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Nonlinear photoionization of transparent solids: A nonperturbative theory obeying selection rules
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We provide a nonperturbative theory for photoionization of transparent solids, which consistently accounts for
the selection rules related to the parity of the number of absorbed photons (odd or even). We derive closed-form
analytical expressions for the photoionization rate within the two-band structure model. Our model exhibits
excellent agreement with measurements for the frequency dependence of the two-photon absorption and nonlinear
refractive index coefficients in sapphire and silica, two highly relevant materials for industrial applications. We
demonstrate the crucial role of the interference of the transition amplitudes, which in the semiclassical limit can
be interpreted in terms of interfering quantum trajectories that were disregarded in Keldysh’s foundational work
of laser physics [Keldysh, Sov. Phys. JETP 20, 1307 (1965)], resulting in the violation of selection rules.
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I. INTRODUCTION

The permanent development of high-power pulsed lasers
continues to attract attention to multiphoton processes, pre-
dicted by Dirac [1] and Göppert-Mayer [2]. These processes
are important for a number of applications like spectroscopy
[3,4], photoemission studies [4–6], high harmonic generation
in solids [7–13], or optical communications [14]. In particular,
the spatially confined excitation produced by two-photon
absorption (2PA) is useful for three-dimensional data storage
and imaging [15–17]. Recently, a possible way towards two-
photon semiconductor lasers has been proposed [18]. These
successes have roused the interest in exploring applications
based on three-photon absorption (3PA) [19] and higher-order
multiphoton processes [20,21].

In 1964, Leonid Keldysh developed a cornerstone theory
[22] dedicated to multiphoton processes. While experimental
data for the multiphoton absorption coefficient were favorably
compared to Keldysh’s formula for the ionization probability
[see Eq. (37) in Ref. [22]], several authors point out a
discrepancy by as much as an order of magnitude, as well
as the lack of spectrally resolved measurements [23–25].
Nevertheless, experiments were conducted in the class of
transparent solids with inversion symmetry allowing for
one-photon transition [26], and confirmed the frequency
dependence predicted by the perturbation theory [24,27,28]
for the l-photon transition rate as

wl ∼
{

(lh̄ω − εg)1/2, l odd,

(lh̄ω − εg)3/2, l even,
(1)

where εg is the band gap. Equation (1) is the signature of the
fundamental principle in quantum physics known as selection
rules. In contrast, the Keldysh theory reduces to the expression
wl ∼ √

lh̄ω − εg for l odd and l even [22], therefore violating
selection rules [24,28]. Possible reasons for this discrepancy
were proposed by Vaidyanathan et al. [28], who highlighted
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simplifying assumptions in Keldysh’s derivation with regard
to the electronic band structures and oscillator strengths, and
suggested to replace the approximate saddle-point integration
in the Keldysh derivation by an exact integration. However,
an analytical theory for photoionization rates of dielectrics
that consistently obey selection rules is still missing. Modern
computer simulations of laser-matter interaction use broadly
the original Keldysh theory [29].

In this paper, we present an elegant solution to the
critical outstanding problem of deriving rates for ionization
of transparent solids by strong electromagnetic waves which
consistently obey selection rules, thus improving Keldysh’s
theory (KLD). We show that violation of selection rules in
Keldysh’s theory originated in the disregard of interference
between quantum trajectories. We establish closed-form ana-
lytical laws for the photoionization rates of transparent solids
and demonstrate that recent measurements of two-photon ab-
sorption and nonlinear index coefficients in silica and sapphire
are reproduced by our theory with excellent agreement.

II. PHOTOIONIZATION RATES

In Ref. [22], Keldysh provided a detailed description of
the nonperturbative method to derive the expression for the
photoionization rate using the Houston wave functions [30].
However, features such as selection rules at low intensity
[27], modulation of photoionization rates with intensity caused
by the dynamic Stark effect, and the calculation procedure
of matrix elements have not been discussed. Keldysh used
approximations comprising (i) the matrix element approxima-
tion and (ii) details concerning integral calculation. In this
connection we refer the reader to the recent Letters [31,32]
also dedicated to the approximations in Keldysh’s theory.
These papers deal mostly with approximations of the band
structure to unravel the difference between semiconductors and
dielectrics. Here, we focus on obeying of the selection rules.

