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Wigner tomography of multispin quantum states
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We study the tomography of multispin quantum states in the context of finite-dimensional Wigner
representations. An arbitrary operator can be completely characterized and visualized using multiple shapes
assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A
91, 042122 (2015)]. We develop a general methodology to experimentally recover these shapes by measuring
expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious
multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three
spins using nuclear magnetic resonance spectroscopy.
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I. INTRODUCTION

Optical homodyne tomography can be applied to experi-
mentally measure the quantum state of light [1–5]. One thereby
recovers an infinite-dimensional Wigner function [6–8] as a
classically motivated phase-space representation, providing
a useful tool for the characterization and visualization of
quantum-optical systems [9]. This results in an advantageous
dualism between measurement scheme and phase-space rep-
resentation, which we would like to transfer to the case of
finite-dimensional, coupled spin systems.

One important representation of finite-dimensional quan-
tum systems relies on discrete Wigner functions [10–15]. But
we will restrict ourselves to continuous representations in order
to naturally reflect the inherent rotational symmetries of spins.
Individual spins are faithfully described by their magnetization
vector (or Bloch vector), which, however, neglects relevant
parts of the full density matrix in the case of multiple, coupled
spins. These missing parts include zero- and multiple-quantum
or antiphase coherence as well as spin alignment [16], which
are partially characterized by visual approaches based on
single-transition operators [16–18].

We will follow the general strategy of Stratonovich [19]
which specifies criteria for the definition of continuous Wigner
functions for finite-dimensional quantum systems. The case
of single spins is widely studied in the literature [20–25],
and visualizations for multiple spins have been considered in
[7,26–29] with various degrees of generality. However, until
very recently, it was not clear [28,29] if a general Wigner
representation also exists for arbitrary, coupled spin systems,
and even the case of three coupled spins 1/2 was open.

Fortunately, a general Wigner representation for character-
izing and visualizing arbitrary coupled spin systems has been
developed in [30]. It is based on mapping arbitrary operators
to a set of spherical functions which are denoted as droplets,
while preserving crucial features of the quantum system. The
characteristic shapes of these droplets can be interpreted as
the result of an abstract mapping, but we also ask in this paper
how they are related to experimentally measurable quantities.
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The general Wigner representation introduced in [30] is
denoted as the DROPS representation (discrete representation
of operators for spin systems), and its basics are recalled in
Sec. II where important properties are also summarized.

In this paper, we theoretically develop a tomography
scheme for spherical functions of arbitrary multispin quantum
states. We study experimental schemes to reconstruct the
generalized Wigner representation of a given density operator
(representing mixed or pure quantum states). Extensions to
quantum process tomography [31] as given by the experi-
mental reconstruction of entire propagators (e.g., representing
quantum gates) are, however, beyond the scope of this
paper. Our scheme is particularly tailored to the Wigner
representation of [30], for which an interpretation in terms
of fictitious multipole potentials is provided. We will focus on
systems consisting of spins 1/2, even though our approach
is applicable to arbitrary spin numbers. We also provide
explicit experimental protocols for our Wigner tomography
scheme and demonstrate its feasibility using nuclear magnetic
resonance (NMR) experiments. Motivated by our experiments,
most of the discussed examples consider only the traceless part
of the density matrix.

This paper is organized as follows. A brief summary of
the DROPS representation is presented in Sec. II. Our general
methodology for sampling spherical functions of multispin
operators is introduced in Sec. III, which also states the
main technical results for the Wigner tomography. Section IV
provides a physical interpretation of spherical functions in
terms of fictitious multipole potentials. The performed NMR
experiments are summarized in Sec. V, and Sec. VI discusses
the use of temporal averaging. The precise experimental
scheme and its implementation on a spectrometer are detailed
in Secs. VII and VIII. We conclude by summarizing and
discussing theoretical and experimental aspects, while also
contrasting our paper with other tomography approaches.
Further details are deferred to the Appendices.

II. VISUALIZATION OF OPERATORS
USING SPHERICAL FUNCTIONS

We summarize the approach of [30] to obtain a Wigner
representation of arbitrary operators A in coupled spin systems
using multiple spherical functions, which is based on a
general one-to-one mapping from spherical tensor operators
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FIG. 1. (a) Three-spin operator A = I1z + I2x + I3y + 2I1xI2z +
I2xI3x + I2xI3y + I2xI3z + 2I1xI3x + 4I1xI2xI3x [16,41] visualized
using multiple spherical functions f (�) = f (�)(θ,φ), and individual
components A(�) of A mapped to f (�) and graphically visualized;
A∅ is here zero; trilinear labels “{123},τp” are shortened to “τp”.
(b) f {23} (box) decomposed into its 2j -multipole contributions f

{23}
j

with j ∈ {0,1,2} (monopole, dipole, and quadrupole). (c) f
{23}

1

(circle) decomposed into spherical harmonics of order m ∈ {−1,0,1};
Y1,−1 and Y1,1 are rainbow colored [42].

to spherical harmonics. An operator

A =
∑
�∈L

A(�) (1)

is decomposed according to a suitable set L of labels � (i.e.,
quantum numbers) inducing a bijective mapping between the
components A(�) and spherical functions f (�) = f (�)(θ,φ).
These spherical functions can be plotted together as seen in
the example of Fig. 1(a) where the corresponding mapping
is highlighted. This provides a pictorial representation of
the operator A, which conserves important properties and
symmetries depending on the chosen label set L.

The components A(�) and the spherical functions f (�) =
f (�)(θ,φ) can be further split up into their multipole con-
tributions A

(�)
j and f

(�)
j = f

(�)
j (θ,φ) depending on the ranks

j ∈ J (�) occurring for each label � as shown in Fig. 1(b), i.e.,

A(�) =
∑

j∈J (�)

A
(�)
j and f (�) =

∑
j∈J (�)

f
(�)
j . (2)

Finally, the rank-j multipole contributions [see Fig. 1(c)]

A
(�)
j =

j∑
m=−j

c
(�)
jmT

(�)
jm and f

(�)
j =

j∑
m=−j

c
(�)
jmYjm (3)

can be decomposed into components of irreducible spherical
tensor operators T

(�)
jm [32–37] and the corresponding spherical

harmonics Yjm [38,39] of order m with −j � m � j . Note the
identical expansion coefficients c

(�)
jm in Eq. (3). The dualism

in Eqs. (2) and (3) exploits the well-known correspondence
between irreducible tensor operators and spherical harmonics
[36,37]. In summary, an operator A is mapped to a set of
spherical functions f (�), each of which is referred to as a
droplet identified by �. The whole representation (and its
visualization) was introduced in [30] and is denoted as the
DROPS representation (discrete representation of operators
for spin systems), and it lends itself to interactively exploring
the dynamics of multispin systems, e.g., by use of the free
application [40].

The example presented in Fig. 1 uses one particular version
of this representation which relies on the LISA tensor operator
basis as defined in [30], which is characterized by the linearity
of the basis operators, the involved subsystem, and auxiliary
criteria, such as permutation symmetry. For coupled spins 1/2,
operators are first decomposed in this basis according to the
set of involved spins, e.g., one introduces the labels {k} and
{kl} for linear and bilinear operators acting on a subset of one
or two spins numbered by k and l, and so forth. Secondly, the
LISA basis for operators acting on three or more spins needs
to also distinguish symmetry properties under permutations,
i.e., combined labels such as “{klm},τp” are used, where the
permutation symmetry type τp is given by a Young tableau
[43]. Finally, further ad hoc labels are necessary for operators
involving six or more spins. Arbitrary operators of a coupled
spin system can be uniquely represented using this LISA
tensor operator basis. Additional details for the visualization
technique are given in [30] which also discusses alternative
labeling approaches for DROPS representations.

