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Optical Feshbach resonances and ground-state-molecule production in the RbHg system
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We present the prospects for photoassociation, optical control of interspecies scattering lengths, and, finally,
the production of ultracold absolute ground-state molecules in the Rb+Hg system. We use the state-of-the-art
ab initio methods for the calculations of ground- [CCSD(T)] and excited-state (EOM-CCSD) potential curves.
The RbHg system, thanks to the wide range of stable Hg bosonic isotopes, offers possibilities for mass tuning
of ground-state interactions. The optical lengths describing the strengths of optical Feshbach resonances near
the Rb transitions are favorable even at large laser detunings. Ground-state RbHg molecules can be produced
with efficiencies ranging from about 20% for deeply bound to at least 50% for weakly bound states close to
the dissociation limit. Finally, electronic transitions with favorable Franck-Condon factors can be found for
the purposes of a STIRAP transfer of the weakly bound RbHg molecules to the absolute ground state using
commercially available lasers.
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I. INTRODUCTION

The increasing popularity, in recent years, of the research
on ultracold molecules is fueled by their possible intriguing ap-
plications in diverse areas of physics. Pioneering experiments
with molecules packed in 3D optical lattices reported recently
[1] raise hope for using ultracold molecules trapped in periodic
potentials as quantum simulations of condensed matter physics
Hamiltonians [2–4]. Ultracold molecules offer the possibility
to the study of chemistry under yet unexplored conditions:
at extremely low energies and in controllable quantum states
and where the chemical reaction could be manipulated with
external magnetic or electric fields. Recent experimental
realizations include reactive collisions of KRb molecules
[5], or the photodissociation of Sr2 molecule [6]. Finally,
ultracold molecules offer new avenues and improved precision
in experimental searches of “new physics.” Cold molecules
are already being used for the determination of experimental
constraints on the electric dipole moment of the electron [7]
and the time drift of the fine-structure constant [8,9]. Their
production at microkelvin temperatures might improve these
experiments. Ultracold samples of molecules can be formed
from ultracold atoms by magnetoassociation [10] followed by
an adiabatic transfer by two lasers (STIRAP) [11] from the
weakly bound state to deeply bound electronic ground states
[12–14]. At present, molecules obtained by this procedure
include KRb [13], NaK [15], RbCs [16,17], and NaRb [18].

Apart from progress in the formation of ultracold alkali-
metal dimers, there are ongoing efforts on formation of new
types of molecules, in particular heteronuclear, open-shell
molecules. Such molecules should provide more opportunities
for external field control as they possess not only electric, but
also magnetic dipole moments and offer more possibilities
of control of their state and properties. Also, paramagnetic
polar molecules were proposed by Micheli et al. [4] for the
creation of topologically ordered states with possible use
in quantum computing. Recently, interest in these systems

*mateusz@fizyka.umk.pl
†pzuch@fizyka.umk.pl

was also boosted by reporting the mechanisms which might
allow one to form weakly bound Feshbach molecules via
magnetoassociation [19–21]. It is therefore no surprise that
several research groups are pursuing experiments on ultracold
mixtures of alkali-metal and closed-shell atoms. The earliest
experiments were conducted with the Rb+Yb system, for
which the first working magneto-optical trap was reported
[22,23] and one-color [24] and two-color photoassociation
spectroscopy [25,26] experiments were performed, the latter of
which made it possible to acquire information about the short-
range potential-energy curves (PECs) for this system. The
Rb+Sr system is currently under systematic investigation, in
particular the production of a binary mixture of Bose-Einstein
condensates was reported [27]. For the Cs+Yb system a dual
magneto-optical trap was created [28] and, more recently, the
interspecies thermalization properties of the mixture in an
optical trap [29] were investigated. The cotrapping of Li+Yb
mixtures was studied by Hara et al. [30] and Hansen et al.
[31]. Interestingly, magnetic Feshbach resonances in collisions
of electronically excited Yb(3P2) and Li were reported. The
Li+Yb system is currently being studied using photoassocia-
tion spectroscopy close to the lithium 2S → 2P transition [32].

Our work is motivated by the experimental progress in
the trapping of Rb and Hg atoms in a dual magneto-optical
trap (MOT) which was made recently in our group [33]:
approximately 106 Rb atoms were trapped simultaneously with
about 105 Hg atoms. Among atoms that can be laser cooled,
Hg has particularly interesting properties. It is an appealing
building block for a new generation of optical clocks, due to
very low blackbody radiation pumping-related losses. Because
of its large mass, it is a good candidate for parity-violation
studies. The effort to simultaneously cool Rb and Hg atoms
despite the experimental challenges—for example, the deep
UV 254 nm wavelength used for Doppler cooling of Hg—is
driven by the possibility of obtaining the grand prize of
ultracold RbHg molecules. Dimers containing the Hg atom
were proposed by Meyer and Bohn as appropriate candidates
for the search for the electric dipole moment of the electron
[34], which is due to the fact that Hg is among the heaviest
atoms which can be laser cooled.
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Dimers containing the Hg atom have been studied in the
past. Bound-bound transitions in the Hg2 molecule were
investigated with fluorescence spectroscopy in supersonic
beams and were subject to experiment-theory comparisons
[35]. Hg2 was the subject of femtosecond photoassociation
spectroscopy [36]. The ground-state mercury interaction was
also thoroughly studied in the context of bulk properties [37].
Because of its importance high-quality effective core potentials
(ECP) for Hg atom were tailored by Dolg and Stoll [38]
and a family of correlation-consistent basis sets were tailored
by Peterson and Puzzarini [39]. The agreement between
spectroscopic data and quantum chemistry calculations was
very good. Very little, however, is known about the interaction
of alkali-metal atoms with mercury. The best studied system
to date is Li+Hg, for which the results of bound-bound and
bound-free fluorescence spectroscopy were corroborated by
high-quality quantum chemical calculations of the lowest
excited states [40,41]. High-quality relativistic studies of the
CsHg system were performed by Polly et al. [42].

