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We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium
atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13
bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of
the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer
potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We
find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding
the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson,
J. Mol. Spectrosc. 330, 43 (2016)] and by partially treating the nonadiabatic effects using distance-dependent
reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on
average, which is 3.7 times better than the “reference” Born-Oppenheimer model. We calculate the s-wave
scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude
smaller than previous determinations. For example, the s-wave scattering length for 174Yb is +5.55812(50) nm.
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I. INTRODUCTION

Photoassociation [1,2] is the act of forming a molecule from
a pair of colliding atoms through optical excitation. If a laser is
tuned to match the difference between the near-zero collision
energy and an excited bound state, atom loss is observed.
The detuning of the laser from atomic resonance indicates
the energy of the molecular vibrational state with respect
to its dissociation limit. Photoassociation spectroscopy, first
demonstrated for alkali atoms [3–8], was quickly extended to
divalent species Ca [9,10], Sr [11–14], Yb [15,16], and Hg
[17]. The intercombination lines present in divalent species
enable photoassociation spectroscopy to be conducted at high
resolution [18]. Two-photon processes are also possible: both
Raman [19] and Autler-Townes [20,21] laser configurations
can be used to measure the positions of ground-state energy
levels in a process known as two-color photoassociation spec-
troscopy [22–26]. Photoassociation spectroscopy has also been
demonstrated for heteronuclear molecules, for example, RbYb
[27,28] and LiRb [29]. Due to preferential Franck-Condon
factors between the ground scattering state and weakly bound
excited states, photoassociation spectroscopy is primarily used
for the measurements of bound states close to the appropriate
dissociation limit.

Precise measurements of ground-state energy levels near
the dissociation limits are immensely important from the point
of view of the physics of ultracold collisions. The s-wave
scattering length, a fundamental parameter for the physics of
Bose-Einstein condensates (BECs) [30], is closely related to
the position of the most weakly bound state in a ground-state
molecule [31] as they both depend primarily on the long-range
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van der Waals coefficient C6 and the total zero-energy WKB
phase φ of their interaction potential. It is therefore no surprise
that the most accurate determinations of scattering lengths for,
e.g., Yb [32], Ca [33], or Sr [34] are based on photoassociative
investigations of the long-range interactions in their respective
dimers. The s-wave scattering lengths play an important
role in the density shifts present in optical atomic clocks
[35–38]. Precise knowledge of s-wave scattering lengths
between ground-state atoms is a prerequisite for the deter-
mination of scattering lengths in ground-excited-state and
excited-excited-state atomic collisions through measurements
of atomic pairs in optical lattices [39,40].

The Born-Oppenheimer approximation plays a central role
in molecular physics. It provides us with the notion of an
interatomic potential curve. Within this approximation, the
atomic interactions are the same regardless of isotopes forming
the molecule, which makes it possible to calculate the physical
properties, e.g., scattering lengths, for one isotopologue
using data from another [31,41]. On the other hand, there
are several, generally mass-dependent corrections to this
approximation, known together as beyond-Born-Oppenheimer
(BBO) effects. The most widely known effect is the diagonal
(or adiabatic) Born-Oppenheimer correction (DBOC) [42],
which can be seen as a molecular analog of the isotopic mass
shift known from atomic spectroscopy. Similarly, additional
isotope-dependent interactions stem from the finite nuclear
volume [43]. Both corrections have been recently estimated
for Yb2 by Lutz and Hutson [44]. Finally, nonadiabatic effects
[45–48] can be partially accounted for using the concept of
effective reduced masses [49,50].

Interactions between ground- or excited-state ytterbium
atoms have been extensively studied using photoassociation
experiments. Single-color photoassociation spectroscopy has
been utilized to study interactions near the 1S0 + 1P1 [15]
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and 1S0 + 3P1 [16,51,52] asymptotes. Intercombination line
photoassociation spectroscopy has also been used to inves-
tigate interisotope Yb2 molecules [53], as well as exotic
subradiant states [54]. Intercombination line photoassociation
spectroscopy provides the positions of associated optical Fes-
hbach resonances [55,56], which can be used, as demonstrated
in Ref. [57], to effectively control the s-wave scattering
lengths.

Two-color photoassociation spectroscopy has been per-
formed previously in thermal samples of Yb atoms and has
enabled the determination of scattering lengths in this system
[32]. In this work, however, we utilize two-color Raman
photoassociation spectroscopy of BECs of ytterbium atoms
that is two orders of magnitude more precise than the previous
experiment. Instead of a model potential, in this work our
interaction model is based on ab initio calculations [58] and
is further improved by including the BBO effects. Finally we
calculate the s-wave scattering lengths for bosonic isotopes
of Yb. The paper is organized as follows: a description of the
photoassociation experimental setup is found in Sec. II and
is followed by the account of systematic shifts in Sec. III.
Our interaction models are described in detail in Sec. IV. The
fitting of the models and the resulting model parameters and
calculated s-wave scattering lengths are discussed in Sec. V.
Section VI concludes the paper.

II. PHOTOASSOCIATION SETUP

The lowest-energy levels of the Yb atom are shown in
Fig. 1(a). The strong 1S0-1P1 transition at 399 nm is used
for Zeeman slowing. The intercombination 1S0-3P1 transition
at 556 nm is used for laser cooling and photoassociation
spectroscopy [16,32]. An additional laser at 532 nm is used
to form a far-off resonance trap (FORT). Contrary to our
previous determination of the bound-state energies of Yb2

using two-color photoassociation spectroscopy [32], which
utilized thermal atoms, we performed our measurements in
BECs of 168Yb, 170Yb, and 174Yb atoms. Typically, 1 × 104

condensate atoms were obtained after evaporative cooling in
our FORT and the atom density was around 1014 cm−3. The
procedures of creating BECs using this setup were previously
published for all the investigated isotopes [59–61] and we
will only describe the optical setup necessary to perform the
two-color photoassociation spectroscopy.