The presented Wigner representation can be applied to
general mixed quantum states as represented by the density
operator, and it is not limited to pure quantum states as given by
a state function. In fact, it can be used to represent arbitrary op-
erators of spin systems: examples include Hermitian operators
as Hamiltonians or density operators representing observables
as well as non-Hermitian operators such as propagators or
general quantum gates [30].

The Wigner representation using the LISA basis is partic-
ularly attractive for the visualization and analysis of quantum
states in magnetic resonance spectroscopy [16] and quantum
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information processing [44] and its properties have been
discussed in [30]:

(a) The location of the droplets informs about which and
how many spin operators are involved in a given quantum state
and what symmetries under particle exchange are present [see
Fig. 1(a)].

(b) The shape and colors of the droplets reflect spectroscop-
ically important properties. For example, states with defined
coherence order p [16] can be recognized by their axially
symmetric shape, and the magnitude as well as sign of the
coherence order p are represented by the number and direction
of “rainbows” per revolution around the z axis [see Figs. 5
and 6]. This also allows us to recognize characteristic states,
such as in-phase and antiphase coherences.

(c) Furthermore, our representation directly depicts infor-
mation about reduced density matrices and thereby conveys
information related to entanglement measures, which would
have to be first computed from the density-matrix description
via partial traces. In particular, the size of the droplets
corresponding to linear terms [positioned in the vertices of
the triangle in Fig. 1(a)] provides information on the amount
of bipartite entanglement measured by the concurrence (see
Sec. IV E in [30]). This is an example of the fact that relevant
information is often determined already by a subset of all
droplets in the LISA basis. The LISA basis thereby offers a
more structured picture than the density matrix, even though
the number of droplets grows rapidly with increasing number
of spins. However, as pointed out in [30], this number grows
less rapidly than the number of density-matrix elements.

(d) The droplets rotate under nonselective pulses in a natural
way. In combination with the characteristic droplet shapes, this
property makes it in many cases possible to design experiments
that transfer a given initial state into a desired target state
without detailed calculations. Beyond merely interpreting the
occurring characteristic shapes as a result of an abstract
mapping, it is interesting to ask whether they are connected to
experimentally measurable quantities.

III. SAMPLING SPHERICAL FUNCTIONS
OF MULTISPIN OPERATORS

We explain now how the shape of spherical functions
can be characterized by suitable chosen spherical samples.
This will be particularly relevant for spherical functions
representing spin operators as discussed in Sec. II for which
these spherical samples can be experimentally measured.
One obtains a reconstruction method for the quantum state
in terms of spherical functions. In the general case, the
associated rank-j components gj (θ,φ) of an arbitrary spher-
ical function g(θ,φ) are determined by its scalar prod-
uct with rotated versions RαβYj0(θ,φ) of axial spherical
harmonics Yj0(θ,φ), which have rank j and order zero.
Given two spherical functions h(θ,φ) and g(θ,φ), we recall
the definition of their scalar product 〈h(θ,φ)|g(θ,φ)〉L2 :=∫ π

θ=0

∫ 2π

φ=0 h∗(θ,φ) g(θ,φ) sin θ dθ dφ. The rotation operator
Rαβ acts on a spherical function h(θ,φ) by first rotating it
around the y axis by a polar angle β and then rotating the result
around the z axis by an azimuthal angle α, i.e., Rαβh(θ,φ) :=
h[R−1

αβ (θ,φ)] = h(θ−β,φ−α). After these preparations, the
mathematical result underpinning our reconstruction method

states that the value of the rank-j component gj (β,α) is
proportional to the scalar product of RαβYj0(θ,φ) with g(θ,φ).

Result 1. Consider a spherical function g(θ,φ) =∑
j gj (θ,φ). The rank-j components gj (β,α) for angles β

and α can be obtained from the scalar products

gj (β,α) = sj 〈RαβYj0(θ,φ)|g(θ,φ)〉L2 (4)

with sj := √
(2j+1)/(4π ).

Assuming that an operator A is represented by a set of
spherical functions f (�)(θ,φ), we can apply Result 1 by setting
g(θ,φ) := f (�)(θ,φ) for each label � separately. We extend
Result 1 such that the spherical rank-j components f

(�)
j (β,α)

can also be recovered by comparing the operator A directly
with rotated axial tensor operators RαβT

(�)
j0 . Consequently,

the values of the rank-j spherical components f
(�)
j (β,α) can

be experimentally measured for any combination of polar
angles β and azimuthal angles α. Here, RαβC := RαβCR

−1
αβ

describes the rotation of an n-spin operator C where the
simultaneous rotation Rαβ = e−iαFze−iβFy of all spins is
defined using the total spin operators Fz = ∑n

k=1 Ikz and
Fy = ∑n

k=1 Iky [16,41]. We recall the scalar product 〈C|B〉 =
tr(C†B) for operators C and B as well as the definition of the
expectation value 〈B〉ρ = tr(ρB) of an operator B if the state
of the spin system is given by the density matrix ρ. Our result
for recovering rank-j droplet components of an operator can
now be stated as follows.

Result 2. Consider a multispin operator A which is
represented by a set of spherical functions f (�)(θ,φ) =∑

j∈J (�) f
(�)
j (θ,φ). For each label �, the rank-j component

f
(�)
j (β,α) can be experimentally measured for arbitrary angles

β and α via the scalar products

f
(�)
j (β,α) = sj

〈
RαβT

(�)
j0

∣∣A〉. (5)

If the density matrix ρ of a spin system can be prepared to be
identical to the operator A, the rank-j droplet components are
given by the expectation values

f
(�)
j (β,α) = sj

〈
RαβT

(�)
j0

〉
ρ
. (6)

The proofs of Results 1 and 2 are deferred to Appendices A
and B. Equation (6) implies that the rank-j droplet components
f

(�)
j (β,α) for a density matrix ρ can be calculated from the

expectation values of rotated axial tensor operators RαβT
(�)
j0 .

Result 2 shows that one can retrace the shapes of the
spherical functions f (�)(β,α) representing any operator that
can be mapped onto the density matrix if one experimentally
measures f (�)(β,α) for sufficiently many angles β and α.

IV. DROPLETS AS MULTIPOLE POTENTIALS

The methodology of Wigner tomography as presented in
Sec. III can be motivated by relating spherical functions to
physical multipole potentials. Section IV A details connections
to dipole potentials, which is then generalized to fictitious
multipole potentials in Sec. IV B. This allows us to interpret
the proposed Wigner tomography as measuring a fictitious
potential using axial multipole sensors (see Sec. IV C).
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FIG. 2. (a) Axial magnetization vector �Max and collinear axial
dipole vector �dax . (b) Corresponding dipole potential visualized on a
sphere, with magnitude and sign specified by brightness and color.
(c) Similar to panel (b), but with magnitude specified by the distance
from the origin. (d–f) Rotated nonaxial dipole �d [42].

A. Spherical functions and dipole potentials

The most direct physical interpretation of spherical func-
tions is found for Hermitian single-spin terms [16,41]

ρk = mxIkx + myIky + mzIkz (7)

of the density matrix with (possibly time-dependent) real
coefficients mx , my , and mz. The corresponding spherical
function f {k}(θ,φ) is now related to a magnetic dipole po-
tential. The operator ρk associated with spin k is interpreted as
a magnetization vector (or Bloch vector) �M = (mx,my,mz)T

the components of which are proportional to the expectation
values of the spin operators Ikx , Iky , and Ikz. An actual (time-
dependent) magnetic dipole �d ∝ �M creates a detectable signal
in an NMR experiment by inducing a voltage in a detection
coil. It is associated with a scalar dipole potential V1(�r) at
�r = |�r|(sin θ cos φ, sin θ sin φ, cos θ ), where θ and φ are polar
and azimuthal angles, respectively. At a constant distance |�r|
from the dipole, the potential V1(�r) is proportional to the scalar
product �d · �r [38]. In the case of an axial dipole �dax ∝ (0,0,1)T

oriented along the z axis, the dipole potential is proportional
to the axial spherical harmonic Y10(θ,φ) = √

3/(4π ) cos θ as
detailed in Figs. 2(a)–2(c). For a general dipole �d = Rαβ

�dax ∝
(sin β cos α, sin β sin α, cos β)T , the dipole potential V1(�r) ∝
RαβY10(θ,φ) is rotated accordingly as shown in Figs. 2(d)–2(f).
Recall that Rαβ denotes a rotation around the y axis by a polar
angle β followed by one around the z axis by an azimuthal
angle α.