A. Derivation of photoionization rates

We start from Eq. (27) in Keldysh’s work [22] for the
transition rate wpi from an initial state [valence band εv(p)]
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FIG. 1. Integration contour applied in Eq. (4). The integral along
the real axis is indicated by a dashed line and the blown-up contour
C is the solid line. The surface and contour lines refer to the value of
M(u).

to a final state [conduction band εc(p); gap structure εcv(p) =
εc(p) − εv(p)] due to the harmonic field EL(t) = E cos(ωt)
with amplitude E and frequency ω:

wpi = 2π

h̄

∫
dp

(2πh̄)3
|Lcv(p)|2

∑
l

δ(εcv(p) − lh̄ω). (2)

The quasienergy is expressed using the canonical momentum

p(τ ) = p + eE
ω

sin τ , with τ = ωt , as

εcv(p) = 1

2π

∫ π

−π

εcv(p(τ ))dτ, (3)

and the matrix element Lcv of the optical transition can be
defined as an integral over a closed contour C [enclosing the
interval (−1,1); see Figs. 1 and 2] in the variable u = sin ωt

[see Eq. (29) in Ref. [22]; p(u) = p + eEu/ω]:

Lcv(p) = 1

2π

∮
C
Vcv(p(u))eiS(u)du, (4)

where Vcv(p) = ih̄
∫

uc∗
p (r)eE∇pu

v
p(r)dr is the optical matrix

element, uc,v
p (r) are periodic functions with the translation

symmetry of the lattice, and S(u) is the classical action:

S(u) = 1

h̄ω

∫ u

0

εcv(p(v))√
1 − v2

dv. (5)

We note that the optical matrix elements do not vanish for
arbitrarily small photon wave vectors; hence we can use a
two-band model for the calculation [24,27,31,32]. In Ref. [22],
the Kane law [33] was considered:

εcv(p) = εg

(
1 + p2

mrεg

)1/2

, (6)

FIG. 2. Integration contour for Lcv in the u domain is depicted.
The poles of Vcv lie at u = u± and there is a branch cut between
−1 < u < +1 on the real axis. The contours C(r)

R and C(l)
R are used to

connect the contours C(r)
± and C(l)

± at infinity.

where mr is the reduced mass defined by m−1
r = m−1

c + m−1
v ,

mc and mv are the effective masses for the conduction band
and the valence band, respectively. Hence the quasienergy is

εcv(p) = 2εg

π

[
E(γ1)

γ2
+ γ2

2
(E(γ1) x2 + K(γ1) y2)

]
, (7)

where γ = ω
√

mrεg/(eE) denotes the Keldysh parameter,
γ1 = (1 + γ 2)−1/2, γ2 = γ (1 + γ 2)−1/2, x2 = p2

‖/(mrεg) and
y2 = p2

⊥/(mrεg) are dimensionless variables, and the func-
tions K and E are the complete elliptic integrals of the first and
second kind.

The presence of a large factor in the exponent in Eq. (4)
allows us to calculate the integral Lcv over u by a method
similar to the conventional saddle-point method. Here, we
unravel the key aspects of the method to calculate the
photoionization (PI) rate, different from Keldysh’s theory but
consistent with the selection rules.

The integration path in Eq. (4) must be treated with some
care as was shown by authors in Refs. [34,35]. This is due to
the substitution u = sin ωt which is not straightforward due to
the lack of a bijective connection between u and ωt .

In order to further investigate suitable deformations of the
integration contour, we consider the following real function
M(u) defined in the complex u plane:

M(u) = |eiS(u)|. (8)

To simplify our consideration we deal with a parabolic band
structure:

εcv(p) = εg

(
1 + p2

2mrεg

)
(9)

and, hence, the corresponding quasienergy is

εcv(p) = εg

[(
1 + 1

4γ 2

)
+ x2 + y2

2

]
. (10)
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Now we rewrite Eq. (5) at a momentum pl corresponding to
the lth term of Eq. (2). Thus we can find S(u) as

S(u) = l arcsin u − εg

2h̄ω

(
u

2γ 2
− 2x

γ

)√
1 − u2. (11)

Since the exponent in Eq. (4) involves the function arcsin u

[see Eq. (11)], we must use functions of u such that, as
Re(u) → 0,

Re(arcsin u) →
⎧⎨
⎩

−π, u ∈ lower left quadrant,
0, u ∈ upper half-plane,

+π, u ∈ lower right quadrant.
(12)

The square root is usually defined to possess a non-negative
real part.