Photoassociation experiments using the Rb D1 and D2
transitions in RbHg are underway. This work addresses
the possibilities of such photoassociation, the main features
of the photoassociation resonances, and the possibility of
manipulating the collisional properties of the Rb+Hg mixture
in ultracold regime by optical Feshbach resonance [43–46]. We
also investigate the products of spontaneous emission during
photoassociation for the purposes of electronic ground-state-
molecule formation via stimulated Raman adiabatic passage
(STIRAP) [11,13]. The paper is organized as follows. In the
next section we describe in detail the methodology used in
the calculations of the potential-energy curves, for ground and
excited states. In Sec. III we discuss the interactions of Rb
and Hg near the first two asymptotes of the excited Rb atom
and provide the transition from the nonrelativistic Hund’s case
(a) to the spin-orbit coupled Hund’s case (c) framework, as
well as Hund’s case (e) which includes the coupling with
the rotational angular momentum. In Sec. IV we provide an
analysis of the scattering properties of the RbHg system (for
all possible isotopic combinations) and, in Sec. V, explore the
possibilities of tuning the scattering length in this system by
optical Feshbach resonances. Section VI is focused on studies
of the bound-bound transitions and Franck-Condon factors
in RbHg between the ground state and lowest excited states
correlating with the 2P state of the Rb. In particular, we discuss
the possibility of molecule formation by spontaneous emission
from the photoassociatively formed excited molecular state to
the ground state and opportunities for STIRAP transfers to the
vibrational ground state. Section VIII concludes our paper.

II. AB INITIO INTERACTION POTENTIALS

To study the Born-Oppenheimer interaction energy in the
ground state we have performed high-level ab initio calcu-
lations using the spin-restricted open-shell coupled cluster
method with single, double, and noniterative triple excitations
CCSD(T) [47] implemented in the MOLPRO package [48]. The
excited-state potential-energy curves are obtained using the
EOM-CCSD method [49] for the calculations of excitation
energies which were subsequently added to the ground-
state potentials. These ab initio methods provide us with

Hund’s case (a) potentials. In order to convert them to the
relativistic, spin-orbit coupled Hund’s case (c) picture we
employ the spin-orbit coupling matrix elements calculated
using the multireference configuration theory (MRCI). A
similar methodology was used in the recent studies of the Ca2

[50] and Sr2 [51] systems and the interactions of alkali-metal
atoms with strontium and calcium [52].

We will first focus on the ground-state potential calcula-
tions. The CCSD(T) calculations were performed using the
MOLPRO package [48]. We applied the counterpoise correction
(CP) proposed by Boys and Bernardi [53] to eliminate the basis
set superposition error (BSSE) in the interaction energy. Both
the small-core relativistic energy-consistent pseudopotentials
(ECP) as well as the full tailored valence basis sets optimized
by Lim et al. [54] were used, with additional h functions
and diffused functions added by us to better describe the
Rb atom (see Ref. [55] for details). The Hg atom was
described by the augmented correlation consistent polarized
valence quadruple-zeta quality basis sets (aug-cc-pVQZ-PP)
optimized by Peterson and Puzzarini [39] with ECP of Figgen
et al. [38]. To better account for the dispersion interactions
we added spdf midbond functions held in the center of mass
between both monomers.

The basis sets were tested for convergence by performing
calculations with triple-zeta basis sets for the Hg atom and
the basis sets for Rb truncated at the g functions (we denote
both basis sets as TZ). The complete basis set limit (CBS)
of the ground-state potential was estimated by extrapolation
from triple- and quadruple-zeta quality functions [56]. For the
scattering and bound-state calculations we used the quadruple-
zeta basis potentials, whereas CBS gives us an indication of
the possible error related to basis set incompleteness. Table I
collects the potential depths for both basis sets and CBS. The
De parameter for the QZ quality basis set is 404 cm−1, while
the extrapolation to the basis set limit yields 412 cm−1, which
indicates a small uncertainty of our potential related to the
basis truncation.

The basis set uncertainty is not the only one we deal with,
and other uncertainties include the correlation energy beyond
CCSD(T), as well as the relativistic effects which here are
described only via the ECP. To assess the quality of the
calculated CCSD(T) potential depth for the RbHg system
we compared the well depth in the CBS limit for the Hg2
system, which was examined experimentally and by fully
relativistic electronic structure methods. The CBS limit for
the Hg2 potential well obtained by us (390.1 cm−1) is very
close to the dissociation energy (383.4 cm−1) found using the
quadruple-zeta-quality basis sets (for both cases Re was found
at 7.0a0). These values are in a very good agreement with
the experimental data reported by Koperski (379.5 cm−1 and
6.8a0) [57–59] and CC calculations including the full triply
excited configurations and the spin-orbit coupling corrections
obtained by Schwerdtfeger (392 cm−1 and 6.95a0) [60].
Clearly, the interaction of mercury is reproduced extremely
well with the ECP and basis set used in this paper; hence
it should be trusted for RbHg calculations as well. We
conservatively estimate the error on the potential depth to be
on the order of 20 cm−1.

The calculations of lowest excited states were performed as
follows. Using the same ECPs as for the ground state we have
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TABLE I. Convergence of the interaction energy potential depth
(De) and the equilibrium bond length (Re) of RbHg molecule in the
electronic ground state. The energy unit is cm−1, while the equilibrium
distance is given in a0.

Basis set Re De

TZ 7.83 393
QZ 7.82 404
CBS limit (estimate) 7.80 412

performed EOM-CCSD calculations using the CFOUR [61]
program. The basis sets used in the EOM-CCSD calculations
were smaller: for the Hg atom we used the uncontracted
aug-cc-pVTZ-PP [39] basis set and the Rb basis set restricted
to g functions and the midbond functions were not added.
The EOM-CCSD method calculates the energy difference
between the ground state and pertinent excited states which
are of our interest: the first � and the second � states. To
obtain the potential-energy curves we added the calculated
energy differences to the ground-state CCSD(T) potential.
The asymptotic limit of the excitation energy agrees between
the � and � (12797 cm−1) states and both agree very well
with the nonrelativistic limit of the Rb atom 2P asymptote
of 12737 cm−1, which can be derived from the experimental
values assuming Landé splittings. We also obtain a very good
agreement between EOM-CCSD transition dipole moments
and their experimental values (3.01 compared to the experi-
mental 2.99 a.u.).

In Fig. 1 we show Hund’s case (a) curves which were
used in dynamic calculations in the present work, while
Table II gathers their spectroscopic properties. The depth of
the ground-state curve is very low, given that RbHg represents
the interaction of two metal atoms. It is about two times
shallower than the potential wells in RbYb and nearly three
times shallower than the comparable RbSr system [26,52,55].
RbHg (similar to RbYb and RbSr) is unbound at the Hartree-
Fock level and it is only the dispersion energy that binds the
molecule.

The depths of the potential wells for RbSr, RbYb, and
RbHg systems show decreasing strengths of the dispersion
interaction, which can be rationalized by comparing the
polarizabilities of these atoms (195 for Sr, 143 for Yb, and
35 a.u. for Hg). Interestingly, Polly et al. [42] have obtained
a very shallow ground-state potential for the CsHg molecule
(160 cm−1) but such disagreement might be explained by the

FIG. 1. Potential-energy curves near the 2P + 1S and 2S + 1S

asymptotes of RbHg in Hund’s case (a) representation calculated
using state-of-the-art ab initio methods; see Sec. II for details.

fact that no triply excited configurations were included by
these authors.