In this experiment, pairs of colliding ground-state atoms
are transferred by a Raman process induced by two detuned
556 nm lasers operating near the 1S0 → 3P1 transition [see
Fig. 1(b)] to a bound state in the electronic molecular ground
state. We observed the two-color photoassociation (PA) signals
by measuring the number of atoms remaining after the
irradiation of the PA light by use of the absorption imaging
method with the 1S0-1P1 transition. After the evaporative
cooling, two lasers, i.e., L1 for the free-bound transition and L2

for the bound-bound transition, were simultaneously applied
to the atoms in the FORT for about 30–100 ms. These beams
were focused to about an 80 μm diameter.

From symmetry considerations, it follows that two like
ground-state bosonic Yb atoms may only collide in even
partial waves, l = 0,2,4, . . .. In the 1S0 + 1S0 ground state,
the total angular momentum �J = �l + �j is, trivially, equal to

(a) (b)
P

2
1
0

556 nm

399 nm

1
1

S1
0

P3

0u
+P3

1S1
0+

L1

Eb 0g
+S1

0S1
0+

Light source

(λ=556 nm)

A 
O 
M 

AOM AOM

To atoms

PD

PBS PBS

PBS

PBS

HWP 

HWP 

HWP 

M 

M 

Feedback for intensity stabilization(c)

A 
O 
M 

(f )1L2 (f  )2

FIG. 1. (a) Main Yb transitions used in the experiment. (b) Two-
color PA spectroscopy in a Raman configuration: a pair of 556 nm
lasers transfer a colliding ground-state atomic pair to a ground
molecular bound state through a virtual excited state. The difference
between the laser frequencies f1 − f2 yields the bound-state energy
Eb. (c) Schematic setup for PA lasers. The two laser beams for
the Raman transition were split by a polarized beam splitter (PBS).
The frequency difference between the two beams was controlled by
acousto-optic modulators (AOMs). Two beams are combined by a
PBS and then the polarization of both lights is set to be parallel to
each other. In order to remove PA light-intensity fluctuations after
optical fibers, we utilized an intensity-feedback system by use of an
AOM and photodiode (PD). HWP: half-wave plate; M: mirror.

the rotational angular momentum l because the total electronic
angular momentum j = 0. At ultracold temperatures, s-
wave collisions are dominant. Following the J = 0 �→ J = 0
selection rule, the first PA photon may only transfer the two
s-wave (J = 0) atoms to J = 1 excited states—in our case,
bound states of the 1S0 +3 P1 0+

u molecular state. It can be
shown [51,62] that the excited 0+

u J = 1 state is a mixture of
l = 0,2 (s- and d-wave) partial waves, but not l = 1. Since
in dipole transitions the rotational quantum number l must be
conserved, the second photon can only transfer the excited
molecule to J = 0,2 ground 0+

g states.
The schematic setup for the PA lasers is shown in Fig. 1(c).

The two laser beams were prepared by splitting one laser
beam of frequency-doubled light from a fiber laser operating at
1112 nm, coupled to the same optical fiber and delivered to Yb
atoms. The slow drift of the laser frequency was suppressed by
locking to an ultralow expansion cavity. The laser linewidth
was about 100 kHz. The frequency difference between the
two beams of L1 and L2 was controlled by acousto-optic
modulators (AOMs). The radio-frequency sources of AOMs
are generated by synthesizers 8648A (Agilent), which are
stabilized with a 10 MHz clock from the GPS-stabilized
synthesizer (DGPS-1.6, DS Technology, Japan). In order to
remove PA light-intensity fluctuations after the optical fibers,
we utilized an intensity-feedback system by use of an AOM
and a photodiode (PD). Finally, the PA laser beams were
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aligned to pass through the atoms in the FORT by using a
charge-coupled device camera for absorption imaging. The
detuning of the PA laser with respect to the atomic resonance
1S0-3P1 was easily checked by observing the frequency at
which the atoms in the magneto-optical trap disappeared. The
frequency f1 of L1 was fixed at a certain detuning from a
1S0 + 3P1 0+

u PA resonance, and the frequency f2 of L2 was
scanned to obtain spectra of the bound states in the Yb2 ground
state.

III. DETERMINATION OF BOUND-STATE ENERGIES

Each PA spectrum has been fitted with a Lorentzian line
shape, and the observed linewidth was typically around several
kHz. Peak positions suffered from systematic errors of three
main origins: a light shift by two 556 nm PA lasers, a light
shift by the 532 nm FORT light used to hold the atoms, and the

mean-field shift of the BEC. Table I shows all of the measured
binding energies in which the density shift and the light shifts
from both the FORT and PA lasers are removed.

The light shift induced by the PA lasers is �EPA(IFB,IBB) =
αFBIFB + αBBIBB, where αFB and αBB are constants related
to the Franck-Condon factors for the free-bound and bound-
bound transitions, respectively, and similarly IFB and IBB are
the laser intensities for free-bound and bound-bound transi-
tions. In order to compensate the light shift by extrapolation,
we measured the peak positions with several laser intensities
for IFB and IBB and with ratio of IFB/IBB kept constant.
Figure 2(b) shows the light shift with several intensities for
IBB (= IFB). We removed the light shifts by extrapolation at
IFB = IBB = 0. Typical shifts by PA light were of the order of
less than 10 kHz.