A scalar dipole potential V1(�r) = V1(θ,φ) can be indicated
by its values on the surface of a sphere by encoding its sign by
the color and its magnitude by the brightness [see Figs. 2(b)
and 2(e)]. Alternatively, its magnitude can be represented by
the distance from the origin as in Figs. 2(c) and 2(f), where
dipole potentials are shown as a positive red (dark gray) sphere
and a negative green (light gray) one which touch each other
at the origin. This characteristic shape arises as V1(θ,φ) is
proportional to the projection of the dipole �d onto �r as depicted
in Fig. 3. Also, the vector from the center of the negative sphere
to the positive one is collinear with �d .

In summary, a single-spin axial spherical tensor operator
T

{k}
10 = √

2Ikz is mapped to the axial spherical harmonics

V1(
)

V1( )

d

FIG. 3. Slice of Fig. 2(f): dipole potential V1(�r) proportional to
scalar product �d · �r (projection of �d onto �r) due to Thales’ theorem,
and similar for �r ′; results are shown in positive red (dark gray) and
negative green (light gray) spheres in Fig. 2(f); for �{ �d,�r} > 90 deg,
the negative scalar product leads to the negative sphere.

Y10(θ,φ), and ρk from Eq. (7) is mapped to

f {k}(θ,φ) = | �M| RαβY10(θ,φ)/
√

2, (8)

where β = atan(mz/
√

m2
x + m2

y), α = atan(my/mx), and

| �M| =
√

m2
x + m2

y + m2
z . Although the direct correspondence

between spherical functions and actual physical dipole poten-
tials appears to be limited to the case of single-spin terms,
it suggests the following interpretation for other spherical
functions presented here.

B. Fictitious multipole potentials

Any spherical function f (�)(θ,φ) can be regarded as the
potential V (�)(�r) of a fictitious charge distribution σ (�)(�r)
localized in a small volume close to the origin, i.e., σ (�)(�r)
is nonzero only for |�r| � 1. At a radius of |�r| = 1, the
potential can be expressed as a sum V (�)(θ,φ) = ∑

j V
(�)
j (θ,φ)

of different 2j -pole potentials V
(�)
j (θ,φ). Although a large

number of multipole potentials might be required in general,
only a moderate number of components with different rank
j appear for up to three spins in the DROPS representation
of Sec. II [30]. Fictitious multipole potentials sufficient
to completely describe the potential V (�)(θ,φ) are detailed
in Table I: one has monopoles (20 = 1), dipoles (21 = 2),
quadrupoles (22 = 4), and octupoles (23 = 8). For a two-spin
droplet with label “{kl},” only ranks j of zero, one, and two
occur, which correspond to fictitious monopole, dipole, and
quadrupole potentials, whereas the fully symmetric three-spin
droplet with label “{123},τ1” has only rank-1 and rank-3
components associated with dipole and octupole terms.

C. Axial multipole sensors

Based on the provided interpretation of droplet functions as
fictitious multipole potentials, the results of Sec. III on how to
experimentally measure spherical functions of spin operators
can be mapped to the analogous problem of measuring an
unknown electrostatic potential. This analogy is complete for
Hermitian spin operators with real-valued spherical functions
[30]. Suppose we would like to determine an unknown
(real-valued) electrostatic potential V (θ,φ) at a radius |�r| = 1
that is created by an object located in the interior of a unit
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TABLE I. Number n of involved spins, components A(�) and f (�),
possible ranks j , rank-j contributions A

(�)
j and f

(�)
j , as well as 2j -pole

potentials V
(�)
j are listed for up to three spins 1/2 and all labels (�); k

and l indicate the involved spins [30].

n A(�) f (�) j A
(�)
j f

(�)
j 2j 2j pole V

(�)
j

0 A∅ f ∅ 0 A∅
0 f ∅

0 1 Monopole V ∅
0

1 A{k} f {k} 1 A
{k}
1 f

{k}
1 2 Dipole V

{k}
1

2 A{kl} f {kl} 0 A
{kl}
0 f

{kl}
0 1 Monopole V

{kl}
0

1 A
{kl}
1 f

{kl}
1 2 Dipole V

{kl}
1

2 A
{kl}
2 f

{kl}
2 4 Quadrupole V

{kl}
2

3 Aτ1 f τ1 1 A
τ1
1 f

τ1
1 2 Dipole V

τ1
1

3 A
τ1
3 f

τ1
3 8 Octupole V

τ1
3

Aτ2 f τ2 1 A
τ2
1 f

τ2
1 2 Dipole V

τ2
1

2 A
τ2
2 f

τ2
2 4 Quadrupole V

τ2
2

Aτ3 f τ3 1 A
τ3
1 f

τ3
1 2 Dipole V

τ3
1

2 A
τ3
2 f

τ3
2 4 Quadrupole V

τ3
2

Aτ4 f τ4 0 A
τ4
0 f

τ4
0 1 Monopole V

τ4
0

sphere. An electric point charge q at position �r in an electric
potential V (�r) has a potential energy Upot(�r) = qV (�r). Given
an electrostatic potential V (θ,φ), the electrostatic potential
energy of a (nonconducting) unit sphere with the surface
charge distribution σ (θ,φ) is given by

Upot(β,α) =
∫ π

θ=0

∫ 2π

φ=0
σ (θ,φ) V (θ,φ) sin θ dθ dφ, (9)

which is equivalent to Upot(β,α) = 〈σ (θ,φ)|V (θ,φ)〉L2 for
real-valued σ (θ,φ) as in Eq. (4) of Sec. III.

The 2j -pole components Vj (θ,φ) of an unknown multipole
potential V (θ,φ) can be sampled by a set of axial 2j -pole
sensors, each consisting of a charge distribution σj0(θ,φ)
proportional to the axial spherical harmonics Yj0(θ,φ). Each
individual sample Vj (β,α) can be determined using Eq. (9) by
measuring the potential energy

Vj (β,α) ∝ Upot(β,α) = 〈Rαβ σj0(θ,φ)|V (θ,φ)〉
of the axial 2j -pole sensor rotated by the polar angle β around
the y axis followed by a rotation by the azimuthal angle
α around the z axis. The full electrostatic 2j -pole potential
Vj (θ,φ) can be recovered by systematically incrementing β

and α. In summary, the analogy between real-valued spherical
functions and multipole potentials helps to better understand
our results of Sec. III on the measurement of spherical
functions. It can also be extended in a straightforward manner
to non-Hermitian spin operators by considering complex,
fictitious multipole potentials.

V. SUMMARY OF NMR EXPERIMENTS

Building on the previous sections, we demonstrate the
Wigner tomography of various prepared density-matrix com-
ponents in spin-1/2 systems using nuclear magnetic reso-
nance. Experimental details are deferred to Secs. VII and VIII
where the precise experimental scheme and its implementation
on a spectrometer are discussed. The experiments were
performed on one-, two-, and three-spin systems. The shapes

TABLE II. Root-mean-square error of the experimental recon-
struction for the prepared Cartesian product operators on one-, two-,
and three-spin systems; Iabc := I1aI2bI3c.