The excited states of the RbHg molecule are quite peculiar:
the 1 2� state is rather deep at 5304 cm−1 but the 2 2�+
state (940 cm−1) is, similar to the ground state, very shallow
compared to RbSr, RbYb, or the recently reported RbCa
systems [52,55,62]. Nonetheless, the long-range interaction
for the 2 2�+ state is stronger than in the case of 1 2�; hence
these states cross at about 11a0, which produces an avoided
crossing in the Hund’s case (c) picture (see inset of Fig. 2).

To solve the radial Schrödinger equation for the ultracold
regime and discuss the near-threshold bound states it is essen-
tial to use analytic van der Waals potentials at large internuclear
separations. To this end we smoothly connected our potentials
to analytical expansions with C6 coefficients obtained from
perturbation theory. To obtain the C6 coefficients for the
ground state we used a Casimir-Polder type integral expressed
in terms of the atomic dynamic dipole polarizabilities at
imaginary frequencies (see Refs. [26,55])

C6 = 3

π

∫ ∞

0
αA(iω)αB(iω)dω. (1)

The values of atomic dynamic electric dipole polarizabili-
ties for the Rb atom were taken from Ref. [63]. For the
polarizabilities of the Hg atom, we have employed the

TABLE II. Spectroscopic properties of Hund’s case (a) and Hund’s case (c) potential curves used in this analysis. Here the harmonic
constant ω is defined as the energy difference between the bottom two vibrational states for the lowest rotational state. We also give the number
of supported vibrational states N for each of the potential curves.

State De (cm−1) Re (units of a0) ω (cm−1) C6 (Eha
6
0 ) N

2 2� 940 7.31 34.1 2656 79
1 2� 5304 6.10 91.2 1440 117
X 2� 404 7.82 21.4 949.7 44
(1) j = 3/2, |�| = 3/2 4143 6.19 85.6 1440 104
(3) j = 3/2, |�| = 1/2 728 7.61 22.9 2251 73
(2) j = 1/2, |�| = 1/2 6911 5.95 97.4 1845 135
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FIG. 2. Potential-energy curves near the 2P + 1S and 2S + 1S

asymptotes of RbHg in the L−S coupled Hund’s case (c) repre-
sentations calculated using Eq. (4) from the nonrelativistic ab initio
potentials shown in Fig. 1 and the spin-orbit matrix elements shown
in Fig. 3(a).

time-independent coupled-cluster polarization propagator
method (TI-CC) [64,65]. Since the dynamic polarizabilities
for the excited Rb atom in the 2P state were unavailable, we
used the C6 values for the BeRb system [66] (2988 and 1620
a.u.) scaled by the ratio of static polarizabilities of the Hg and
Be atoms equal to 0.89.

The calculation of Hund’s case (c) potential curves shown in
Fig. 2 requires the use of spin-orbit coupling matrix elements
between the lowest excited � and � states. The spin-orbit
matrix elements were obtained using the MRCI method
restricted to single and double excitations in the Breit-Pauli
approximation as implemented in the MOLPRO package [48].
A large active space in the MRCI calculations included the
s, p, and d orbitals from the external electronic subshells.
The basis sets for the Rb atom and the aug-cc-pVQZ-PP basis
set for Hg atom were restricted to d functions. Similar to
the EOM-CCSD calculations, the midbond functions were not
added. The asymptotic spin-orbit matrix element matched the
experimental Rb spin-orbit constant of 79.2 cm−1 to about 5%.
The spin-orbit matrix elements for the 2 2�+ and 1 2� states
are shown in Fig. 3(a).

Finally, we have also calculated the dipole moment for the
ground state using the finite-field method [67,68]. The RbHg
molecule in its rovibrational ground state has a comparatively
small dipole moment of 0.056e a0.

III. COUPLING SCHEMES

Compared to RbYb or RbSr, the RbHg system has an
entirely different structure of the excited-state thresholds. The
Hg atom has a very high excitation energy: the first strong
optical transition to an excited state of Hg, the 254 nm
intercombination 1S0 → 3P1 line used in laser cooling of Hg
atoms, leads to an electronic state significantly above the
ionization threshold of the Rb atom. Hence electronic states
of RbHg, where the Hg atom is excited, are coupled to a

FIG. 3. (a) Relevant spin-orbit matrix elements for Hund’s case
(a) potential curves correlating to the 2P -1S asymptote of RbHg; (b)
and (c) transition dipole moments from excited states to the ground
state in Hund’s case (a) and (c) representations, respectively.

continuum of ionized Rb states. Penning ionization of Rb
atoms colliding with excited Hg atoms is to be expected.
Theoretical description of such states is very challenging. Also,
photoassociation and optical manipulation of such systems
using the Hg optical transitions will be jeopardized by strong
autoionization losses. Hence our main focus in this paper is to
consider photoassociation near transitions to the lowest 2P Rb
excited states.

The electronic configuration of the Rb atom in the first
excited state, 5s5p, is split by spin-orbit coupling into j = 3

2
(D2-line) and j = 1

2 (D1-line) states. The interaction with
the Hg atom lifts the degeneracy of the j = 3

2 state, creating
two pairs of degenerate states � = ± 1

2 ,± 3
2 , while the j = 1

2
state produces one doubly degenerate state � = ± 1

2 , where the
quantum number � is the projection of the total atomic angular
momentum onto the molecular axis. In the nonrelativistic
framework corresponding to the Hund’s case (a), the molecular
states are labeled by the molecular axis projections � and
� of the spin and orbital angular momenta, respectively.
Our ab initio calculations provide potential-energy curves
corresponding to a Hund’s case (a) picture where the 2P state
splits into one 2�+ state and a doubly degenerate 2� state.

Similar to Ref. [69] we start from the quantum theory of
slow-atom collisions [70,71] and describe the colliding system
using the Hamiltonian

H = T + HA + Vint + Vrot. (2)

T = (h̄2/2μ)(d2/dR2) is the kinetic-energy operator for the
relative radial motion, HA is the atomic Hamiltonian operator
representing the internal atomic degrees of freedom, Vint is
the interaction operator described by nonrelativistic molec-
ular Born-Oppenheimer potentials, and Vrot is the rotational
energy operator. While discussing the interactions correlating
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with the asymptotes Rb(2S 1
2
) + Hg(1S0), Rb(2P 1

2
) + Hg(1S0),

and Rb(2P 3
2
) + Hg(1S0), we are using the |j lJM〉 basis

corresponding to Hund’s (e) case: �j is the total electronic
angular momentum, �l is the rotational (end-over-end) angular
momentum, and �J = �j + �l is the total angular momentum.
The projection of �J on a space-fixed z axis is M; however,
one can neglect the possible dependence on M in the absence
of external fields. Hence possible channels will be labeled
as |j lJ 〉.

