to the
number of particles.

All fits for the tight configuration fall into two trends.
Figure 11 shows two representative fits for peak heights of
290 nK and 330 nK. Both plots distinguish the error in the
fit due to uncertainty in our fit parameters (green envelope),
and the total uncertainty including experimental uncertainty
(yellow envelope); contrast with weak configuration in Fig. 5,
in which the total uncertainty is not much larger than the

(a)

(b)

FIG. 10. Kinetic energy correction to the chemical potential. In
the (a) weak and (b) tight configurations, as the number of atoms
increases, the kinetic energy contribution decreases, rendering the
Thomas-Fermi approximation more accurate. Tight configuration
requires kinetic energy a correction due to fewer particle numbers.
Colored dots are from 3D GPE calculation while lines are a guide to
the eye.

data error bars. Quantum tunneling is only observable for
the first 600 ms, with background losses quickly dominating
the dynamics thereafter, in contrast to the weak configuration
where MQT is observable for about twice as long. Data sets
for the tight configuration either had many points with large
experimental error bars and large fluctuations like Fig. 11(a),
or had few data points with smaller error bars but still large
fluctuations like Fig. 11(b); all but V0 = 240 nK had reduced
chi-squared values for N (t) of O(0.05 ∼ 0.10). Although the
total uncertainty for the tight configuration did not allow for
physical insight into the modified JWKB free parameters, the
model was still able to capture the overall trend in Fig. 11.

V. EFFECTIVE MEAN FIELD

This section is outlined as follows. We first present the
literature which motivates using a renormalized mean-field
parameter for depleted and fragmented BECs. Next, we present
the many-body Hamiltonian and a corresponding mean-field
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(a)

(b)

FIG. 11. Experimental data and theoretical fits in tight config-
urations. Experimental data for MQT (theoretical fits, blue lines)
for the tight configuration shows either (a) for V = 290 nK, large
experimental error and small fitting error, or (b) for V = 330 nK, few
data points with large fitting error. Red points are the mean value of the
number of atoms in the trap from experimental data, with 1σ error
bars, and dashed pink line is background loss. The green regions
indicate fitting error, and yellow regions combined uncertainty in
model fit, experimental parameters, and data points.

equation. Following that, we describe the method by which
we create a metastable state to study quantum tunneling. We
show the failure in a straightforward mean-field application,
and how a modified interaction parameter captures the low-
order many-body dynamics from TEBD. Finally, we draw
conclusions from the MQT experiment, and suggest future
studies to distinguish between true mean-field and many-body
effects in MQT experiments.

Experimentally, BECs have overall been very well under-
stood with mean-field theory in the form of the GPE. However,
the presence of many-body processes can induce fluctuations,
fragmentation, and depletion, thereby rendering mean-field
models inaccurate or even ineffective. Many techniques and
approaches are used to move beyond the GPE [93]; of
particular interest here are those using an effective interaction
parameter [94–99]. We will demonstrate how, similar to
multicomponent optical systems being well modeled by an
effective scalar GPE-like equation derived from a multimode
or large vector NLS, fragmented and depleted BECs described
by a many-body Hamiltonian can, for the purposes of MQT,

be well described by a mean-field model with an effective or
renormalized interaction parameter.

Advances in nonlinear optics and strong connections to
the NLS motivate the effective interaction parameter used in
our JWKB model. A deep theoretical understanding of the
propagation and self-focusing of partially incoherent beams
in nonlinear media, which can lead to spatial incoherent
solitons, has been developed through several equivalent meth-
ods [100]: an infinite set of coupled nonlinear Schrödinger
equations (coherent density approach) [101–104], propagation
equation for mutual coherence function [105–108], and self-
consistent multimode theory [109–113]. Similarities in the
propagation equation for the mutual coherence method to
the NLS allow for analytical techniques to be extended for
partially incoherent regimes; e.g., derivation of an analytical
expression for the collapse threshold of spatially partially
coherent beans in inertial bulk Kerr media [114]. It has also
been shown that BECs at finite temperature have analogous
behavior to incoherent light in nonlinear media [115], further
suggesting that analogies to nonlinear optics can offer useful
insight.

For the many-body dynamics, consider N bosons at zero
temperature in the canonical ensemble in a quasibound state,
one suitable for quantum tunneling as laid out in this article.
One appropriate model to study many-body dynamics for this
system is the Bose-Hubbard Hamiltonian (BHH), which can
be invoked using an optical lattice of L sites with deep enough
sites for a tight binding and single band approximation, or
alternately taking it as a discretization scheme in an appropriate
limit:

Ĥ = −J

L−1∑
i=1

(b̂†i+1b̂i+H.c.)+
L∑

i=1

[
U

2
n̂i(n̂i − 1̂)+V ext

i n̂i

]
.