Spins Prod. op. Error Spins Prod. op. Error

1 Ix 0.0519 3 4Ixxx 0.0797
Iy 0.1187 4Iyyy 0.0509
Iz 0.0356 4Ixyz 0.0617

2 2I1xI2x 0.0173 4Ixyy 0.0395
2I1yI2y 0.0154 4Iyxy 0.0476
2I1zI2z 0.0850 4Iyyx 0.0954
2I1xI2y 0.0487 4Ixxy 0.0587
2I1yI2x 0.0152 4Ixyx 0.0638
2I1zI2x 0.0319 4Iyxx 0.0692

of the spherical functions are recovered for the prepared
Cartesian product operators listed in Table II, where also
their respective experimental reconstruction errors are given.
Experimental and theoretical results for the reconstruction
are visually compared for four examples in Fig. 4. For
the rightmost example of 4I1xI2yI3z in Fig. 4, multiple
droplets corresponding to different permutation symmetries
are necessary to completely describe the quantum operator, as
outlined in Sec. II (see Fig. 1 and [30]).

VI. TEMPORAL AVERAGING

Reusing our experimental data as summarized in Sec. V,
we can also highlight how temporal averaging [45] is used
to emulate the preparation of quantum operators. The direct
experimental preparation of Hermitian operators would be
also possible, but we have chosen temporal averaging for
its simplicity and convenience. The experimental values
are shown in Fig. 5, while the corresponding theoretical
predictions are given in Fig. 6. The Cartesian operators 2I1xI2x ,
2I1yI2y , 2I1xI2y , and 2I1yI2x had been sequentially measured

τ1

τ2

τ3

τ4

(a)

(b)

Iz I1zI2z I1zI2x Ixyz

FIG. 4. Spherical functions from (a) experiment and (b) theory;
Ixyz := I1xI2yI3z splits into f τ1 , f τ2 , f τ3 , and f τ4 (see Fig. 1) [42].
Further examples are shown in Figs. 5 and 6.
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= −

= +

DQx I1xI2x I1yI2y

DQy I1xI2y I1yI2x

= − − −

TQx Ixxx Ixyy Iyxy Iyyx

= +

= +

I+
1 I1x iI1y

I+
1 I+

2 DQx iDQy

= +

I+
1 I+

2 I+
3 TQx iTQy

(a)

(b)

(c)

FIG. 5. Temporal averaging: decomposition of (a) DQx [box,
see also panel (c)], DQy , and (b) TQx [f τ1 ellipse, see also panel
(c)], Iabc := I1aI2bI3c. (c) Non-Hermitian operators I+

1 , I+
1 I+

2 , and
I+

1 I+
2 I+

3 as complex linear combinations of Hermitian ones (see
Fig. 4).

and are now combined in Fig. 5(a) to form the double quantum
operators

DQx := I1xI2x − I1yI2y and DQy := I1xI2y + I1yI2x.

Their characteristic shapes reflect the fact that they have
coherence order |p| = 2 and are invariant under nonselective
rotations around the z axis by an integer multiple of 180 deg
[30]. This is in contrast to single-quantum operators such as
the linear operators Ix or Iy [see Fig. 5(c)] or the bilinear
operator 2I1zI2x (see Fig. 4) which are only invariant under
nonselective rotations around the z axis by an integer multiple
of 360 deg [16].

In general, |p|-quantum operators are invariant under
nonselective rotations around the z axis by an integer multiple
of 360/|p| deg, and their spherical functions illustrate this
symmetry. Figure 5(b) exemplifies the invariance under 120-
deg rotations around the z axis in the case of |p| = 3 for the
triple-quantum operator

TQx := I1xI2xI3x−I1xI2yI3y−I1yI2xI3y−I1yI2yI3x,

similar to the case of

TQy := I1yI2xI3x+I1xI2yI3x+I1xI2xI3y−I1yI2yI3y.

= −

= +

DQx I1xI2x I1yI2y

DQy I1xI2y I1yI2x

= − − −

TQx Ixxx Ixyy Iyxy Iyyx

= +

= +

= +

I+
1 I1x iI1y

I+
1 I+

2 DQx iDQy

I+
1 I+

2 I+
3 TQx iTQy

(a)

(b)

(c)

FIG. 6. Theoretical predictions corresponding to Fig. 5; Iabc :=
I1aI2bI3c.

Up to experimental imperfections, only the spherical function
f τ1 contributes to the operator TQx .

Finally, we also consider temporal averaging for non-
Hermitian operators which obviously cannot be directly pre-
pared in experiments (see also Sec. VII). Figure 5(c) presents
the non-Hermitian operators I+

1 = I1x + iI2y , I+
1 I+

2 =
DQx + i DQy , and I+

1 I+
2 I+

3 = TQx + i TQy . These operators
have the respective coherence orders p of 1, 2, and 3 which
results in donut-shaped spherical functions the colors of which
cycle through one, two, or three rainbows [30].

VII. WIGNER TOMOGRAPHY USING NMR

We complement our results in Sec. III and describe the
experimental scheme for an NMR-based implementation of
our Wigner tomography. Recall that Eq. (5) of Result 2
provides an approach for measuring an arbitrary operator.
This can be translated into the diagram of Fig. 7(a): The
operator A is decomposed into its components A

(�)
j which

are mapped by the Wigner transformation W to spherical
samples f

(�)
j (β,α). The spherical samples can be recovered

using Eq. (5). Very similarly, Fig. 7(b) depicts the equivalent
measurement procedure for density matrices which relies on
Eq. (6) of Result 2.

Before proceeding to the NMR-based scheme, it is impor-
tant to emphasize that only traceless operators can be measured
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A = A( )

j

A
( )
j

f
( )
j (β, α) = sj αβT

( )
j0 |A

W

(a)

A = ρ = ρ( )

j

ρ
( )
j

f
( )
j (β, α) = sj αβT

( )
j0 ρ

W

(b)

A = ρ = ρ( )

j

ρ
( )
j

f
( )
j (β, α) =

n
r
( )
j f

( )
j (β, α)

sj M
( )
j ˜̃ρ( )

˜̃ρ( )ρ̃

W

R−1
αβ U( )

j

(c)

A =
i

c(i)ρ(i)

ρ( )

j

ρ
( )
j

f
( )
j (β, α) =

n
r
( )
j f

( )
j (β, α)

sj M
( )
j ˜̃ρ( )

˜̃ρ( )ρ̃(i)

W

R−1
αβ U( )

j

(d)

FIG. 7. Sampling schemes for spherical functions using (a) scalar
products of rotated axial tensor operators and A [Result 2, Eq. (5)].
(b) Expectation values of rotated axial tensor operators w.r.t. ρ [Result
2, Eq. (6)]. (c) Experimentally measurable expectation values as in
panel (b) [Result 3, Eqs. (12)–(14)]. (d) Non-Hermitian operators
averaged as complex combinations of Hermitian terms ρ(i) [see
Eq. (15)]. The Wigner transformation W maps an operator to its
spherical function.

in NMR experiments [16], which rules out the identity
component of a density matrix. However, the traceless part
of a density matrix covers most of its important features, and
it is sufficient to calculate the time evolution and all relevant
expectation values. Hence, we will consider in the following
only the traceless part which is for simplicity also denoted by ρ.

Further complications arise from the fact that signatures of
Cartesian product operators [16] that contain only a single
transverse Cartesian operator Ika with a ∈ {x, y} can be
measured directly; examples are Ika , 2IkaIlz, and 4IkaIlzImz.
This complication can be resolved in two steps. First, any
traceless operator can be decomposed into (Hermitian) Carte-
sian product operators C

(�,n)
j . This decomposition of relevant

axial tensors

T
(�)
j0 =

∑
n

r
(�,n)
j C

(�,n)
j (10)

TABLE III. Axial tensor operators T
(�)
j0 and their decomposition

into Cartesian product operators C
(�,n)
j for three spins [30].