The adiabatic Hund’s case (c) potentials are obtained by the
diagonalization of the Born-Oppenheimer potentials and the
spin-orbit coupling operator HSO at a given distance R. The
Hund’s case (c) potential for |�| = 3/2

V ((1) j = 3/2, |�| = 3/2) = V (1 2�) + 〈1 2�|HSO|1 2�〉.
(3)

The other two states for � = ± 1
2 can be obtained by diago-

nalizing the following matrix [55]:

H
(|�| = 1

2

)

=
(

V (2 2�) 〈2 2�|HSO|1 2�〉
〈2 2�|HSO|1 2�〉 V (12�) − 〈1 2�|HSO|1 2�〉

)
. (4)

Figure 2 shows the spin-orbit coupled potential-energy
curves, while Table II lists their essential molecular prop-
erties. The spin-orbit matrix elements 〈2 2�|HSO|1 2�〉 and
〈1 2�|HSO|1 2�〉 are shown in Fig. 3(a); their respective
asymptotic limits are

√
2ARb and ARb, where the Rb spin-orbit

constant ARb = 79.2 cm−1 is equal to one-third of the energy
difference between the atomic 2P 1

2
and 2P 3

2
states. In the

asymptotic limit, where the spin-orbit coupling dominates
over the atomic interactions, the potentials are strongly
mixed: in excited electronic states near the Rb(2P 3

2
) + Hg(1S0)

asymptote,

Ve((1) j = 3/2,|�| = 3/2) = Ve(1 2�), (5)

Ve((3) j = 3/2,|�| = 1/2) = 2
3Ve(2 2�) + 1

3Ve(1 2�), (6)

while near the Rb(2P 1
2
) + Hg(1S0) asymptote,

Ve((2) j = 1/2,|�| = 1/2) = 1
3Ve(2 2�) + 2

3Ve(1 2�). (7)

This mixing determines the long-range C6 coefficients (see
Table II) for the Hund’s case potentials used in our analysis.
At equilibrium distances, however, the shapes and depths of
the Hund’s case (c) potentials are mostly determined by the
Hund’s case (a) potentials. The (1) j = 3/2, |�| = 3/2 and
(2) j = 1/2, |�| = 1/2 potentials inherit the shape of the 1 2�

curve, while (3) j = 3/2, |�| = 1/2 approximates the shallow
2 2� potential as seen in Fig. 2.

The rotational energy operator Vrot = B(R)l(l + 1) is
diagonal in the Hund’s case (e) but not in the Hund’s case (c)
representations which leads to possible rotational (Coriolis)
couplings between Hund’s case (c) channels. On the other
hand, a Hund’s case (c) state may mix many rotational states.
Due to selection rules, photoassociation in s-wave collisions
can occur only to states including channels |j lJ 〉 with l = 0.

Such mixing will impact the photoassociation rate through an
appropriate Hönl-London factor frot.

States correlating to the Rb(2S 1
2
) + Hg(1S0) and Rb(2P 1

2
) +

Hg(1S0) asymptotes can be described by single channels |j lJ 〉
in which j = 1/2 and l = J ± 1/2. In ultracold collisions
the s-wave channel |j = 1/2,l = 0,J = 1/2〉 with rotational
energy equal to zero plays the crucial role and higher
partial waves can be neglected. In this case Vint + Vrot is
simply Vg((1)1/21/2). In the excited Rb(2P 1

2
) + Hg(1S0) state

photoassociation will be possible only to the bound states
supported by the channel |j = 1/2,l = 0,J = 1/2〉, where
Vint + Vrot is equal to Ve((2)j = 1/2,|�| = 1/2). No inter-
channel rotational couplings are present here.

The situation is more complex near the Rb(2P 3
2
) + Hg(1S0)

asymptote where the bound states need to be represented
by two channels. It can be shown that, for s-wave colli-
sions in this asymptote, photoassociation is possible only to
bound states described by a pair of the following channels:
|j = 3/2,l = 0,|�| = 3/2〉 and |j = 3/2,l = 2,|�| = 3/2〉.
Through a calculation similar to that of Ref. [72] one can
show that near the dissociation limit two sets of Hund’s case
(c) bound states can be found. For interaction energies much
larger than the rotational energy, these can be described as
single channels with effective Vint + Vrot given by

Ve((3)j = 3/2,|�| = 1/2) + 3B −→
(+√

1/2
−√

1/2

)
l = 0,

l = 2,
(8)

Ve((1)j = 3/2,|�| = 3/2) + 3B −→
(+√

1/2
+√

1/2

)
l = 0,

l = 2.
(9)

The centrifugal term B(R) = h̄2/(2μR2). The eigenvectors to
the right denote the rotational composition of these Hund’s
case (c) states, which turn out to be 1:1 mixtures of the s and
d waves.

In our work, we neglect the hyperfine structure of the
Rb atoms. The strength of coupling between nuclear and
electronic spins is orders of magnitude smaller than the
coupling between electronic spin and the orbital angular
momentum. While the hyperfine interaction does have a minor
impact on the shape of the potential curves [19], we expect it
to be even smaller than that in RbYb [26]. The qualitative
results reported here will therefore remain valid regardless of
the nuclear spin as long as no magnetic fields are used in the
experiment.

IV. s-WAVE SCATTERING LENGTHS

While rubidium has two long-lived bosonic isotopes, 85Rb
and 87Rb, the Hg atom features five stable bosons: 196Hg,
198Hg, 200Hg, 202Hg, and 204Hg. The 202Hg isotope is the most
abundant (29.74%). Hence there are ten bosonic isotopomers
of RbHg, whose reduced masses

μ =
(
m−1

Rb + m−1
Hg

)−1
(10)

range from 59.24 u to 60.94 u. Selecting an isotopic pair will
amount to deciding on the interspecies scattering properties
of the mixture. The p-wave barrier in RbHg is about 100 μK
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high, whereas the Doppler temperature for the Hg intercom-
bination line is 30.5 μK; we expect the interactions in an
ultracold Rb+Hg mixture to be dominated by the s wave.