The light shift by FORT light can be similarly eliminated,
but one should be careful of the fact that changing the FORT

TABLE I. Measured and calculated binding energies Eb, in MHz, for bosonic homonuclear Yb2 isotopologues. Vibrational quantum
numbers v are numbered from the dissociation limit. J is the rotational quantum number. The reported binding energies can be compared
to previous measurements in cold thermal gases [32] and to our theoretical models based on the same ab initio potential curve (Fig. 3):
one purely Born-Oppenheimer (“reference”) model and one that takes into account two beyond-Born-Oppenheimer (BBO) corrections—the
adiabatic (DBOC) correction (Fig. 4) and the R dependence of the effective reduced mass μ (Fig. 5). The respective differences (in kHz)
between the two theoretical models and the experimental data are also shown: it is interesting to notice that the reference model systematically
yields binding energies lower than experimental for the two light isotopes (168Yb and 170Yb) and higher for the heavy 174Yb isotope, whereas
the BBO model does not—indicating significantly improved mass-scaling behavior. The average difference between the reference model and
experiment is 112.9 kHz (rms), whereas for the BBO model this is reduced by almost a factor of four down to 30.2 kHz. For the purposes of
future experiments, we provide extrapolated bound-state energies for two vibrational states below those investigated in our experiment. The
last column gives the outer turning points Rt for the listed energy levels.

Expt. (this work) Expt. [32] Reference model BBO model
Molecule v J (MHz) (MHz) (MHz) Diff. (kHz) (MHz) Diff. (kHz) Rt/a0

168Yb2 1 0 − 0.79292 − 0.79314 158.9
168Yb2 2 2 − 145.53196(48) − 145.55804 − 26.08 − 145.53855 − 6.59 66.6
168Yb2 2 0 − 195.18141(46) − 195.27383 − 92.41 − 195.18711 − 5.70 63.4
168Yb2 3 2 − 1075.28866 − 1075.03235 47.8
168Yb2 3 0 − 1165.47490 − 1165.08405 47.1
168Yb2 4 2 − 3415.69550 − 3415.03045 39.4
168Yb2 4 0 − 3545.28999 − 3544.42500 39.1
168Yb2 5 2 − 7808.96845 − 7807.68328 34.3
168Yb2 5 0 − 7977.33871 − 7975.79033 34.2
170Yb2 1 2 − 3.66831(32) − 3.651(26) − 3.64732 +20.99 − 3.66917 − 0.86 123.1
170Yb2 1 0 − 27.70024(44) − 27.661(23) − 27.69157 +8.67 − 27.69224 +8.00 87.9
170Yb2 2 2 − 398.05626(46) − 398.08462 − 28.36 − 398.06980 − 13.54 56.4
170Yb2 2 0 − 463.72552(80) − 463.83230 − 106.78 − 463.72705 − 1.53 54.9
170Yb2 3 2 − 1817.14074(80) − 1817.31174 − 171.00 − 1817.11393 +26.81 43.8
170Yb2 3 0 − 1922.01467(505) − 1922.28419 − 269.52 − 1921.92989 +84.76 43.3
170Yb2 4 2 − 4886.37405 − 4885.90046 37.1
170Yb2 4 0 − 5029.78536 − 5029.09120 36.9
170Yb2 5 2 − 10238.69119 − 10237.71118 32.8
170Yb2 5 0 − 10419.98838 − 10418.72563 32.7
174Yb2 1 0 − 10.62513(53) − 10.612(38) − 10.61266 +12.47 − 10.62784 − 2.71 103.1
174Yb2 2 2 − 268.63656(56) − 268.75(21) − 268.49571 +140.85 − 268.60620 +30.36 60.2
174Yb2 2 0 − 325.66378(98) − 325.607(18) − 325.58245 +81.33 − 325.62351 +40.27 58.3
174Yb2 3 2 − 1432.82653(75) − 1432.70510 +121.44 − 1432.85962 − 33.09 45.5
174Yb2 3 0 − 1527.88543(34) − 1527.86437 +21.06 − 1527.88567 − 0.24 45.0
174Yb2 4 2 − 4088.59536 − 4088.79949 38.2
174Yb2 4 0 − 4220.99530 − 4221.00440 38.0
174Yb2 5 2 − 8846.73553 − 8846.91201 33.6
174Yb2 5 0 − 9015.82296 − 9015.74456 33.5
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FIG. 2. Extrapolation of photoassociation line positions shown
on the example of the 170Yb v = 2, J = 2 line. (a) An example
two-color PA spectrum fitted with a Lorentz function; the FWHM is
about 1 kHz. (b) The optical light shift by the PA lasers as a function
of laser intensity. (c) FORT light shift as measured by an additionally
applied 532 nm laser as a function of its power. (d) Mean-field shift
by the BEC as a function of atomic density. See Sec. III for details.
The final Yb2 binding energies are shown in Table I.

intensity not only changes the shift by FORT light, but also
changes the atom density and, consequently, the mean-field
energy. Therefore, instead of directly manipulating the FORT
laser intensity, we measured light shifts to the atoms in an
optical lattice due to another loosely focused light beam at the
same wavelength, as shown in Fig. 2(c). The wavelength λL

for the optical lattice is 532 nm and the potential depth is 15
ER , where ER = h2/(2mλ2

L), where h is the Planck constant
and m is the mass of the Yb atom. With this information, we
estimated the light shift due to the FORT light by estimating
the FORT intensity from measured trap parameters, such as the
trap frequencies and FORT powers. Typical shifts by 532 nm
light were of the order of a few kHz.

The remaining shift is the mean-field shift of the BEC.
The mean-field energy is proportional to atomic density, and
therefore the shift was removed similarly by extrapolation.
Typical mean-field shifts were of the order of a few kHz, as
shown in Fig. 2(d).

IV. THE INTERACTION MODELS

In this work, we will compare two approaches to the
modeling of interactions in the Yb2 molecule. First, we
will construct a pure Born-Oppenheimer interaction model,
following the standard procedure employed in previous mass-
scaling analyses [14,28,32,51]. This will serve as a reference
for comparison with a final model that incorporates additional
beyond-Born-Oppenheimer (BBO) corrections.