T
(�)
j0

∑
n r

(�,n)
j C

(�,n)
j

T
{k}

10

√
2Ikz

T
{kl}

00 (2IkxIlx + 2IkyIly + 2IkzIlz)/
√

3

T
{kl}

10 (2IkxIly − 2IkyIlx)/
√

2

T
{kl}

20 [−2IkxIlx − 2IkyIly + 2(2IkzIlz)]/
√

6

T
τ1

10

√
8(Ixxz+Ixzx+Izxx+Iyyz+Iyzy+Izyy+3Izzz)/

√
15

T
τ1

30 −2(Ixxz+Ixzx+Izxx+Iyyz+Iyzy+Izyy−2Izzz)/
√

5

T
τ2

10

√
2[−2(Ixxz+Iyyz)+Izxx+Ixzx+Izyy+Iyzy]/

√
3

T
τ2

20

√
2(Iyzx+Izyx−Ixzy−Izxy)

T
τ3

10

√
2(Izxx−Ixzx+Izyy−Iyzy)

T
τ3

20

√
2[−2(Ixyz−Iyxz)+Izxy−Ixzy+Iyzx−Izyx]/

√
3

T
τ4

00 2(Ixyz−Ixzy−Iyxz+Iyzx+Izxy−Izyx)/
√

3

with respect to real coefficients r
(�,n)
j is given in Table III.

For example, the axial tensor operator T
{k}

10 acting on the kth
spin decomposes directly into the Cartesian product operator
C

({k},1)
1 = Ikz with the coefficient r

({k},1)
1 = √

2.
Secondly, the Cartesian product operators have to be

transformed into NMR-measurable ones:

M
(�,n)
j = U (�,n)

j C
(�,n)
j := U

(�,n)
j C

(�,n)
j U

(�,n)†
j . (11)

The unitary operators U
(�,n)
j can be experimentally realized

using radio-frequency (rf) pulses and evolution periods under
couplings as discussed in Sec. VIII B and their explicit form
is detailed in Appendix D. Combining both steps leads to an
indirect approach for measuring spherical functions of density
operators, as schematically outlined in Fig. 7(c). The density
matrix is equivalently rotated inversely in contrast to Figs. 7(a)
and 7(b) where the axial tensor operator T

(�)
j0 is rotated. The

complete measurement scheme is formalized along the lines
of Result 2.

Result 3. Consider a density operator ρ which is represented
by a set of spherical functions f (�)(θ,φ) = ∑

j∈J (�) f
(�)
j (θ,φ).

For each label �, the rank-j component f
(�)
j (β,α) can be

measured for arbitrary angles β and α by determining the
expectation values

f
(�)
j (β,α) = sj

∑
n

r
(�,n)
j

〈
M

(�,n)
j

〉
˜̃ρ(�,j,n) (12)

of suitable operators M
(�,n)
j as in Eq. (11), where

˜̃ρ(�,j,n) = U (�,n)
j ρ̃ = U

(�,n)
j ρ̃ U

(�,n)†
j , (13)

ρ̃ = R−1
αβ ρ = R

−1
αβ ρ Rαβ, (14)

and Rαβ = exp(−iα
∑n

k=1 Ikz) exp(−iβ
∑n

k=1 Iky).
A detailed derivation of Eq. (12) is provided in Appendix C.

In summary, the rank-j components f
(�)
j of spherical functions

f (�) representing the density matrix ρ can be sampled in
NMR experiments by transforming the density operator ρ

to the states ˜̃ρ(n) and then measuring a set of expectation
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values of suitable operators 〈M (�,n)
j 〉 ˜̃ρ(�,j,n) . The explicit form of

the Cartesian operators C
(�,n)
j , their NMR-measurable forms

M
(�,n)
j , and the transformations U

(�,n)
j for up to three spins is

given in Appendix D.
The approach of Result 3 can be extended to non-Hermitian

operators, even though these cannot be prepared directly in
an experiment. We apply temporal averaging [45] as already
discussed in Sec. VI. Any operator A can be expressed as
a complex linear combination A = ∑

i c
(i)ρ(i) of Hermitian

operators ρ(i). As the DROPS representation is linear, we can
sample the traceless part of any operator A using the spherical
functions

f
(�)
j (β,α) =

∑
i

c(i)f
(i,�)
j (β,α)

=
∑

i

c(i) sj

〈
RαβT

(�)
j0

〉
ρ(i)

=
∑

i

c(i) sj

∑
n

r
(�,n)
j

〈
M

(�,n)
j

〉
˜̃ρ(�,j,n,i) . (15)

In an experiment, temporal averaging of Hermitian oper-
ators ρ(i) can be implemented by sequentially measuring
spherical functions for each operator ρ(i) and linearly com-
bining the results f

(i,�)
j (β,α) = sj 〈RαβT

(�)
j0 〉ρ(i) = sj

∑
n r

(�,n)
j

〈M (�,n)
j 〉 ˜̃ρ(�,j,n,i) as illustrated in Fig. 7(d).

VIII. EXPERIMENTAL IMPLEMENTATION

After outlining the experimental scheme for Wigner to-
mography in Sec. VII, we present now the details for the
experimental implementation which results in the spherical
functions in Figs. 4 and 5. We start by describing the molecules
and experimental setting in Sec. VIII A. We continue in
Sec. VIII B with the experimental protocol, and we finally
discuss experimental errors in Sec. VIII C.

A. Molecules and experimental setting

In order to simplify the experiments, the linear and bilinear
Cartesian product operators have been prepared and measured
using respective single-spin and two-spin samples: The single-
spin sample was prepared by dissolving 5% H2O in D2O,
which resulted in a sample containing about 10% HDO, i.e.,
water molecules in which one of the 1H spins is replaced
by deuterium (2D) [see Fig. 8(a)]. In case of two spins, we
have used a 10% sample of chloroform dissolved in fully
deuterated DMSO-d6, where the 1H spin and the 13C spin of
each chloroform molecule form a system consisting of two
coupled heteronuclear spins 1/2 [see Fig. 8(b)]. A three-spin
sample consisting of 2-13C-2-fluoromalonic-acid-diethyl-ester
dissolved in CD3CN [see Fig. 8(c)] was utilized for the
preparation and reconstruction of trilinear operators. All liquid
samples were measured in 5-mm Shigemi NMR tubes at room
temperature (298 K) in a 14.1-T magnet using a Bruker Avance
III 600 spectrometer.

B. Experimental protocol

Our experimental protocol is composed of five main
building blocks (see Fig. 9). In the first block P , the desired
density operator ρ is prepared starting from the initial thermal

13C
CC

19F1H

OO

OO
C2H5C2H5

5.421 ppm

85.553 ppm

-196.288 ppm

-191.81Hz161.9 Hz

47.64 Hz

13C

19F1H

13C
ClCl

1HCl

217.36 Hz
1H 13C

8.214 ppm 79.476 ppm

O

2D1H

1H
4.680 ppm

)b()a(

(c)

FIG. 8. Molecules (a) HDO, (b) chloroform, and (c) 2-13C-
2-fluoromalonic-acid-diethyl-ester used in experiments with their
schematic spin systems and coupling topologies; individual spins
are labeled by chemical shifts (in parts per million); heteronuclear J

couplings (lines) are labeled by coupling constants Jkl (in hertz).

equilibrium density operator which in the high-temperature
limit is proportional to [16] ρth = ∑N

k=1 γkIkz, where γk

denotes the gyromagnetic ratio of the kth nuclear spin.
This requires unitary transformations which are created by
pulses and evolution periods under the effect of couplings
and frequency offsets as well as nonunitary transformations
which are implemented by pulsed magnetic-field gradients.
The explicit pulse sequences are discussed in Appendix D.