According to the semiclassical approximation [73], the s-
wave scattering length

a = ā
[
1 − tan

(
φ − π

8

)]
(11)

of a potential with a van der Waals −C6/R
6 long

range is determined by the mean scattering length ā =
2− 3

2

(3/4)

(5/4) (2μC6/h̄

2)
1
4 and the zero-energy WKB phase inte-

gral

φ =
√

2μ

h̄

∫ ∞

rin

√
V (R) dR. (12)

The above integral spans the range between the inner classical
turning point rin and infinity. The scattering length a is periodic
with respect to the WKB phase φ (with a period of π )
and shifted by the slowly varying mean scattering length
ā. For RbHg ā varies between 57.20(15)a0 for the lightest
isotopic pair 85Rb196Hg and 57.61(15)a0 for 87Rb202Hg. The
uncertainty in ā stems from the accuracy of the C6 coefficient,
which we estimate to be about 1%. The WKB phase φ is
manifestly proportional to the square root of the reduced mass
μ, which we can control by selecting an appropriate isotopic
pair.

Scattering lengths are interrelated with the positions of
bound states close to the dissociation limits. The phase integral
φ determines the number of states N supported by the potential
V (R): in fact, within the same approximation

N =
⌊

φ

π
+ 3

8

⌋
. (13)

Singular scattering lengths coincide with bound states located
exactly at the dissociation limit. A large and positive a points
to a very weakly bound state just below the dissociation limit.
Finally, scaling the short-range potential so that φ is increased
by π while C6 is retained amounts to adding one vibrational
state with no change to the scattering length.

In RbHg the ground X 2� state potential is very shallow:
its depth is only De = 404 cm−1 and, for l = 0, it supports
44 vibrational states. We tentatively estimate the error on
De to be �De ≈ 20 cm−1, or about 5%. Since the WKB
phase φ depends on the square root of the potential depth,
it is determined to within about 2.5%. This in turn amounts to
�N = 1.09, a little over one vibrational state. This way we can
confirm that N lies between 43 and 45. We cannot, alas, predict
the actual scattering lengths for all the isotopomers until
experimental input, e.g., from a two-color photoassociation
experiment [26,74], is available.

Figure 4 shows possible mass scaling behavior of the
scattering length a as a function of the reduced mass μ. The
ground-state potential being shallow, the available bosonic
isotopomers span only about two-thirds of a scattering length
cycle. The singularity in a may fall near one of the isotopomers
(blue solid lines in Fig. 4). In such case a wide variety of
interspecies scattering lengths would be accessible: from large
negative to large positive scattering lengths. Only scattering
lengths closest to ā would be unavailable. For comparison,

FIG. 4. Example s-wave scattering lengths a for collisions of
Rb and Hg atoms in their respective atomic ground states, 2S1/2 and
1S0. Two scenarios are shown: one calculated with the unmodified
X 2� ab initio potential (blue solid lines) and one where the potential
was modified to increase its total WKB phase φ by π/2, which
corresponds to half a vibrational state (yellow dashed lines). In the
former, the available RbHg isotopic combinations would span a wide
range of positive and negative scattering lengths with magnitudes
both large and small. In the latter case, however, most of the
scattering lengths would be positive and of magnitude similar to the
mean scattering length ā ≈ 57a0 (horizontal dotted gray line). The
unusually slow variation of scattering lengths with the reduced mass
μ is due to the shallowness of the RbHg X 2� potential curve (see
Fig. 1) which only supports 44 bound states (for 87Rb and 202Hg).

we also show an opposite, “pessimistic” case (yellow dashed
lines in Fig. 4), where all scattering lengths have moderate
magnitudes and are distributed around ā. In this case the
available scattering lengths would span a range from small
negative scattering lengths of tens of a0 to moderate positive
of about 150a0.

V. OPTICAL FESHBACH RESONANCES

Scattering lengths can be manipulated using optical Fes-
hbach resonances (OFRs) [43,44,75], where the ground-state
scattering channel is coupled to an excited molecular bound
state by laser radiation. A spectacular example of the use of
OFRs was the demonstration of optically controlled collapse
of a 88Sr Bose-Einstein condensate [76]. OFRs are by their
nature burdened by losses through spontaneous emission from
the excited molecular state. While this effect is undesirable in
optical control of interactions, it is the basis for photoasso-
ciation spectroscopy [77], which relies on atom loss for the
detection of bound-state positions. The positions of optical
Feshbach resonances from the atomic line are approximately
equal to the energies Eb of their respective bound states taken
from the appropriate dissociation limit.

Within the isolated resonance theory [72,75,78], in the
limit of low collision energies E → 0, the optically modified
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scattering length near an OFR

α(I,δ) = a + lopt(I )
δγ

δ2 + γ 2

4

(14)

depends dispersively on the laser detuning δ from the
resonance position. The optical length lopt is a resonance
strength parameter that determines the maximum change of
the scattering length. The magnitudes of the optical lengths
are proportional to, and therefore controllable by, the laser
intensity I ; those reported in this paper are calculated for a
laser intensity of I = 1 W/cm2 and, again, in the limit of low
collision energies E → 0. The resonance width γ in RbHg is
practically equal to the atomic linewidth of the relevant Rb D1
or D2 transition.

Optical control of scattering lengths comes at a price of
two-body photoassociative losses which will impact the trap
lifetimes of the dual atomic sample. The time evolution of the
atomic densities nRb and nHg,{

ṅRb = −K̃innRbnHg − nRb/τRb,

ṅHg = −K̃innRbnHg − nHg/τHg,
(15)

may be severely modified if the two-body inelastic rate K̃in

multiplied by appropriate atomic densities takes over the one-
body lifetimes τRb and τHg. For thermal atoms K̃in may be
calculated as an appropriate Boltzmann average of the kinetic-
energy dependent loss rate [78]:

Kin(E) = 4πh̄

μ

γ 2lopt

(δ + E/h̄)2 + γ 2

4 (1 + 2klopt)2
, (16)

which in itself is a Lorentz curve shifted to the red by the kinetic
energy E of the colliding atoms. The thermal averaging leads
to an asymmetric line shape that may be calculated numerically
[69] or approximated with the formulas of Ref. [79].