As shown in Figs. 1 and 2, there are two saddle points
us with opposite imaginary parts, distinguished by the index
s := {±} which denotes the sign of Im(us). The saddle points
are determined by the condition εcv(p(u)) = 0. They provide
the main contribution to the integral Lcv . For the parabolic law,
the saddle points us are

u± = −γ x ± iγ
√

2 + y2 (13)

and for the Kane law

u± = −γ x ± iγ
√

1 + y2. (14)

Unlike the conventional saddle-point method, the func-
tion εcv(p(u)) is not analytic and the preexponential factor
Vcv(p(u)) has poles at these points. The character of the
singularities was considered in detail by Keldysh [36] and
Krieger [37]. Taking these features into account, we deform
the integration contour C with respect to u as shown by the
solid contour in Fig. 2. We deform the contour from the real
axis to the lower and upper half-planes so that it passes around
the points us along semicircles of infinitesimal small radius
r (via the integration paths C(s)

r ) and goes along the rays C(r)
s

and C(l)
s , where the contours C(r)

R and C(l)
R are used to connect

the contours C(r)
s and C(l)

s at infinity. A simple analysis shows
that the integrals Lcv along the C(r)

R and C(l)
R contours vanishes

(see Fig. 1). In order to evaluate the remaining integrals (Cs :
C(r)

s , C(s)
r , and C(l)

s ), we use u = us + ξ , and represent the
function S(u) in the form

S(u) =
∫ us

0
+

∫ us+ξ

us

= S(us) + Ss(ξ ). (15)

By expanding the preexponential factor in Eq. (4) near us , we
obtain in the frame of a two-band model [36,37] for solids
where one-photon transition is allowed [26]

Vcv(p(u)) ∼ sgn(us)

4i(u − us)
. (16)

Thus, accounting for ξ = u − us , we obtain

Lcv(p) ∼ 1

4

∑
s

sgn(us)e
iS(us )

∫
Cs

eiSs (ξ )

ξ
dξ . (17)

In order to complete the integration in Eq. (17), the dispersion
law εcv(p) must be specified. The essential difference from the
Keldysh description is, however, the fact that the dispersion
law must be specified at this stage rather than at a stage

of integration over momentum p in Eq. (2). This is due to
the necessity to determine the Stokes (steepest-descent) line
angles.

Using the parabolic law Eq. (9) in Ss(ξ ) at p = 0 and
neglecting terms of higher order in ξ , we obtain

iS±(ξ ) ≈ ± εg

2h̄ω

{√
2

ξ 2eiπ

γ
√

1 + 2γ 2
+ O(ξ 3)

}
. (18)

From the change of variable ξ = r exp(iϑ), we find that the
steepest-descent lines are the rays corresponding to ϑs and
−π − ϑs . Thus we have ϑs = 0 and −π − ϑs = −π ; hence
the angle between the steepest descent lines is π .

It is easy to show that the integrals along the rays C(r)
s and

C(l)
s cancel each other. On the left ray of the upper half-plane

ξ = r exp(−iπ ) and dξ = exp(−iπ )dr; then

∫
C(l)

+

eiS+(ξ )

ξ
dξ =

∫ −ρ

−R

eã(−r)2

r
dr → −

∫ +∞

0

eãr2

r
dr. (19)

On the right ray of the upper half-plane ξ = r exp(iπ ) and
dξ = exp(iπ )dr; then∫

C(r)
+

eiS+(ξ )

ξ
dξ =

∫ R

ρ

eã(−r)2

r
dr →

∫ +∞

0

eãr2

r
dr. (20)

Similar relations hold for the lower saddle point, u−. Thus
both integrals along the rays C(r)

s and C(l)
s are opposite; hence

they cancel each other.
Using the Kane law in Ss(ξ ) at p = 0 and neglecting terms

of higher order in ξ , we obtain

iS±(ξ ) ≈ ± εg

2h̄ω

{
2
√

2

3

ξ 3/2ei3π/4√
γ (1 + γ 2)

+ O(ξ 5/2)

}
. (21)

From the change of variable ξ = r exp(iϑ), we find that the
steepest-descent lines are the rays corresponding to ϑs = π/6
and −π − ϑs = −7π/6. Thus the angle between the lines
of steepest descent is 4π/3. It is also easy to show that the
integrals along the rays C(r)

s and C(l)
s cancel each other in this

case.
In fact, the integration in Eq. (17) reduces for both band

structures to bypassing singularities us , along semicircles of
infinitesimal small radius r (via the integration paths C(s)

r which
are the only contributing paths). Hence the angle between the
rays determines the final contribution to Lcv as follows:

Lcv(p) ∼ 1

4

∑
s

sgn(us)(π + 2ϑs)e
iS(us ). (22)

Thus, for the parabolic law, we find that the contribution to
Eq. (4) made by each of the saddle points is equal to

± h̄ω

8
exp{iS(u±)} (23)

and for the Kane law we have the following:

± h̄ω

6
exp{iS(u±)}. (24)

Saddle points u± are in the upper left and lower left quadrants
(see Fig. 2). Therefore, the argument iS(us) of the exponential
function in Eq. (22) and also the quasienergy εcv in Eq. (2)
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can be calculated exactly by using the analytical continuation
of functions in the complex plane such as Eq. (12) for the
parabolic case. We represent S(us) as ϕ0 + iϕs .

By using the delta function from Eq. (2) with quasienergy
Eq. (10), for the parabolic case, we obtain

ϕ0 = − εg

h̄ω

{
lh̄ω

εg

sinh−1(
√

2γ )

− x2

√
2

γ√
1 + 2γ 2

−
√

1 + 2γ 2

2
√

2γ

}
(25)

and

ϕ+ = ϕ = −x
εg

h̄ω

(
1

γ
−

√
1 + 2γ 2

γ

)
. (26)

For the Kane law the result is obtained after an expansion of
S(us) at p = 0, as suggested in Ref. [22], and reads

ϕ0 = − εg

h̄ω

{
1

γ2
[K(γ2) − E(γ2)]

+ x2γ2

2
[K(γ2) − E(γ2)] + y2γ2

2
K(γ2)

}
(27)

and

ϕ+ = ϕ = x

2

εg

h̄ω
arccot

(
1

2γ
− γ

2

)
, (28)

whereas ϕ− = −lπ − ϕ. In result, due to the summation in
Eq. (22), the contribution to the integral Lcv from both saddle
points located in the complex plane acquires a phase factor:

Lcv(p) ∼ (eiϕ(p) − e−ilπ−iϕ(p)) ∼ sin(πl/2 + ϕ). (29)

Indeed, this interference effect is sensitive to the phase of the
electron wave function. Thus we can see that for solids with
an allowed one-photon transition, even-photon absorption is
forbidden at (lh̄ω − εg) ≈ 0 (i.e., ϕ ∼ 0), as evidenced by
the perturbation theory [27].

By substituting the obtained expression for Lcv in Eq. (2)
and summing over momentum, we obtain a closed-form
solution for the total probability of an interband transition
per unit time and per unit volume in transparent solids within
the two-band model:

wpi(ω) =
∑
l=lpi

w
pi

l (ω), (30)

where lpi = [ν + 1] denotes the minimum number of photons
involved in the transition (the symbol [ν] denotes the integer
part of a number ν) and ν = ε̄g/h̄ω. The quasienergy ε̄g will
be specified from the band-gap knowledge. The corresponding
relative PI rate is expressed as a function of frequency and the
Keldysh parameter of the form:

w
pi

l = ω
(mrω

h̄

)3/2
f1(γ )Ql(γ,ν) exp(−αlpi), (31)

where the function

Ql(γ,ν) = f2(γ )φl(
√

β(l − ν)) exp{−α(l − lpi)}, (32)

TABLE I. Band-structure-dependent quantities.

Parabolic Kane

ε̄g εg(1 + 1
4γ 2 ) 2εgE(γ1)

πγ2

α 2 sinh−1(
√

2γ ) − β
π [K(γ2)−E(γ2)]

E(γ1)

β
2γ√

γ 2+1/2

π2

2K(γ1)E(γ1)

f1
exp(−�ν)

8π

2

9πγ
3/2
2

f2

√
2
β

√
π

2K(γ1)

a

√
2εg

h̄ω

23/2γ−β

γβ3/2

√
εgK(γ1)
2πh̄ωγ2

arccot ( 1−γ 2

2γ
)

�
2βγ 2

1+4γ 2

and the function φl is

φl(z) = e−z2
∫ z

0
2 sin2

(
πl

2
+ ay

)
ey2

dy. (33)

Photoionization rates Eqs. (30)–(33) are generally valid from
the multiphoton to the tunneling regime for both the parabolic
and the Kane band structures, provided the corresponding
band-structure-dependent quantities ε̄g , α, β, f1(γ ), f2(γ ),
and a are introduced; see Table I.