ρth ρ ρ̃ ˜̃ρ( )

P

Table IV

R−1
αrβr

U( )
j

Table V

Acq RD

M
( )
j f

( )
j f( ) f( )

increment αloop E

increment βloop D

increment nloop C

increment jloop B

incrementloop A

FIG. 9. Tomography scheme proposed by Result 3; note that
〈M (�,j,n)

j 〉 := 〈M (�,j,n)
j 〉 ˜̃ρ(�,j,n) .
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Table II in Sec. V summarizes all the different Cartesian
product operators which have been experimentally prepared.

The second block consists of the rotation R−1
αrβr

which
rotates the prepared density operator ρ into ρ̃ in order to
probe the corresponding spherical functions f

(�)
j (βr,αr ) for

different polar angles βr and azimuthal angles αr using axial
tensor operators, i.e., axial multipole sensors, (see Result 3).
The rotation R−1

αrβr
is implemented by rf pulses [βr ]αr−π/2 with

flip angle βr and phase (αr − π/2) which are simultaneously
applied to all spins.

The unitary transformations U (�,n)
j [see Eq. (13) of Result 3]

are applied in the third block in order to transform the density
matrix ρ̃ into directly detectable Cartesian product operators
for the various linear, bilinear, and trilinear operators (see
Table III in Sec. VII). The specific experimental implementa-
tion of the unitary transformations U (�,n)

j consists of rf pulses
with flip angle π/2 as detailed in Appendix D.

In the fourth block, the NMR signal is measured in an
acquisition period Acq which has a duration of 5.7 ms (one
spin), 11.4 ms (two spins), and 14.9 ms (three spins). In the last
block, a relaxation delay RD with a duration of 7 s (one spin),
10 s (two spins), and 15 s (three spins) recovers the initial
equilibrium state ρth,

In the tomography experiment, all blocks are repeated mul-
tiple times (see Fig. 9). The outer loop A runs over all possible
droplets � ∈ L. Loop B runs over all ranks j contributing to
the droplet �. Loop C cycles through all Cartesian product
operators C

(�,n)
j [see Eq. (10)] appearing in the decomposition

of the axial tensor operator T
(�)
j0 (see Table III in Sec. VII).

Finally, the discretized angles βr ∈ {0,15,30, . . . ,180} and
αr ∈ {0,15,30, . . . ,360} (both in degrees) are incremented in
the innermost loops D and E. Although not explicitly indicated
in Fig. 9, one further loop is necessary for a temporal averaging
scheme [see Eq. (15)].

The whole protocol allows us to determine expectation
values 〈M (�,n)

j 〉 ˜̃ρ(�,j,n) , which are normalized and range be-
tween 1 and −1. As illustrated in Fig. 10, the spher-
ical functions f (�)(θ,φ) can be reconstructed by plot-
ting the spherical samples f (�)(βr,αr ) for all angles βr ∈
{0, . . . ,180} and αr ∈ {0, . . . ,360} (both in degrees) at a
distance |f (�)(βr,αr )| from the origin. The phase ϕ(�)(βr,αr ) =
atan(Im{f (�)(βr,αr )}/Re{f (�)(βr,αr )}) is color coded. For
example, the spherical function of the Hermitian operator I1x is
given by a real function, and the positive and negative values
of f (�)(θ,φ) are indicated by the colors red (dark gray) and
green (light gray), respectively.

C. Experimental errors

A reasonable match between the experimentally recon-
structed and theoretical predicted spherical functions is found
in Figs. 4–6. Deviations are attributed to experimental imper-
fections, such as the finite experimental signal-to-noise ratio,
finite accuracy of pulse calibration, B0 and B1 inhomogeneity
[16,46], pulse shape distortions due to the amplifiers and
the finite bandwidth of the resonator [47], relaxation losses
during the preparation and detection blocks, partial saturation
of the signal due to a finite relaxation period between scans,
radiation damping effects [48], and truncation effects in the

FIG. 10. Reconstruction of a spherical function from experimen-
tal samples f (�)(βr,αr ). (a) Samples (crosses) with different polar
angles βr ∈ {0,180} in degrees (circles colored by latitude) and
phases αr ∈ {0,360} in degrees acquired using rf pulses [βr ]αr -π/2.
(b) Predicted expectation values 〈M (1,1)

1 〉 ˜̃ρ(�,j,n) = 〈I1x〉 depending on
a discrete set of polar angles β ∈ {0,15, . . . ,180} in degrees and a
continuous set of azimuthal angles α. (c) Smooth surface interpolated
from individual samples with distance from the origin given by
f (�)(βr,αr ), the phase of which determines the color of the surface
(see Fig. 1).

automated integration and comparison of the spectra. We
quantify these deviations by the root-mean-square difference
between experiment and theory averaged over all measured
angles βr and αr . The resulting errors for the prepared and
measured Cartesian product operators are summarized in
Table II of Sec. VII. In order to minimize the effects of field
inhomogeneities, Shigemi tubes were used in the experiments
in order to reduce the sample volume. We have tested replacing
the simple rectangular pulses [βr ]αr−π/2 in the implementation
of the rotations R−1

αrβr
with composite pulses [49], which,

however, did not result in an improved performance.

IX. CONCLUSION

We have theoretically developed and experimentally
demonstrated a Wigner tomography scheme the mapping of
which between multispin operators and spherical functions is
based on [30]. Our approach reconstructs the relevant spherical
functions by measuring expectation values of rotated axial
tensor operators, i.e., axial multipole sensors. It is universally
applicable and not restricted to NMR methodologies or par-
ticles with spin 1/2. A reasonable match between theoretical
predictions and NMR experiments was found.

Our theoretical analysis provides a simple physical in-
terpretation of the individual spherical functions in terms
of fictitious multipole potentials which can be sampled
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locally. The objective was to experimentally recover the
three-dimensional shapes of the spherical functions for each
of the prepared operators. In particular, we have not used
any a priori information on what shapes to expect. A large
number of sampling points is necessary to recover the shapes
in sufficient detail. As the simple rectangular grid of sampling
points in the space of polar and azimuthal angles used
here is highly anisotropic (i.e., more densely concentrated
at the poles), a straightforward improvement is to choose
more isotropic sampling strategies such as Lebedev grids
[50–52]. Moreover, one could use interpolation methods or
even adaptive sampling schemes which increase the sampling
density in areas where the spherical function varies more
strongly. A more quantitative analysis of the complexity of
our proposed tomography approach in terms of the number
of individual measurements could rely first on a detailed
empirical account on how the precision measured by the
fidelity depends on the sampling strategy and its density. From
the theoretical side, it is clear that the number of measurements
for any complete tomography of a quantum state will scale
exponentially in the number of qubits (or spins). However,
relevant information can be reconstructed in our approach even
from a subset of the droplets as discussed under (c) in Sec. II.
A more accurate understanding of concrete sampling schemes
and their optimization building on our reconstruction method
will have to be addressed in future work.

Beyond the optical tomographic methods mentioned at the
start of the introduction, tomographic approaches play obvi-
ously an important part in almost any experiment in quantum
information or quantum physics in general. We will now
shortly discuss some selected results from the literature. The
proposed reconstruction procedure for spherical functions can
be directly extended to other types of spherical representations
such as multipole operators [30] or the so-called PROPS
representation which is based on products of single-spin
representations [53]. Our scheme can also be compared to
[54], which introduces Wigner functions built from products
of single-spin representations, and a corresponding raster scan
method in [55] utilizes the probability to find the rotated
system in each of the basis states of a Stern-Gerlach-type
experiment. In [56], a similar tomographic method based
on filtered back projections (in analogy to planar inverse
Radon transforms used, e.g., in medical imaging) is used in
Stern-Gerlach-type experiments. However, complementary to
these tomographic reconstruction schemes for density matrices
relying on Stern-Gerlach-type experiments, our scheme is
based on projections of operators onto rotated axial tensor
operators or experimentally accessible expectation values
of transformed axial tensor operators. The measurement of
spherical harmonics components of electromagnetic near-field
radiation using specifically designed loop antennas as sensors
[57–59] is closely related to our interpretation of droplets as
multipole potentials (see Sec. IV).