Within the Born-Oppenheimer approximation, the interac-
tions between two ground-state 1S0 atoms can be described by
a single 0+

g (1�+
g ) potential curve. The energy levels Eb for

a given rotational quantum number J can be calculated using
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FIG. 3. The mass-independent Born-Oppenheimer potential
curve V (R) used to describe the ground 0+

g [or 1�+
g in Hund’s

case (a) notation] state of Yb2. The short-range ab initio potential
[58] (green dots) is interpolated using cubic splines, scaled by a
fitted parameter s, and smoothly connected to an analytic −C6/R6 −
C8/R8 long-range potential (dashed line) using a transition function
described by Eq. (2) over the distances between a = 10 a0 and
b = 19 a0. The depth of the fitted potential De = 739.7 cm−1.

the radial Schrödinger equation of the form
[
− h̄2

2μ

d2

dR2
+ V (R) + V ′(R) + h̄2J (J + 1)

2μR2

]
�(R)

= Eb�(R). (1)

The four Hamiltonian terms on the left-hand side are the radial
kinetic energy, the mass-independent Born-Oppenheimer po-
tential V (R), the mass-dependent corrections V ′(R), and the
rotational kinetic energy dependent on the rotational quantum
number J . The reduced mass is denoted by μ. We calculate
the bound-state solutions to this equation using the matrix
discrete variable representation (DVR) technique [63] with a
variation on the nonlinear coordinate transformation [64]. For
the calculation of s-wave scattering lengths, we employ the
renormalized Numerov method [65,66].

Our isotope-independent Born-Oppenheimer potential
V (R), shown in Fig. 3, consists of smoothly connected short-
and long-range parts. The short-range part of the potential,
Vshort(R), is provided by cubic spline interpolation of the ab
initio curve given in Ref. [58]. The long-range van der Waals
part of the potential is analytic: Vlong(R) = −C6R

−6 − C8R
−8.

The short- and long-range parts are joined together using a
transition function [67],

f (R) =
⎧⎨
⎩

0, R � a
1
2 + 1

4 sin(πx/2)[3 − sin2(πx/2)], a < R < b

1, b � R,

(2)

with x = [(R − a) + (R − b)]/(b − a). The parameters a =
10a0 and b = 19a0 denote the transition region between the
short- and long-range parts of the potential. The potential itself
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is calculated via V (R) = [1 − f (R)]sVshort(R) + f (R)Vlong.
For internuclear ranges R < a, the potential is purely ab initio,
while for R > b, it is equal to Vlong(R). Finally, s scales the ab
initio potential, which, by modifying the potential depth De,
enables us to fix the WKB phase φ to achieve mass scaling.
This potential alone will be the basis of our reference Born-
Oppenheimer potential, which will be compared to models
incorporating beyond-Born-Oppenheimer (BBO) phenomena
described below.

The isotopologue-dependent potential V ′(R) describes
R-dependent molecular isotope shifts. Isotopic shifts of
atomic energy levels are widely known phenomena in atomic
spectroscopy which manifest themselves as static shifts to
transition energies for different isotopes. During a collision,
as atoms get closer together to form a molecule, the shape
of their respective electronic clouds is modified. As a result,
the isotopic shifts depend on the interatomic distance R. This
gives rise to an additional, isotopologue-dependent, molecular
potential V ′(R). As in atomic spectroscopy, the isotopic
shift has two components: a mass shift and a volume shift.
The former results from correlations between nuclear and
electronic motion; the latter is due to the finite dimensions
of the nuclei.

The essence of the Born-Oppenheimer approximation
is that the electronic motion immediately follows that of
the nuclei. In reality, however, the electrons also influence
the nuclear motion through conservation of momentum. In
atoms, this leads to the mass part of the isotopic shift. In
molecules, this effect may be taken into account through
the (perturbative) adiabatic or diagonal Born-Oppenheimer
correction (DBOC) [42],

V ′
mass(R) =

∑
i=1,2

〈�(�r; �Rn)|T̂i |�(�r; �Rn)〉, (3)

where T̂i = −(h̄2/2mn,i)∇̂2
i are nuclear kinetic-energy opera-

tors for nuclear masses mn,i , and the internuclear distance R =
| �R1 − �R2| depends on the positions of the two nuclei �R1 and
�R2. The integration is carried over the electronic coordinates �r .

Since in the BO approximation the electronic wave functions
�k(�r; �Rn) are isotope independent, the adiabatic correction
is proportional to 1/mn,1 + 1/mn,2 = 1/μn. The off-diagonal
matrix elements of the same operator lead to nonadiabatic
corrections. For Yb2, the adiabatic corrections have been
recently calculated with respect to the 176Yb2 isotopologue
using modern quantum chemistry methods and raw data have
been made available [44]. The asymptotic long-range behavior
of the adiabatic correction is A6R

−6 + A8R
−8 + · · · [68] (for

instance, in H2, A6 = (5/μ) C6 [69]). Much like our potential,
the ab initio points are interpolated and smoothly connected by
Eq. (2) with an analytic Amass

6 R−6 + Amass
8 R−8 long range. In

this case, however, the long-range coefficients Amass
6 and Amass

8
were fitted to the ab initio points. The adiabatic correction
curve is appropriately mass scaled to the isotopologue at hand.
The resulting curves are shown in Fig. 4. Note that these
curves are given with respect to the 176Yb2 isotopologue. As
a consequence, the potential coefficients given in Table II
also reflect the (heaviest) 176Yb2 case. The largest adiabatic
corrections to C6 are for the lightest isotopologue, 168Yb, and
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FIG. 4. Mass (solid lines) and volume (dashed lines) corrections
to the interaction potential V ′(R) for bosonic isotopologues 168Yb2–
174Yb2 with respect to 176Yb2, where they are defined as uniformly
zero. The short-range parts of the curves are based on raw data
published by the authors of Ref. [44] and, like the main potential
V (R), are smoothly connected to an analytic A6R

−6 + A8R
−8

asymptote using Eq. (2). The mass shift depends on the nuclear
reduced mass μn [Eq. (3)], while the volume shift is defined by
the dimensions of the appropriate nuclei [Eq. (4)].

are equal to Amass
6 = −0.00202 and Amass

8 = 0.750541 atomic
units.