The optical length lopt incorporates the molecular physics
involved in the optical Feshbach resonance process. An s-
wave collision of Rb and Hg atoms at a kinetic energy E

may be described by an energy-normalized scattering wave

function �(R,E)
R→∞−−−→

√
2μ/πh̄2k sin(kR + η), where the

wave number k = √
2μE/h̄ and η is a phase shift intro-

duced by the short-range ground-state interaction potential.
The radial motion in the excited bound state is described
by the unit-normalized wave function � ′(R). Both can be
calculated by solving appropriate single channel Hund’s case
(c) Schrödinger equations. Assuming that the transition dipole
moment is constant for large internuclear distances [it is—see
Fig. 3(c)], the optical length can be given by a Franck-Condon
factor

lopt = 3

16πk

Iλ3

c
frot

∣∣∣∣
∫ ∞

0
�(R,E)� ′(R)dR

∣∣∣∣
2

, (17)

where λ is the transition wavelength and I is the laser intensity.
The Hönl-London factor frot accounts for the rotational
couplings. For s-wave transitions to the excited j = 3/2
states frot = 1/2 (because these states mix different rotational
states), whereas for j = 1/2, frot = 1 (because these states do
not); see Sec. III for details. The polarization-independent frot

factors are valid when no external fields fix the atomic z axis
and low light intensities are used [72]. If, however, such fields

are present, the projection M of the total angular momentum
on the z axis also has to be considered. By virtue of the
Wigner-Eckart theorem, the polarization-dependent rotational
factor

frot(M,q) = frot|〈JgKMgq|JeMe〉|2. (18)

For dipole transitions K = 1 while q = −1,0,+1 denotes laser
polarizations σ−, π , and σ+, respectively.

The photoassociative loss of atoms is, like the optical shift
to the scattering length, proportional to the optical length lopt.
Their dependence on the laser detuning, however, is different:
for large detunings δ, the modification to the scattering length
diminishes as 1/δ, whereas the photoassociative losses scale
as 1/δ2. For this reason it is commonly recommended [45]
that large detunings and laser intensities be used to minimize
inelastic losses while maintaining control over the scattering
length.

The behavior of optical lengths of resonances close to the
atomic limit for the RbHg excited states considered in this
work is qualitatively very similar; therefore, we will only take
the 795 nm transitions to the RbHg (2) j = 1/2 |�| = 1/2
state as an example. Again, we stress that the current ab initio
calculations do not make it possible to accurately predict the
positions of bound states close to the dissociation limit. The
vibrational spacings, however, being dependent on the C6

coefficient, are correct. For this reason in Fig. 5 we show
optical lengths as a function of the (unknown) bound-state
position Eb with an example series of bound states marked
as squares which was calculated for an unmodified potential
curve and a reduced mass matching the 87Rb202Hg isotopolog.
We have also marked four example vibrational states as “entry
points” for possible routes to ground-state RbHg molecules
discussed in Sec. VI.

The positions of optical Feshbach resonances in a given
potential can be fixed by finding at least one resonance in
experiment. The lower bounds for the top two energy bins
for the (2) j = 1/2 |�| = 1/2 state are E1 = 232 MHz
and E2 = 1596 MHz, meaning that the top two resonances
are within reach of a single acousto-optic modulator from
the atomic line. Given the large optical lengths for bound
states very close to the dissociation limit, we expect that
optical Feshbach resonances in this system could be detected
by simply monitoring the fluorescence of the Hg MOT,
much like in the case of the Rb+Yb experiment reported in
Ref. [24]. This is further corroborated by our simulations of
the photoassociation spectra in Fig. 6. For a realistic number
density of the Rb cloud of nRb = 109 cm−3 and a modest laser
intensity of I = 500 W/cm2 the photoassociative loss rate for
the Hg atoms, K̃innRb, easily exceeds the one-body loss rate of
1/τHg ≈ 0.4 s−1.

The choice of a resonance for optical control of the
scattering length will be driven by the magnitude of its optical
length and possible photoassociative losses. Optical lengths
depend primarily on the scattering length a and the position
of the relevant excited bound state. Bound states closer to
the dissociation limit yield higher magnitudes of the optical
length because their bound-state wave functions have better
overlap with the scattering wave function in the ground state.
Large magnitudes of the scattering length a enhance the optical
lengths: it is a general property of cold s-wave scattering
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FIG. 5. Example optical lengths lopt of Feshbach resonances near
the Rb atomic transition 2S1/2 → 2P1/2 at 795 nm as a function
of excited bound-state energy Eb shown for characteristic s-wave
scattering lengths a, in order: a large positive scattering length of
204a0, one close to the mean scattering length (ā ≈ 57a0), one close
to zero, and a large negative scattering length. We have marked
some of the excited vibrational states v′

PA supported by the (2)
j = 1/2 |�| = 1/2 potential (Fig. 2) with arrows in order to discuss
the products of their optical decay; see Fig. 8 and Sec. VI for details.

that the amplitude of the short-range part of the scattering
wave function grows significantly when |a| 
 ā [10]. Finally,
lopt has nodes stemming from the oscillatory character of
the ground and excited wave functions. For example, the
optical length for the v′ = 133 line when the scattering length
a = 204a0 is seriously diminished by such a node even though
this does not happen for the other scattering lengths. Such a
problem can be worked around by selecting either a different
isotopic pair (which influences a) or using a neighbor state,
like v′ = 132.

Due to the C6/R
6 asymptotics in the RbHg interactions,

the OFRs are sparsely distributed, theoretically making it
possible to detune the OFR laser further from resonance.
This is in opposition to the case of Rb+Rb OFRs, where the
C3/R

3 dipole interaction supports many resonances close to
the dissociation limit leading to considerable photoassociative
losses [80]. Operating an OFR laser very close to the Rb

FIG. 6. Thermally averaged photoassociation-induced Hg atom
loss rates K̃innRb near the 795 nm transition to the RbHg (2)
j = 1/2 |�| = 1/2 state calculated using Eq. (16) for sample
temperature of T = 100 μK, laser intensity I = 500 W/cm2, and
the number density of the Rb cloud of nRb = 109 cm−3. For many
photoassociation lines the two-body loss rates reach 1 s−1, which is
more than the one-body losses of the Hg MOT reported in Ref. [33].
This will enable direct detection of heteronuclear photoassociation by
monitoring the steady-state populations in a two-species MOT much
like in the previous RbYb experiment [24].

795 nm line will likely cause significant heating of the atomic
sample and strong Rb-Rb photoassociative losses: close to
the dissociation limit the photoassociation spectrum of Rb
is practically a continuum [81]. To avoid this, it might be
necessary to choose a Rb+Hg OFR at larger detunings from
the atomic resonance, even at the expense of a smaller optical
length. There are also other possible workarounds. Aside
from obviously lowering the density of the Rb cloud which
would quadratically reduce the Rb+Rb photoassociation rate,
a much more interesting idea could be to manipulate the
photoassociation rate for Rb by magnetically changing its
scattering length [82]. Since optical lengths have nodes whose
positions depend on the scattering length, it may be possible
to engineer a node in Rb+Rb photoassociation at detunings
where a Rb+Hg OFR laser would operate.