(12)

In Eq. (12), U determines the on-site two-particle interactions
and J is the energy of hopping. An external box trapping
potential, such as in schematic plot Fig. 2(a), is given by V ext

i

with height h. The field operator b̂
†
i (b̂i) creates (annihilates) a

boson at the ith site, satisfying the usual commutation relation
[b̂i ,b̂

†
j ] = δij , and n̂i ≡ b̂

†
i b̂i . We will work in hopping units:

Energies are scaled to J and time t to h̄/J . To simulate the
many-body dynamics of the BHH, we use TEBD, a matrix-
product-state method which is able to efficiently simulate one-
dimensional many-body quantum systems, and allows access
to a wide variety of many-body quantities like fluctuation and
entanglement [116–118].

To describe the system from a mean-field perspective, the
discrete nonlinear Schrödinger equation (DNLS) may either
be obtained via discretization of the NLS or from a mean-field
approximation of the BHH [119]:

ih̄ψ̇i = −J (ψi+1 + ψi−1) + g|ψi |2ψi + V ext
i ψi . (13)

In Eq. (13), the condensate order parameter ψi is normalized
to the number of atoms, N = ∑L

i=1 |ψi |2, and g ≡ U from
the BHH. Note, however, g in the DNLS is related, but not
equivalent, to the interaction parameter in the GPE. To be
exact, g = g(1)

∫
dx|W (0)(x)|4, where g(1) is the quasi-1D

interaction strength, proportional to scattering length, and
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W (0)(x) is the lowest order Wannier state; see [120] for details.
Mean-field simulations are performed using a fourth-order
Runge-Kutta adaptation of Eq. (13). The BHH approaches
the DNLS equation in the mean-field limit N → ∞, U → 0,
NU = const., which we take in units of J , NU/J = const.
Both the BHH and the DNLS are single band models, valid
when the many-body wave function covers many sites and has
variations larger than the lattice constant.

We use box boundary conditions and initially set the barrier,
V ext

i , to zero over the first 15 lattice sites, and h = 0.15 over all
the rest; the lattice size L is large enough that the particles don’t
reach the end of the grid within simulation time, mimicking
escape into open space. After propagation in imaginary time,
the wave function is mostly trapped in the first 15 sites. We
then reduce the external barrier to be h = 0.10 from sites 16
to 19, thus rendering the state metastable, and evolve in real
time. We reduce the height to induce larger fragmentation
and depletion of the many-body wave function, but show how
the renormalized mean field still captures the key features of
tunneling dynamics.

In Fig. 12(a) we plot the normalized number of trapped
atoms as a function of time for the many-body simulations
with NU/J = 1.00, mean field with g = NU/J = 1.00, and
effective mean field with two values of geff . The values of geff

were found by sweeping over g values until appropriate upper
and lower bounds on the many-body dynamics were found.
In Fig. 12(b), we plot the two largest {λ}, the eigenvalues of
the single-particle density matrix 〈b̂†i b̂j 〉, and λ�3, the sum of
all but the two largest eigenvalues. We calculate eigenvalues
for the single-particle density matrix over the entire system
[λsys

l , solid curves in Fig. 12(b)], as well as focusing in on the
single-particle density matrix in the trapping potential [λtrap

l ,
dashed lines in Fig. 12(b)]. Information about the whole system
λ

sys
i indicates a large degree of fragmentation, with up to 30%

occupation of the second mode, and depletion, with more than
10% occupation in all but the first two modes. Information
regarding only the remaining atoms trapped in the well (λtrap

i )
shows a large fraction of the BEC has escaped. Even though
the many-body wave function would be considered over 30%
depleted by tesc ≈ 186, the time at which the number of trapped
atoms is 1/e of the initial value, our mean-field plots accurately
bound the trend in many-body tunneling with a simple
renormalization of the interaction parameter g by about 25%.
The effective mean-field simulation is able to qualitatively
capture the overall trend in the number of trapped particles for
tunneling, with less than O(10−3) relative error in the trapped
number of atoms, an error which would be indistinguishable
within the error bars of many tunneling experiments including
our own. While these results show that effective mean-field
models can accurately reproduce low-order observables like
trapped-atom density for depleted many-body wave functions,
we do not include loss, finite temperature, and other open-
system effects in our many-body simulations.