The nuclear volume effect stems from the finite, and
isotope-dependent, dimensions of the nuclei. Outside the
nucleus, the electron-nuclei interactions have the typical
Coulomb character. Inside the nucleus, however, the electric
field has lower magnitude. This has the effect of making
the electron-nuclei interaction energy slightly higher. In a
first-order approximation, the magnitude of this effect depends
on the nuclear rms charge radii 〈r2〉 and the density of the

TABLE II. Long-range Yb2 ground-state 0+
g potential parameters

C6, C8 and potential depths De from different sources compared
to our determinations: the reference Born-Oppenheimer model and
one that takes into account two BBO effects—the adiabatic Born-
Oppenheimer correction based on [44] and the distance dependence
of the effective reduced mass μ. It is important to note that the C6

and C8 values are given for the 176Yb2 isotopologue—the adiabatic
correction introduces a slight variation of these parameters from
isotope to isotope.

C6 C8 De χ 2

(103 a.u.) (105 a.u.) (cm−1)

Ab initio [58] 2.57 723.7
Ab initio [75,76] 1.929(39) 1.88(6)
Previous PA [32] 1.932(30) 1.9(5)
Reference model 1.9335(22) 2.172(65) 743.0(2.4) 220792
BBO model 1.93727(57) 2.265(17) 739.73(60) 9555
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electrons at the center of the nucleus [43]:

V ′
volume(R) = 2π

3
Z

(
e2

4πε0

)
|�(0)|2λA,A′, (4)

where λA,A′ = 〈r2
A′ 〉 − 〈r2

A〉 is the difference in rms nuclear
radii between the isotope at hand and a reference isotope—in
our case 176Yb—and can be taken from the database [70].
The contact density |�(0)|2 for Yb2 has also been calculated
in Ref. [44]. In this case, however, the authors of Ref. [44]
warn that the density functional theory (DFT)-based method
used for their calculation was shown to be inadequate for
the simpler system of Sr2 and that their results should be
considered qualitative estimates. Like the mass shift, we fit the
contact densities with a Avolume

6 R−6 + Avolume
8 R−8 long range

[71] and interpolate using Eq. (2). The volume shift itself is
then calculated from Eq. (4) bearing in mind that there are
two nuclei in a diatomic molecule and contributions from both
need to be taken into account. The resulting correction curves
are shown in Fig. 4.

There are two fundamental interpretations of the Born-
Oppenheimer picture [44]. One can be described as a “physi-
cist’s molecule”—a molecule is composed of two distinct
atoms of mass ma,1 and ma,2 bound by an interaction potential
V (R). In this picture, the reduced mass in Eq. (1) should be cal-

culated from the atomic masses, μa = (m−1
a,1 + m−1

a,2)
−1

. This
picture is well grounded especially at large atomic separations,
beyond the LeRoy radius RLR [72] where each atoms’ electrons
move together with the nuclei. This is manifestly appropriate
in photoassociation spectroscopy, where the probed molecules
are very weakly bound, and in scattering calculations, where
whole atoms are considered as colliding bodies. In particular,
scattering lengths are defined for atomic masses. On the other
hand, at small internuclear separations, a “chemist’s molecule”
picture is more relevant. Here, the nuclei move in accordance
with an effective potential V (R) created by the interplay
between the nuclei and the electron cloud. In this case, we
should put the nuclear mass μn = (m−1

n,1 + m−1
n,2)

−1
into the

radial Schrödinger equation.
The duality between the chemist’s and physicist’s pictures

may be eliminated by consistent accounting for nonadiabatic
corrections [45,46]. A more practical way to transition between
two regimes by means of distance-dependent reduced masses
has been tackled previously [47,49,50], although only for
very small molecules [48,73]. Using effective reduced masses
enables us to partially account for nonadiabatic effects. For
large systems, such as Yb2, no ab initio data are available;
therefore we resort to an empirical approach where we model
the reduced masses with an analytic function of the form

μ(R) = μa − μa − μn

1 + (Rm/R)6 , (5)

shown in Fig. 5(a) for Rm = 18a0. This function was chosen
for the following reasons:

(i) at short ranges, as R → 0, μ(R) → μn;
(ii) at long ranges, as R → ∞, μ(R) → μa;
(iii) for large R, μ(R) approaches μa as R−6, following

Ref. [47].
The quantity Rm serves as a range parameter that defines

the point where the μ(R) is exactly halfway between μa and

0 5 10 15 20 25 30 35
Rm

104

105

χ
2

0 5 10 15 20 25 30 35

173.90

173.91

173.92

173.93

173.94

2
μ

 (
u)

atomic mass

nuclear mass

Asymptotic

formR    = 18 am 0

(b)

(a)

Selected

model

(units of a0)

R (units of a0)

FIG. 5. (a) The effective, distance-dependent reduced mass as
defined by Eq. (5) shown for the 174Yb2 isotopomer. The Rm parameter
defines the distance where the effective mass μ(R) is exactly halfway
between the nuclear μn and atomic μa reduced masses. At shorter
distances, μ is closer to the nuclear mass limit, while as R → ∞, μ

approaches the atomic reduced mass as R−6. The case of Rm = 18 a0

shown in the figure is used in our BBO model. (b) The dependence
of fit quality factor χ 2 for the BBO interaction model as a function
of the effective mass range parameter Rm. The lowest χ 2 = 9555
(χ 2/dof = 1062) is reached for Rm = 18 a0.

μn. The atomic masses ma were taken from Ref. [74]; the
nuclear masses are, of course, 70 electron masses lower.