B. Multiphoton regime

We present here expressions corresponding to γ � 1 (mul-
tiphoton regime) in order to directly verify the selection rules.
In the case of a parabolic band structure, the corresponding PI
rate is given by

wP
pi = ω

4π

(mrω

h̄

)3/2
φlpi

(
√

2(lpi − ν))

× exp(lpi)

(
1

8γ 2

)lpi

. (34)

In the case of the Kane band structure, the corresponding PI
rate per unit of volume is given by

wK
pi = 4ω

9π

(mrω

h̄

)3/2
φlpi

(
√

2(lpi − ν))

× exp(2lpi)

(
1

16γ 2

)lpi

. (35)

A small z expansion of φl(z) gives

φlpi
≈

{√
2(lpi − ν)1/2, lpi odd,

2
√

2a2

3 (lpi − ν)3/2, lpi even,
(36)

where a, in the parabolic case, reads as follows:

a =
√

2εg

h̄ω
, (37)

and a, in the case of the Kane law, reads as follows:

a = π

2

√
εg

h̄ω
. (38)
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FIG. 3. Left column—comparison between the original Keldysh and the corrected Keldysh formulas of photoionization rates in SiO2 as
functions of laser intensity at the wavelength of 266 nm. Solid curves correspond to cKLD formula and dashed curves reproduce the KLD
formula. (a) Total PI rate. (b) Relative contribution of two- (black), three- (red), and four-photon (blue) processes to photoionization. The
channel-closure region at I ≈ 70 TW cm−2 is indicated by the gray shaded area, (a) and (b), and horizontal arrow, (a). Right column—comparison
between theory (curves) and experiment (markers) in SiO2 (blue) and Al2O3 (purple). Solid and dashed curves are numerical results via cKLD
and KLD theory, respectively. (c) 2PA coefficient β2. Fused silica (empty circles) and crystalline quartz (filled circles) [41,42], Al2O3 [43]
(empty squares), and [25] (filled square). (d) Experimental and numerical nonlinear refractive index n2. Experimental data are taken from [25]:
empty circles for SiO2 and empty squares for Al2O3. Notes: Refs. [44,45].

In Eqs. (34)–(36), the quantity ν → εg/h̄ω as γ � 1; hence
the dominant dependence upon the field amplitude, determined
by γ −2lpi , is retrieved for both PI rates, Eqs. (34) and (35).

The interference effect underlined in Eq. (29) takes place
from the multiphoton to the tunneling regime. However, we
note that in the tunneling regime, photoionization rates become
weakly dependent on frequency leading to the suppression of
the frequency signature of selection rules.

C. Interpretation of results

Keldysh supposed [22] that “the term in Eq. (36) [iS(us)
in our notations], which is linear in x [dimensionless mo-
mentum], will henceforth be left out, for when account is
taken of both saddle-points it gives rise in Lcv to a rapidly
oscillating factor of the type 2cos(ax), which reduces after
squaring and integrating with respect to x to a factor 2, which
we can take into account directly in the final answer.” However,
we show that it is precisely this assumption that violates
the selection rules [see Eq. (1)]. The argument iS(us) of the
exponential function in Eq. (22) must indeed be preserved. Due
to the summation in Eq. (22) the contribution to the integral
Lcv from both saddle points located in the complex plane
acquires a phase factor. This phase factor is a signature for the
interference of the transition amplitudes, the proper treatment
of which is responsible for obeying the selection rules.

An interference factor of a similar nature was first obtained
by Perelomov et al. [38] in 1966 for the PI rate of atoms.
However, the idea that an interference effect is important
for understanding selection rules has been put forward only
recently by Popruzhenko et al. [39,40] who derived a quantum
equation for the photoionization rate and interpreted it in terms
of quantum interference of scattering amplitudes using the
self-consistent Born approximation and the Keldysh technique
[39]. The summation Eq. (22) can thus be interpreted in
terms of interfering quantum trajectories. A key feature of our
approach is simplicity since the matrix element can be directly
evaluated for the two-band model in solids; see Eq. (16).