In Sec. III B, we show how a full 3D mean-field treatment
of the experiment captures the gross features of the dynamics,
and in Sec. IV we show how a JWKB model with an effective
mean-field-like parameter fits experimental results well. These
results are corroborated in this section, as we have shown how
a renormalized mean-field interaction can adequately capture
quantum tunneling of fragmented and depleted condensates,
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FIG. 12. Effective mean field, many body, and depletion. (a)
Normalized trapped atoms for many-body (NU/J = 1.00, dashed
curve) is bounded from above and below by effective values g =
0.72 (green, upper dark gray curve) and g = 0.77 (dotted curve),
respectively, while direct mean-field comparison g = 1.00 (teal,
the lowest dark gray curve) underpredicts. (b) Semilog two largest
eigenvalues (λ1,λ2) and sum of remaining eigenvalues λ�3 of the
single-particle density matrix for the total system (solid lines) and
trapping well (dashed lines) are plotted versus time. The wave
function has large occupation of two modes over the whole system
(solid lines), with 10% depletion as noted by nonzero λ�3. Points
represent actual data with error bars smaller than marker, and lines
are a guide to the eye.

two effects that are likely present in an open quantum system
such as our own, and compensated for with our JWKB
parameter a. The applicability of mean field seems to be
larger than expected, and care must be taken to determine
whether a given set of experimental data is purely mean field.
Future experiments with sufficient resolution may be able
to distinguish between many-body and effective mean-field
dynamics by reducing number fluctuations in the initial state
to resolve effective interaction strengths, for example, by post-
selecting on atomic number in measurements or using atom
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interferometry [11]. Furthermore, coherence experiments on
the escaped particles may further illuminate this distinction, as
suggested by macroscopic occupation of more than one mode
over the entire lattice in Fig. 12(b).

VI. CONCLUSIONS

We first provided a brief discussion about different MQT
regimes according to four factors: statistical properties and
quasiparticles, the role of interactions, type of trapping
potential, and dimension of the system. In the discussion
about atomic interactions, we suggested weak interactions can
be described by mean-field-like theories, with fragmentation,
entanglement, and higher order quantum fluctuations increas-
ing for stronger interactions and presenting experimentally
untested regimes of MQT. We suggested different quasiparticle
descriptions may result in distinct tunneling regimes. We
outlined how the shape of potential wells define the modes
which particles can occupy, before and after tunneling, leading
to a strong distinction between, e.g., Josephson physics
and quasibound many-body dynamics, or quantum escape.
We emphasize that the barrier is generally deformed by
interactions and one must think at least in terms of an effective
potential, as evidenced also by our experiment. Although
tunneling is primarily a 1D effect, higher dimensions can affect
tunneling by creating chaos in semiclassical paths behind the
barrier, for instance. This brief survey set the tone for our
own work and suggested future experiments and theoretical
development needed, for instance, in the study of MQT of the
unitary Fermi gas, perhaps in its holographic dual.

Then, we described the tunneling experiment and the result-
ing nonexponential decay of the trapped atoms. A mean-field
description was validated by overall agreement between the
experimental results and a 3D mean-field simulation, in decay
curves and decay rates. The 3D mean-field simulation also
calculated the kinetic term separately, which led to a correction
of the kinetic term in the tight trap configuration. Our theoreti-
cal mean-field model reproduced the experimentally observed
nonexponential decay, which was previously indicated to be
the result of the participation of atomic interactions in the
tunneling process. We then proceeded to explore the usefulness
of a much simpler effective 1D model utilizing a modified
version of the semiclassical approximation, or JWKB. A case
study of the experiment with barrier height 190 nK in the weak
configuration demonstrated the effectiveness of our 1D model.
We further divided the tunneling process into three subregions:
an initial decay region corresponding to classical spilling over
the two saddles appearing in our potential; a nonexponential
quantum tunneling regime during which interactions heavily
affected the tunneling rate; and a background-loss dominated
region. This pattern appeared in all the experimental runs.

Subsequently, we described the modified JWKB model in
detail. The transition point into JWKB is when the relative

height of the saddle points equals the chemical potential.
In the modified JWKB model we introduced an effective
mean-field term which modified the barrier and produced
nonexponential decay consistent with the experiment. Thus,
this nonexponential decay can be described as generated by
atomic interactions, which led to an effective dynamic barrier.
Both 3D mean-field and 1D JWKB models confirmed an
exponential relation between decay rate and chemical potential
observed empirically in the experiments. JWKB used only two
fitting parameters, an effective mean-field saddle height Vmf

resulting from unitless mean-field parameter a, and saddle
width w. The parameter w grew wider with increasing barrier
height, which followed the experimental trend. Increasing Vmf

reflected the fact that higher peaks in the experiment have
smaller maximum tunneling rates.

Finally, we showed how a renormalized mean-field theory is
capable of capturing many-body quantum effects in low-order
observables, by comparing discrete nonlinear Schrödinger and
TEBD simulations, in analogy to optics contexts in which
many modes create an effective scalar nonlinear-Schrödinger
or Gross-Pitaevskii-type description. Thus, experiments with
large number fluctuations or error bars can have difficulty
in discerning between mean field and renormalized mean
field due actually to many-body effects. Future experiments
which more precisely resolve atomic number and interaction
strengths may be able to distinguish between the bare mean-
field theories generally assumed to describe BEC dynamics
and the effective or renormalized theories we have here
suggested, in terms of a concrete observable, the number
of atoms remaining in a many-body quasibound state as a
function of time.
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