In this analysis, we will assume the same μ(R) for the
vibrational and rotational motion. In general, the two will
differ: for example, Pachucki and Komasa [47], in their
general nonadiabatic framework for a diatomic molecule, give
different expressions for the vibrational μ‖ and rotational μ⊥
reduced masses. Also, these functions may not be as well
behaved as Eq. (5). For example, the effective vibrational
reduced mass μ‖ for H2 of Ref. [48] actually exceeds μa

before reaching the appropriate asymptotic value.

V. RESULTS

The first step in our analysis is the construction of
the reference Born-Oppenheimer interaction model where
no mass-dependent effects are taken into account. The
potential parameters C6, C8, and De are fitted using the
least-squares method, i.e., by minimizing the fit parameter

χ2 = ∑N
i=1 (Eth

i − E
expt
i )

2
/u2

i using the Levenberg-Marquardt
algorithm. The outer turning points of the vibrational states are
well beyond the LeRoy radius RLR [72] and the corresponding
vibrational spacings depend mostly on the long-range C6

coefficient [79]. On the other hand, the position of the entire
near-dissociation vibrational series for a given isotope depends
on the zero-energy WKB phase,

φ = 1

h̄

∫ ∞

Rin

√
−2μV (R)dR, (6)
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integrated from the potential’s inner turning point Rin to
infinity. Assuming a mass-independent potential and a fixed
reduced mass μ, this phase is explicitly proportional to

√
μ. In

mass-scaling analyses of photoassociation data or scattering
lengths, it is usually assumed that μ = μa . The number of
vibrational bound states supported by a potential with a R−6

long range is N = 
φ/π + 3/8� [31]. In order for a potential
to be mass scaled, i.e., correctly describe the energy level
positions for all isotopes characterized by different reduced
masses μ, the potential curve has to support the correct number
of bound states.

In our case, mass scaling is reached when the ground state
174Yb molecule has 72 vibrational states for rotational angular
momentum J = 0 (the same as in a previous determination
[51]). Any attempts to change the number of bound states
result in a χ square that is many orders of magnitude larger.
The parameters of the reference fit that uses only a Born-
Oppenheimer curve are shown in Table II. The theoretical
bound-state energies provided by this model are shown in
Table I. This fit, and its χ2 of 220 792 (and χ square per
degree of freedom χ2/dof = 24 532) will serve as a reference
for further fits using additional mass-dependent effects. The
type-B uncertainties in Table II are calculated using the mean
rms differences between theoretical and experimental bound-
state energies. For the reference model, these are equal to
112.9 kHz.

The first attempted improvement to the model was to add
the isotopic mass shifts (Fig. 4) calculated in Ref. [44]. This
resulted in a decrease of χ2 by about 35%, down to 143 856
(χ2/dof = 15 984), with very little impact on potential param-
eters. The situation changes when the mass effect is replaced by
the nuclear volume effect. In this case, the fit falls apart—χ2

becomes over 30 times larger than that of our reference fit
and exceeds 8 × 106 (χ2/dof = 892 942). Also, both van der
Waals coefficients C6 and C8 change considerably; in this
fit, C6 ≈ 1.922 × 103 a.u., which is incompatible with the
reference fit. Finally, a fit that includes both the mass and
nuclear volume effects inherits the weaknesses caused by
adding the nuclear volume effect and is characterized by
a similarly high χ2 of about 7.5 × 106 (χ2/dof = 828529).
The explanation could be that the two corrections work in
opposite directions. As isotope mass increases, the mass effect
will tend to decrease the potential depth for lighter isotopes,
while the significantly larger nuclear volume effect will make
the effective potential deeper (see Fig. 4). This does not
necessarily mean that the sign of this correction is wrong—it
may simply be overestimated. The authors of Ref. [44] warn
that their nuclear volume effect calculations are of lower
quality than those of the mass effect. In the future, more
accurate calculations may be feasible. For now, we continue
with a model that takes only the mass effect (i.e., the adiabatic
correction) into account.

By far, the best improvement is reached by including the
distance-dependent effective mass. Our empirical model of
the effective mass has a range parameter Rm which defines the
transition point between the nuclear-mass and atomic-mass
limits. We run a series of fits for a model that includes
the adiabatic correction with different values of Rm, and
show their respective χ2 in Fig. 5(b). A minimum of χ2 =
9555 (χ2/dof = 1062) is found for Rm = 18a0, which is an

improvement by a factor of 23 with respect to the reference
model. We have also verified that including the nuclear volume
effect again results in a serious deterioration of the quality of
the fit: for all tested values of Rm, the value of χ2 > 4.8 × 106,
whether with or without the DBOC correction. Finally, we
note that an accidentally slightly better χ2 of about 9175 is
obtained if we take only the Born-Oppenheimer potential and
the nuclear reduced mass μn (equivalent to Rm → ∞). Such a
model, however, would prevent us from calculating the s-wave
scattering lengths for which it is necessary that the reduced
mass for atoms separated as R → ∞ be equal to ma .

Dissociation energy De and long-range C6, C8 coefficients
obtained with the final model, which incorporates the mass
shift and the effective mass, are shown in the last row of
Table II. A comparison of experimental and the theoretical
bound-state energies produced using this model is given in
Table I. The average differences between this model and
the experimental data are 30.2 kHz (rms), which is an
improvement by a factor of about 3.7 over the reference model.

Our value of Rm = 18a0 nicely coincides with the LeRoy
radius RLR = 2(R̃A + R̃B) = 16.78 a0 (for Yb2, the rms
atomic radii R̃A = R̃B = 2.22 Å [80]). Mass scaling appears
to be governed mostly by the nuclear mass μn as most of
the WKB phase of a bound-state wave function originates
from the potential well (R < RLR). On the other hand, the
vibrational spacings are governed mostly by the long-range
part of the potential (R > RLR), where the atoms are well
separated and the van der Waals −C6R

−6 − C8R
−8 interaction

dominates. Since RLR is a much shorter distance than the
outer turning points of bound states probed in our experiment,
their vibrational spacings alone would be governed by the
atomic mass μa . This explains why interaction models based
on atomic masses were thus far successful in the description
of photoassociation spectra.