VI. PROSPECTS FOR GROUND-STATE-MOLECULE
PRODUCTION

Photoassociative loss of atoms is usually due to the
spontaneous emission from the excited molecular state. The
excited molecule may decay to any ground-state energy
level below its original energy. If the target state lies in the
continuum above the ground-state asymptote, the atoms are
no longer bound and gain kinetic energy; in RbHg most will
be absorbed by the lighter Rb atom. If the kinetic energy is
much larger than the trap depth, one or both atoms may be
ejected from the trap and lost forever. If, however, the kinetic
energy of the target continuum state is low, the atoms remain
in the trap and may take part in another photoassociation
cycle. Finally, the excited molecule may decay to a bound
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FIG. 7. Effective Franck-Condon factors calculated for transitions between vibrational states v′ of appropriate excited electronic potentials
near the 2P + 1S asymptote and vibrational states v in the X 2S + 1S ground state of the RbHg molecule. The internuclear distance variability
of the transition dipole moment was taken into account; see Eq. (19). It is interesting to note that the Franck-Condon factors for the
(3) j = 3/2, |�| = 1/2 → (1) j = 1/2, |�| = 1/2 transition are unusually diagonal for the lowest 20 vibrational states—which may be the
result of both curves having similar equilibrium distances Re.

state in the ground electronic state. The likelihood of forming
a ground-state molecule in vibrational and rotational states v

and Jg is equal to the bound-bound Franck-Condon factor

f (v,v′) = frot

∣∣∣∣
∫ ∞

0
�(v,R)

d(R)

dat
� ′(v′,R)dR

∣∣∣∣
2

(19)

between, respectively, the ground-state and excited-state wave
functions �(v,R) and � ′(v′,R) representing the vibrational
states v and v′. The Hönl-London rotational factor frot

represents the effect of the rotational couplings described in
Sec. III. We have also included the dependence of the transition
dipole moments d(R) on the internuclear distance R with
respect to the asymptotic (atomic) dipole moment of Rb, dat.
The appropriate transition dipole moments are shown in Fig. 3.

The Franck-Condon factors for the 780 nm transitions
from the (1) j = 3/2, |�| = 3/2 (Fig. 7, left panel) and
the 795 nm transitions from the (2) j = 1/2, |�| = 1/2
(Fig. 7, right panel) states are qualitatively very similar:
the shapes of both curves are determined primarily by the
Hund’s case (a) 1 2� potential. The Franck-Condon factors are
significantly nondiagonal. From the point of view of forming
ground-state molecules in the rovibrational ground state, the
broad maximum of f (v,v′) for v′ ≈ 20 . . . 40 will be very
useful for the final STIRAP process. On the other hand, the
Franck-Condon factors for the 780 nm transitions from the
(3) j = 3/2, |�| = 1/2 state (Fig. 7, center panel) have an
unusually diagonal character for the lowest 20 or so vibrational
states which can be explained by the similarity of equilibrium
distances, Re = 7.61a0 and 7.82a0, of the relevant excited-
and ground-state potential curves.

The lowest rotational state for j = 3/2 electronic states
is J = 3/2 and, as shown in Sec. III, is a mixture of l = 0
and l = 2 states. The rotational factors for transitions to the
s-wave ground state are therefore frot = 1/2. In other words,

half of the photoassociated molecules decay to the s wave, and
the other half to the d wave. On the other hand, the excited
j = 1/2, J = 1/2 states produced via photoassociation from
the s wave are purely l = 0. Thus, for the remainder of this
work, we will consider the production of ground-state RbHg
molecules using the Rb 795 nm 2S1/2 → 2P1/2 transition.

Figure 8 shows the probabilities of forming ground-state
molecules in the rovibrational state v, l = 0 by spontaneous
emission from excited states v′ = 133, 125, 117, and 106.
These will constitute the entry points for our example routes to
the rovibrational RbHg ground state collected in Table III. The
respective photoassociative optical lengths are also marked in
Fig. 5. The Franck-Condon factors have favorable properties.
One can select an excited state v′

PA that produces practically
any desired ground vibrational state v � 25 at an efficiency of
at least 20%. For example, if the desired ground vibrational
state is v = 37 (Route 2 in Table III), then one could
perform photoassociation using the excited v′

PA = 125 state
at −6.4 cm−1. The molecular production efficiency would be
about 27%.

Similar to the case of optical control of interactions, the
selection of an appropriate photoassociation line will be influ-
enced by the optical length lopt. The choice of an appropriate
isotopic pair is important: scattering lengths of large magnitude
(positive or negative) give larger optical lengths than those
close to the mean scattering length ā. Bound states close to the
dissociation limit are much easier to photoassociate, because
of the more favorable free-bound Franck-Condon factors.
These, however, have the disadvantage that the ground-state
molecules will be produced in vibrational states closer to
the dissociation limit which will have a negative impact
on the Franck-Condon factors of the transitions used in
the later STIRAP process. On the other hand, the loss of
rubidium atoms is no longer that much of a concern. In
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TABLE III. Example routes to the RbHg ground (0,0,0) state.
The entry point for each route is photoassociation to (2) j = 1/2,
|�| = 1/2 vibrational state v′, the strength of which (at a laser
intensity of 1 W/cm2) is described by its optical length lopt. The
optical lengths are strongly dependent on the scattering length a.
The excited molecules decay to the ground vibrational state v at an
efficiency determined by the Franck-Condon factor f (v,v′

PA). The
ground rovibrational state may be transferred by a STIRAP process
through the intermediate state v′ using lasers of wavelengths λ1 and
λ2 with transition probabilities f (v,v′) and f (0,v′), respectively.

Route 1 Route 2 Route 3 Route 4

v′
PA 133 125 117 106

λPA (nm) 795.0 795.4 797.3 802.7
lopt (a = 204a0) 6.33 1.49 0.016 0.047
lopt (a = 57.9a0) 45.8 0.25 0.040 0.0066
lopt (a = −0.4a0) 115 0.13 0.16 0.0084
lopt (a = −125a0) 381 0.025 0.88 0.027
v 42 37 33 25
f (v,v′

PA) 0.59 0.27 0.23 0.36
v′ 41 41 41 39
f (v,v′) 2.1 × 10−5 5.1 × 10−4 0.0016 0.0043
f (0,v′) 0.067 0.067 0.067 0.068
λ1 (nm) 1073.9 1073.7 1072.8 1085.9
λ2 (nm) 1030.4 1030.4 1030.4 1046.9

typical experiments involving Rb and divalent atoms, the Rb
population is about an order of magnitude larger than the other
(see, e.g., Refs. [24,33]). Performing photoassociation using
deeper lying vibrational states may, however, be beneficial
despite their smaller optical lengths (which can partially be

FIG. 8. Effective Franck-Condon factors for transitions between
selected (2) j = 1/2, |�| = 1/2 vibrational states v′ and ground
vibrational states v. For many of the excited-state vibrational levels
v′ the product states are dominated by one ground energy level v. For
example, photoassociation of Rb and Hg atoms to the v′

PA = 125 state
could, through spontaneous emission, produce ground-state RbHg
molecules in the v = 37, l = 0 rovibrational state at an efficiency of
over 25%.

compensated for using higher laser intensities), because of the
easier STIRAP process later.