A simple analysis [see Eq. (36)] shows that in the perturba-
tion regime corresponding to low intensities (γ � 1), the rates
Eqs. (31)–(33) are reduced to Eq. (1) via a small z expansion
of φl(z) and z = √

β(l − ν):

φl ∼
{

(lh̄ω − εg)1/2, l odd,

(lh̄ω − εg)3/2, l even,
(39)

i.e., obey the selection rules for any band structure approxima-
tion, Kane or parabolic, and hence agree with the perturbation
theory. This result significantly improves Keldysh’s theory
while preserving its analytic nature; hence rates Eqs. (31)–(33)
can be plugged into modern computer simulations of laser-
matter interaction with moderate computational cost [29].
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III. COMPARISON OF 2PA COEFFICIENT AND
REFRACTIVE INDEX WITH EXPERIMENTS

In order to compare the results of the corrected theory with
experiment, we choose SiO2 and Al2O3, two highly relevant
materials for industrial applications. The band structure of
these wide-band gap insulators [46,47] can be well approx-
imated by a two-band model with only two parameters, the
reduced mass mr and the band gap εg . We use mr = 0.9m0

and εg = 9.0 eV for SiO2 and mr = 0.35m0 and εg = 8.8 eV
for Al2O3.

Figure 3(a) shows the dependence of the PI rate per unit vol-
ume on laser intensity, for SiO2 at the laser wavelength 266 nm,
as calculated from the KLD theory and the cKLD model. The
cusp at ≈70 TW/cm2 is the signature of two- to three-photon
absorption transition in the Keldysh formula, and is due to the
energy shortage as the electron ponderomotive energy grows
up with increasing laser field amplitude (the dynamic Stark
effect), and thus the probability of photoionization decreases
sharply highlighting the signature of channel closing [48,49].
As can be seen in Fig. 3(a), this cusp is no longer present in
our corrected cKLD model reflecting the proper superposition
of channels, 2PA and 3PA, respectively. In Fig. 3(b) we
evaluate the relative contribution of multiphoton processes
(channels) to the total photoionization rate. For the KLD
model, the contribution of 2PA vanishes at ≈70 TW/cm2, i.e.,
the 2PA channel closes, while the contribution of 3PA abruptly
increases. For the cKLD model, a smooth transition from 2PA
to 3PA is obtained: the contribution of 3PA compensates for
the attenuation of the 2PA process.

By taking into consideration only the 2PA process, which
is valid in the limit of low laser intensities, we compare
theoretical predictions for the 2PA coefficient β2 calculated
from the KLD and cKLD models with measurements for
SiO2 [41,42] and recent data for Al2O3 [43]; see Fig. 3(c).
The improved Keldysh model, cKLD, matches better
with the experimental findings, especially, in the vicinity of
the transition from 2PA to 3PA (h̄ω/εg ≈ 0.5), where the
Keldysh model overestimates the absorption rate by a factor
of ∼10, and further highlights and confirms the selection
rules signature. The application of the Kramers-Kronig
relation to the imaginary part of the permittivity gives the
frequency dependence of the complex dielectric function
ε(ω) = εr (ω) + iεi(ω), and thus allows us to derive the

dispersion curves of the nonlinear refractive index n2(ω):

n2(ω)I = Re(
√

ε(ω)) − n0(ω),

where n0(ω) is the linear index approximated by a three-term
Sellmeier dispersion equation for SiO2 [50], Al2O3 [51], and
I = ε0cn0E2/2 is the laser intensity in the bulk. Dispersion
curves for the nonlinear refractive index n2 are shown in
Fig. 3(d), where we present the comparison of the cKLD and
KLD models with measurements [25], demonstrating again
excellent agreement. As can be seen, both models give similar
behavior except for the sharp peak (resonancelike behavior) at
half the band gap energy, where Keldysh’s model exhibits a
cusp originating from the omission discussed above, whereas
the corrected model yields a significant improvement. The
fact that the photoionization rates obey the selection rules,
Eq. (1), leads to a correct frequency dependence. In the 2PA
case, the original Keldysh expression overestimates n2 [see
Fig. 3(d)] in the vicinity of the resonance due to the incorrect
frequency dependence of photoionization rates introduced in
the Kramers-Kronig relation [see Fig. 3(c)]. Our expression for
photoionization rates differs in its frequency dependence be-
cause it obeys the selection rules; thus it gives less contribution
to n2 in this range and a higher contribution out of resonance.

IV. CONCLUSION

We derived a closed analytical expression for the photoion-
ization rate of transparent solids that obey selection rules.
Our model relies on appropriate corrections to Keldysh’s
theory so as to take into account the classical effect caused
by interference between quantum trajectories and reduces
to the equivalent results of perturbation theory. The results
yield excellent agreement with experimental measurements of
the two-photon absorption coefficient β2 as well as nonlinear
refractive index n2 for materials Al2O3 and SiO2.
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