By looking at the differences between theoretical and
experimental bound-state energies (Table I), we can verify
that the gain in the quality of the fit is at least partially due to
the improved representation of the mass-scaling behavior. The
reference model tends to give bound-state energies that are
too low in the two light isotopes (i.e., most differences have
a negative sign) and energies too high for 176Yb, while the
differences for the BBO model seem a lot more random. In fact,
the average differences for the reference model are +83(35)
kHz for 168Yb and 170Yb together, and −75(26) kHz for 174Yb
clearly showing signs of a mass-dependent systematic shift.
For the BBO model, the average differences are −11(12)
kHz for the two light isotopes and −7(11) kHz for 176Yb.
Both are statistically compatible with zero and no longer
provide grounds to suspect a mass-dependent systematic
shift. Similarly, the Pearson correlation coefficient between
atomic masses and the residuals for the reference model is
ρRef = 0.636 and is statistically significant at a p value of
p = 0.019, while for the BBO model, it is not: ρBBO = 0.009
at p = 0.987.

No experimental data for the deep parts of the Yb2 potential
curve are available at this point. There is therefore currently no
way to compare our De = 739.73(60) cm−1 to experiment. The
only way photoassociation data is sensitive to the short-range
potential is through mass scaling, which in our case dictates
the number of bound states supported by the potential curve—
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72 for 174Yb. On the other hand, the model potentials in the
previous analyses [32,51] also supported 72 states, but their
depth in itself was closer to 1000 cm−1. This difference is due
to a differently located inner turning point and the different
shape of the potential well. Still, our fitted potential depth
De = 739.73(60) cm−1 is only about 2.2% deeper than the
original ab initio curve with De = 723.7 cm−1.

On the other hand, our van der Waals coefficients can be
compared to previous ab initio and spectroscopic determina-
tions, as shown in Table II. Our C6 = 1.93727(57) × 103 a.u.
coefficient agrees both with the empirical determination
of C6 = 1.932(30) × 103 a.u. based on a previous thermal
PA experiment [32] and the ab initio determination of
C6 = 1.929(39) × 103 of Safronova et al. [75]. The C6 =
1.9335(22) × 103 value of the reference model is also in
agreement (though less precise) with the BBO model. On the
other hand, our C8 coefficient is about 20% larger than both
the previous PA [32,51] and ab initio [76] determinations. This
difference could stem from the fact that C8 operates at shorter
internuclear distances than C6 and may be—from the point
of view of bound-state energies—partially obfuscated by the
actual shape of the potential: Cn terms beyond C8 that naturally
exist in a potential may contribute to an “effective” C8.

Finally, we use our interaction models to calculate the
s-wave scattering lengths for all bosonic pairs of Yb isotopes.
The s-wave scattering length is a shift to the atomic collisional
wave function due to the atomic interaction, in the limit of
zero kinetic energy. At large nuclear separations R, the wave
function for an s-wave collision is asymptotically �(R) ∼
sin[k(R − a)], where a is the scattering length, and k is
the wave number for a given collisional energy ε. At large
distances, the atoms are well separated, and the quantum

wave number is calculated using the atomic, rather than
nuclear, reduced mass μa: k = √

2μatε/h̄. The scattering
length is calculated by taking the limit of zero kinetic energy
or, equivalently, k → 0. Like in the case of the potential
parameters, the uncertainties are based on the quality of the
fit and were propagated from the parameter covariance matrix
via ũ2(a) = ∑

i,j (∂a/∂pi)(∂a/∂pj ) Covi,j .
The scattering lengths and their respective uncertainties

calculated from both interaction models are given in Table III.
Their values, regardless of the model, are in agreement with
previous photoassociation-based determination of Kitagawa
et al. [32], but the uncertainties are improved by over two
orders of magnitude. The scattering lengths calculated from
both models are mostly in agreement with each other to
within 1–2 mutual uncertainties. The error bars for the BBO
model, however, are a factor of 4 more stringent than those
from the mass-independent reference model. Our scattering
lengths may also be compared to those determined (or
at least confirmed previously) using other methods. BEC
expansion-based measurements of 170Yb [60] and 174Yb [59]
scattering lengths gave the values of +3.6(0.9) nm and +6+10

−5
nm, respectively, corresponding to stable condensates with
repulsive interactions. The results of the expansion of 168Yb
condensates were found to be consistent with the previously
reported PA-based [32] value of +13.33(18) nm. Similarly,
the unstable behavior of 176Yb for large atom numbers, on the
other hand, was found to be well explained by its small negative
scattering length. The apparent lack of interactions between
168Yb and 174Yb BEC clouds reported in Ref. [61] points at
a near-zero interspecies scattering length. Finally, the large
negative scattering lengths effectively thwart any attempts to
produce a 172Yb BEC or a 170Yb-174Yb BEC mixture.

TABLE III. Yb s-wave scattering lengths for collisions of bosonic isotopes calculated using best-fit Born-Oppenheimer (“Reference model”)
and beyond-Born-Oppenheimer (“BBO model”) interaction models. Previously reported values derived from the expansion of 168Yb [61], 170Yb
[60], and 174Yb [59] BECs, one-color photoassociation spectroscopy [77], as well as stability of attractive BECs [78] and BEC mixtures [61] are
shown in the column “Previous determinations.” Calculations of s-wave scattering lengths based on two-color photoassociation spectroscopy
of ultracold thermal Yb gases (“PA [32]”) are also given for comparison and are in perfect agreement with the present determination. The error
bars of the BBO model are about four times smaller, reflecting the improved quality of the fit thanks to the additional physics taken into account
(see Sec. IV for details). The scattering lengths derived from the two models agree for the most part to within 1–2 mutual uncertainties. All
values are given in nm.