Further tomographic approaches have been established in
[60,61] with applications to molecular systems. In those works,
the quantum state given as the wave functions of an excited
state is obtained by decomposing the wave function in a series
of basis functions and the expansion coefficients are acquired
by calculating a set of Fourier integrals from the detected
signal. Also, the wave packet is reconstructed in [62] by

computing the overlap of the state with well-defined reference
states for different time intervals.

We want to also contrast our Wigner tomography approach
to the so-called spherical tensor analysis (STA) method
developed by Suter and Pearson [63] and van Beek et al. [49].
Both Wigner tomography and STA experiments have a similar
structure. First, a preparation block (called an excitation
sequence in STA) is used to prepare a density operator. In
a second step, rotations around several axes are applied in a
rotation block. Finally, the density matrix is transformed (by
a reconversion sequence in STA) into a detectable basis and
the signal is detected during an acquisition period. Despite
these similarities and the fact that both methods are based on
characteristic properties of spherical tensor operators under
rotations, the desired data and therefore also the details of the
experiments differ considerably. The goal of STA is not to
measure a density operator represented by spherical functions,
but to decompose the detectable signal at a later time into
individual signal components depending on occurring ranks
j and orders m in the current density matrix. In the standard
form of STA [49,63], the detected signal of a density matrix
is not characterized or decomposed in terms of additional
quantum numbers or labels �. While a single reconversion
sequence is used in STA, different pulse sequences are applied
in the Wigner tomography in order to transform operators to
directly detectable ones [see Figs. 7(c) and 7(d) and Table V].
As a final difference, a rotation block in STA uses rotations
for three Euler angles α, β, and γ , whereas in the Wigner
tomography only two Euler angles α and β are necessary.

Lastly, our Wigner tomography can be seen as a stepping
stone along the path to identifying and characterizing operators
in terms of expansion coefficients for a suitable chosen basis.
One can consider various different bases such as simple
matrix coefficients, a spherical tensor basis [30,63] (as the
one used here), or a Cartesian product basis [16,45,64–66].
In this context of quantum state tomography, the shapes
of spherical functions recovered in the Wigner tomography
clearly contain highly redundant information, but they also
provide information about random or systematic errors of
the tomography process itself. One can also envision Wigner
tomography as a component of a more general approach
where one would like to optimize the number and location of
samples for achieving a desired fidelity and robustness against
experimental errors [67,68], or recover a physical density
matrix and estimate experimental errors (see, e.g., [69–75]
and references therein).
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APPENDIX A: PROOF OF RESULT 1

We detail now the arguments leading to our reconstruction
formula for a spherical function g(θ,φ) as stated in Result 1.
This result relies on projections of rotated spherical harmonics.

063413-10



WIGNER TOMOGRAPHY OF MULTISPIN QUANTUM STATES PHYSICAL REVIEW A 96, 063413 (2017)

We use the notation introduced in Sec. III. The angles θ

and φ indicate generic argument values of a spherical function
g(θ,φ), but the angles β and α refer to specific argument values.
First, the right-hand side sj 〈RαβYj0(θ,φ)|g(θ,φ)〉L2 of Eq. (4)
in Result 1 is rewritten as sj 〈RαβYj0(θ,φ)|gj (θ,φ)〉L2 , where
the familiar orthogonality relation 〈Yjm(θ,φ)|Yj ′m′ (θ,φ)〉L2 =
δjj ′δmm′ of spherical harmonics (see p. 68 of [35]) im-
plies the relation 〈gj (θ,φ)|gj ′(θ,φ)〉L2 = δjj ′ for the rank-j
parts gj (θ,φ) in the decomposition g(θ,φ) = ∑

j gj (θ,φ).
Second, one obtains that sj 〈RαβYj0(θ,φ)|gj (θ,φ)〉L2 =
sj 〈Yj0(θ,φ)|R−1

αβ gj (θ,φ)〉L2 holds, which can be de-
duced from the invariance 〈RαβYjm(θ,φ)|RαβYj ′m′ (θ,φ)〉L2 =
〈Yjm(θ,φ)|Yj ′m′(θ,φ)〉L2 under rotations. The last rela-
tion is easily verified using the formula RαβYjm(θ,φ) =
Yjm(θ−β,φ−α) and a change of variables in the in-
tegral defining the scalar product (see Sec. III). Fi-
nally, R−1

αβ gj (θ,φ) is expanded into a linear combination∑j

m′=−j cjm′ (α,β)Yjm′(θ,φ) of spherical harmonics [76]. It
follows that the right-hand side of Eq. (4) is given by
sj 〈Yj0(θ,φ)| ∑j

m′=−j cjm′ (α,β)Yjm′ (θ,φ)〉L2 = sj cj0(α,β).
Similarly, the left-hand side of Eq. (4) is transformed

into gj (β,α) = R−1
αβ gj (0,0) = ∑j

m′=−j cjm′ (α,β)Yjm′(0,0) =
sj cj0(α,β), where the formula Yjm′(0,φ) = sj δm′0 (see p. 16 of
[77]) has been applied. In summary, we have verified that both
sides of Eq. (4) agree, which completes the proof of Result 1.

APPENDIX B: PROOF OF RESULT 2

In this Appendix, we demonstrate the tomography formula
as given in Result 2 for an operator A by applying the

TABLE IV. Sequences to prepare the density matrix ρ from the
thermal equilibrium state ρth; note Iabc := I1aI2bI3c.

No. of spins Sequence ρ

1 [ π

2 ]y(I1) Ix

[ π

2 ]−x(I1) Iy

identity operation (do nothing) Iz

2 Pbil
x -[ π

2 ]y(I2) 2I1xI2x

Pbil
y -[ π

2 ]−x(I2) 2I1yI2y

Pbil
x -[ π

2 ]−y(I1) 2I1zI2z

Pbil
x -[ π

2 ]−x(I2) 2I1xI2y

Pbil
y -[ π

2 ]y(I2) 2I1yI2x

Pbil
x -[ π

2 ]y(I1)-[ π

2 ]−y(I2) 2I1zI2x

3 P tril
x -[ π

2 ]y(I2)-[ π

2 ]y(I3) 4Ixxx

P tril
x -[ π

2 ]−y(I1)-[ π

2 ]−x(I1)-[π

2 ]−x(I2)-[π

2 ]−x(I3) 4Iyyy

P tril
x -[ π

2 ]−x(I2)-[ π

2 ]−x(I3) 4Ixyy

P tril
x -[ π

2 ]−y(I1)-[ π

2 ]−x(I1)-[ π

2 ]y(I2)-[ π

2 ]−x(I3) 4Iyxy

P tril
x -[ π

2 ]−y(I1)-[ π

2 ]−x(I1)-[ π

2 ]−x(I2)-[ π

2 ]y(I3) 4Iyyx

P tril
x -[ π

2 ]y(I2)-[ π

2 ]−x(I3) 4Ixxy

P tril
x -[ π

2 ]−x(I2)-[ π

2 ]y(I3) 4Ixyx

P tril
x -[ π

2 ]−y(I1)-[ π

2 ]−x(I1)-[ π

2 ]y(I2)-[ π

2 ]y(I3) 4Iyxx

P tril
x -[ π

2 ]−x(I2) 4Ixyz

reconstruction formula of Result 1. The proof relies on
mapping A to (a set of) spherical functions f (�)(θ,φ) as detailed
in Sec. II.