VII. STIRAP

The weakly bound ground-state molecules can be trans-
ferred to the rovibrational ground state using the STIRAP
technique [11]. Following a similar analysis of the RbSr system
of Chen et al. [83], in Fig. 9 we show the products of Franck-
Condon factors for the two transitions between the initial
ground vibrational states v and target rovibrational ground
state as a function of the intermediate excited vibrational state
v′. A large Franck-Condon factor product f (v,v′) × f (0,v′)
means that lower laser powers can be used during the STIRAP
process.

For the example routes the calculated products are mostly
favorable and range between 1.4 × 10−6 (Route 1, v = 42
and v′ = 41) and 2.9 × 10−4 (Route 4, v = 25 and v′ = 39).
In comparison, numerical simulations for the RbSr system
found that values on the order of about 3 × 10−5 are sufficient
to achieve STIRAP round-trip efficiencies of about 60%.
Routes 2, 3, and 4 have at least as favorable Franck-Condon
factors. Generally, the more deeply bound initial vibrational
state v, the easier the STIRAP process will be. Again,
the selection of a route to ground-state molecules will be
a compromise between photoassociation efficiency (which
favors excited states close to the dissociation limit), round-trip
STIRAP efficiency (which is better if the initial-state ground
vibrational state is deeply bound), and the available lasers.
Luckily, diode lasers are available for both photoassociation
(795–803 nm) and the STIRAP pump (1073.9–1085.9 nm)
and dump (1030.4–1046.9 nm) wavelengths. We expect that a
practical realization would use a route similar to either Route
2 or 3, which avoids the disadvantages related to either too
small optical lengths (Route 4) or unfavorable Franck-Condon
factors for the STIRAP transfer (Route 1).

FIG. 9. Products of Franck-Condon factors describing the tran-
sition probabilities in STIRAP processes between a starting ground
vibrational level v of energy Eb, an intermediate vibrational level
v′ in the (2) j = 1/2, |�| = 1/2 excited electronic state and the
rovibrational ground state.
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VIII. SUMMARY AND CONCLUSION

Stimulated by the experimental progress in trapping the
ultracold mixture of Rb and Hg atoms [33], we have explored
theoretically the prospects for photoassociation of these two
atoms near the Rb 2S → 2P excitation thresholds and the
possibility of optical manipulation of scattering properties of
the ultracold Rb+Hg gas. We have also studied the prospects
for the formation of RbHg molecules in the rovibrational
ground state.

We have carried out state-of-the-art ab initio calculations
of the potential-energy curves for the RbHg system using
the coupled-clusters method for ground and excited states.
The RbHg interactions are unusually weak given that both
atoms are metals: the X 2� ground-state potential is only
404 cm−1 deep with a potential minimum at about 7.8a0 and it
supports 44 vibrational states. This is very shallow compared
to RbSr or RbYb molecules, which bear a similar electronic
configuration. The excited states are also quite peculiar as the
potential shapes differ very strongly: the 2 2�+ excited state
is very shallow and has an equilibrium distance similar to that
of the ground state. On the other hand the potential well of the
1 2� state is quite deep, similar to other alkali-metal+divalent
atom systems.

The RbHg system offers prospects for optical interspecies
interaction control via optical Feshbach resonances near the
Rb 2S → 2P transition. The optical lengths at 1 W/cm2

laser intensities, depending on the background interspecies
scattering length, can be as large as tens of a0 even at red
detunings close to 1 cm−1 raising hope for low-loss control
of interactions at moderate laser intensities. Since the Hg
atom offers several stable isotopes it may be possible to use
mass tuning to select a favorable isotopic mixture to employ
OFR. The main difficulty in the implementation of OFRs in
this system is the photoassociative loss of Rb atoms due to
the dense spectrum of Rb-Rb resonances. These could be
circumvented by preparing the mixture in a 3D optical lattice
or by lowering Rb atom density in the trap, or by reducing the
rubidium photoassociation rate using a Rb magnetic Feshbach
resonance. We note that OFRs may be the only technique
available for control of scattering lengths in this system as
we expect that magnetic Feshbach resonances created by the
modification of the Rb hyperfine interaction [19,20] would be
very weak because the charge transfer between Rb and Hg
atoms is small as evidenced by the relatively marginal dipole
moment of RbHg.

We have identified possible paths for rovibrational ground-
state RbHg molecule formation. In the first step, weakly bound
ground-state molecules are created by spontaneous emission
as a by-product of photoassociation. We find that not only

molecules in the top vibrational states close to the dissociation
limit could be produced at an efficiency of about 50%, but it
is also possible to select a 795 nm photoassociation resonance
that deeply bound v ≈ 25 . . . 35 states can be made at efficien-
cies ∼20%. The second stage involves a STIRAP transfer from
the weakly bound ground vibrational level to the rovibrational
ground state. We find that it is in many cases possible to
select an intermediate excited state where the product of the
two relevant Franck-Condon factors is sufficient to achieve
high STIRAP efficiencies [83]. The favorable Franck-Condon
factors are thanks to the much shorter equilibrium distance of
the 1 2� excited state compared to the ground state. We note
that this scheme does not rely on having an optical lattice
and can be conducted using commercially available diode
lasers. We also note that the favorable Franck-Condon factors
can be found without relying on enhancement mechanisms
[84,85] due to resonant coupling between j = 1/2 and j =
3/2 states. In principle, however, once experimental input is
available, the positions of enhanced molecular states could be
predicted and utilized in the production of tightly bound RbHg
molecules.

In the near future we plan to perform photoassociation
spectroscopy in a dual MOT of Rb and Hg by monitoring the
fluorescence of the Hg cloud using a photomultiplier. Optical
trapping of the Hg atoms in the optical trap is challenging
due to its low dynamic polarizability (about 50 a.u. for a
1.5 μm laser), but possible, given the Doppler limit for Hg
intercombination line is low (31 μK). Long-term goals include
high precision spectroscopy and molecule formation for the
purposes of the search for new physics [34].
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[26] M. Borkowski, P. S. Żuchowski, R. Ciuryło, P. S. Julienne, D.
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