TABLE V. Cartesian product operators C
(�,n)
j with NMR-

measurable operators M
(�,n)
j used in the experiments; note Iabc :=

I1aI2bI3c.

� j n C
(�,n)
j M

(�,n)
j

{k} 1 1 Ikz Ikx

{kl} 0,2 1 2IkxIlx 2IkxIlz

2 2IkyIly 2IkyIlz

3 2IkzIlz 2IkyIlz

1 1 2IkxIly 2IkxIlz

2 2IkyIlx 2IkyIlz

τ1 1,3 1 4Ixxz 4Ixzz

2 4Ixzx 4Ixzz

3 4Iyyz 4Iyzz

4 4Iyzy 4Iyzz

5 4Izxx 4Ixzz

6 4Izyy 4Ixzz

7 Izzz 4Ixzz

τ2 1 1 4Ixxz 4Ixzz

2 4Ixzx 4Ixzz

3 4Iyyz 4Iyzz

4 4Iyzy 4Iyzz

5 4Izxx 4Ixzz

6 4Izyy 4Ixzz

� j n C
(�,n)
j M

(�,n)
j

τ2 2 1 4Ixzy 4Ixzz

2 4Iyzx 4Iyzz

3 4Izxy 4Ixzz

4 4Izyx 4Ixzz

τ3 1 1 4Ixzx 4Ixzz

2 4Iyzy 4Iyzz

3 4Izxx 4Ixzz

4 4Izyy 4Ixzz

2 1 4Ixyz 4Ixzz

2 4Ixzy 4Ixzz

3 4Iyxz 4Iyzz

4 4Iyzx 4Iyzz

5 4Izxy 4Ixzz

6 4Izyx 4Ixzz

τ4 0 1 4Ixyz 4Ixzz

2 4Ixzy 4Ixzz

3 4Iyxz 4Iyzz

4 4Iyzx 4Iyzz

5 4Izxy 4Ixzz

6 4Izyx 4Ixzz
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By substituting g(θ,φ) with f (�)(θ,φ) in Result 1 for
each label � separately, one obtains that f

(�)
j (β,α) =

sj 〈RαβYj0(θ,φ)|f (�)(θ,φ)〉L2 . Note that 〈A(�)|B(�)〉 =
〈f (�)

A |f (�)
B 〉L2 for the spherical functions f

(�)
A and f

(�)
B

corresponding to the operators A and B, which can easily
be verified by expanding the arguments into tensor operators
and spherical harmonics and applying their orthonormality
relations. Moreover, the correspondence between operators
and spherical functions is covariant under rotations (see
Proposition 1(d) in [30]), i.e., the operator RαβT

(�)
j0 is mapped

to RαβYj0(θ,φ) [78]. The last two statements imply that
f

(�)
j (β,α) = sj 〈RαβT

(�)
j0 |A(�)〉 = sj 〈RαβT

(�)
j0 |A〉, where the

last step follows as 〈A(�)|A(�′)〉 = 0 if � �= �′ (which is a
consequence of the orthonormality of the tensor operators
T

(�)
jm ). This completes the proof of Eq. (5) in Result 2, and

Eq. (6) is then a direct consequence due to the fact that
RαβT

(�)
j0 = [RαβT

(�)
j0 ]† is Hermitian.

APPENDIX C: DERIVATION OF EQ. (12)

Here, we derive the formula of Eq. (12) given in Result 3
starting from Result 2. In standard NMR experiments, only the
signatures of Cartesian product operators [16] that contain a
single transverse Cartesian operator Ika with a ∈ {x, y} (such
as Ika , 2IkaIlz, and 4IkaIlzImz) can be measured directly, and
hence the expectation values of axial operators T

(�)
j0 are not di-

rectly accessible. Nevertheless, these expectation values can be
measured indirectly since the operators T

(�)
j0 = ∑

n r
(�,n)
j C

(�,n)
j

can always be expressed as real linear combinations of
(Hermitian) standard Cartesian product operators C

(�,n)
j [16].

Thus, the tomography formula of Eq. (12) can be rewrit-
ten as f

(�)
j (β,α) = sj

∑
n r

(�,n)
j 〈RαβC

(�,n)
j 〉ρ . One obtains that

f
(�)
j (β,α) = sj

∑
n r

(�,n)
j Tr{C(�,n)

j ρ̃} where ρ̃ := R
†
αβρRαβ by

exploiting the action RαβC
(�,n)
j = RαβC

(�,n)
j R

†
αβ via the

operator Rαβ := exp(−iα
∑n

k=1 Ikz) exp(−iβ
∑n

k=1 Iky) and
the fact that the trace is invariant under cyclic permuta-
tions. The operators C

(�,n)
j can be transformed into mea-

surable operators M
(�,n)
j = U

(�,n)
j C

(�,n)
j U

(�,n)†
j with unitary

transformations U
(�,n)
j , which can be realized experimen-

tally using radio-frequency pulses and coupling evolutions.
Hence, the formula of Eq. (12) is given by f

(�)
j (β,α) =

sj

∑
n r

(�,n)
j Tr{M (�,n)

j
˜̃ρ(�,j,n)}, where immaterial cyclic per-

mutations of the trace have again been applied and where
˜̃ρ(�,j,n) := U

(�,n)
j ρ̃U

(�,n)†
j . Finally, the definition of the expec-

tation value yields f
(�)
j (β,α) = sj

∑
n r

(�,n)
j 〈M (�,n)

j 〉 ˜̃ρ(�,j,n) .

APPENDIX D: PREPARATION
AND DETECTION SEQUENCES

We detail the explicit form of the preparation and detection
sequences used in the experiments in order to demonstrate
our Wigner tomography. We denote a pulse with flip angle β

and phase α that is applied to spin k by [β]α(Ik). Similarly,
[β]α(Ik,Il) specifies two pulses both of flip angle β and phase
α that are simultaneously applied to spins k and l. We also use
the notation Pbil

x,y = [π
2 ]y(I2)-G-[π

2 ]x,y(I1)-ta-[π ]y,x(I1,I2)-ta
which represents a pulse sequence which is read from
left to right. Here, G represents a pulsed magnetic field
gradient that dephases all present transverse spin operators
and ta refers to a time delay of length 1/(4J12), where
J12 is the coupling constant between the first and second
spin. The pulse sequences Pbil

x and Pbil
y create from Iz the

bilinear product operators 2I1xI2z and 2I1yI2z, respectively.
Moreover, the trilinear product operator 4Ixzz := 4I1xI2zI3z

is obtained from Iz by applying the pulse sequence P tril
x =

[π
2 ]y(I2,I3)-G-[π

2 ]y(I1)-tb-[π ]y(I1,I3)-tc-[π ]y(I2)-td where
the time delays are tb = 1/(4J13), tc = 1/(4J13) − 1/(4J12),
and td = 1/(4J12). Using these notations, the preparation
sequences are given in Table IV.

For the detection, the Cartesian product operators C
(�,n)
j

have to be rotated into NMR-measurable operators M
(�,n)
j .

The relevant pairs of operators C
(�,n)
j and M

(�,n)
j are provided

in Table V. The rotation pulse sequences are easily inferred,
e.g., one uses the pulse [π/2]y(Ik) in order to rotate Ikz

into Ikx . Similarly, [π/2]−y(Ik), [π/2]x(Ik), and [π/2]−x(Ik)
rotate, respectively, Ikx , Iky , and Ikz into Ikz, Ikz, and Iky . For
example, 4Izxy is rotated into 4Ixzz using the pulse sequence
[π

2 ]x(I3)-[π
2 ]−y(I2)-[π

2 ]y(I1).
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