Isotope 1 Isotope 2 Previous determinations Comment 2PA [32] Reference model BBO model

168 168 Consistent with +13.33(18) [61] BEC expansion +13.33(18) +13.380(11) +13.3807(32)
170 170 +3.6(0.9) [60] BEC expansion +3.38(11) +3.3845(14) +3.38443(46)
172 172 (large, negative) No stable BEC formation −31.7(3.4) −31.12(14) −31.366(46)
174 174 +5.53(11) [77] One-color photoassociation +5.55(8) +5.5601(16) +5.55812(50)

+6(+10,−5) [59] BEC expansion
176 176 Consistent with −1.28(23) [78] Instability of large BECs −1.28(23) −1.2596(51) −1.2749(17)
168 170 +6.19(8) +6.2044(18) +6.20565(56)
168 172 +3.44(10) +3.4459(16) +3.44583(45)
168 174 (small) [61] Stability of binary BEC +0.13(18) +0.1412(32) +0.1371(11)
168 176 −19.0(1.6) −18.803(60) −18.907(20)
170 172 −0.11(19) −0.0973(35) −0.1019(12)
170 174 (large, negative) No stable binary BEC −27.4(2.7) −26.96(11) −27.151(36)
170 176 +11.08(12) +11.1047(65) +11.0955(20)
172 174 +10.61(12) +10.6346(60) +10.6264(18)
172 176 +5.62(8) +5.6275(15) +5.62548(50)
174 176 +2.88(12) +2.8912(17) +2.88760(50)
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VI. CONCLUSION

A total of 13 energy levels for three isotopologues of the
ground-state Yb2 dimer were probed by two-color photoasso-
ciation spectroscopy in a gas of ytterbium atoms. By perform-
ing the PA spectroscopy in a narrow line Raman scheme in a
Bose-Einstein condensate and through a careful examination
of systematic shifts, the accuracy of the measurement reaches
≈500 Hz. The experimental data was analyzed using ab initio
based, mass-scaled Born-Oppenheimer interaction models.
We show that by including beyond-Born-Oppenheimer effects
(the adiabatic corrections and a distance-dependent reduced
mass), we are able to improve the fit of the theoretical model
from about 112.9 to 30.2 kHz on average (rms). We give
improved van der Waals coefficients and determine the s-wave
scattering lengths with error bars at the picometer level—over
two orders of magnitude better than previous determinations.

Photoassociation spectroscopy is now extremely accurate
and the construction of theoretical models for the data it
produces is an increasingly challenging task. Beyond-Born-
Oppenheimer corrections, especially distance-dependent ef-
fective masses, will be critical for future attempts at reaching
kHz accuracies in mass-scaled models. For heavy systems,
only qualitative calculations of isotopic shifts have recently
appeared [44]. In our work, we show that while the inclusion
of the mass effect (i.e., the adiabatic Born-Oppenheimer
correction) leads to better theoretical description of the
experimental data, the volume effect, however, was found to
have a detrimental effect on the quality of the fit. Further ab
initio calculations of the volume shifts will be necessary to
verify the accuracy of their initial estimation. Nonadiabatic
effects, partially treated here through effective masses, also
have an impact on the atomic interactions and it may turn
out that the effective nonadiabatic potential [47] cancels out at
least partially with the volume effect. At this point, no ab initio

calculations of the effective nonadiabatic potentials for heavy
systems are available, although a very recent full treatment
of nonadiabatic effects [73], including R-dependent masses,
for He2 raises hope for similar works for other molecules
composed of divalent atoms. Mass-scaled interaction models,
apart from their utility for precise calculation of scattering
properties, are also proposed as a means to provide experimen-
tal constraints on Yukawa-type fifth forces [81]. Such attempts,
however, will require the theory to match experimental data to
well below 1 kHz.
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[14] M. Borkowski, P. Morzyński, R. Ciuryło, P. S. Julienne, M.
Yan, B. J. DeSalvo, and T. C. Killian, Phys. Rev. A 90, 032713
(2014).

[15] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki,
and Y. Takahashi, Phys. Rev. Lett. 93, 123202 (2004).

[16] S. Tojo, M. Kitagawa, K. Enomoto, Y. Kato, Y. Takasu, M.
Kumakura, and Y. Takahashi, Phys. Rev. Lett. 96, 153201
(2006).

[17] U. Marvet and M. Dantus, Chem. Phys. Lett. 245, 393 (1995).
[18] R. Ciuryło, E. Tiesinga, S. Kotochigova, and P. S. Julienne, Phys.

Rev. A 70, 062710 (2004).
[19] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen,

Science 287, 1016 (2000).
[20] U. Schlöder, T. Deuschle, C. Silber, and C. Zimmermann, Phys.

Rev. A 68, 051403(R) (2003).
[21] R. Dumke, J. D. Weinstein, M. Johanning, K. M. Jones, and

P. D. Lett, Phys. Rev. A 72, 041801 (2005).

063405-9

http://www.wcss.pl
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/PhysRevLett.58.2420
https://doi.org/10.1103/PhysRevLett.58.2420
https://doi.org/10.1103/PhysRevLett.58.2420
https://doi.org/10.1103/PhysRevLett.58.2420
https://doi.org/10.1103/PhysRevLett.70.3225
https://doi.org/10.1103/PhysRevLett.70.3225
https://doi.org/10.1103/PhysRevLett.70.3225
https://doi.org/10.1103/PhysRevLett.70.3225
https://doi.org/10.1103/PhysRevLett.71.2200
https://doi.org/10.1103/PhysRevLett.71.2200
https://doi.org/10.1103/PhysRevLett.71.2200
https://doi.org/10.1103/PhysRevLett.71.2200
https://doi.org/10.1063/1.467638
https://doi.org/10.1063/1.467638
https://doi.org/10.1063/1.467638
https://doi.org/10.1063/1.467638
https://doi.org/10.1103/PhysRevLett.71.2204
https://doi.org/10.1103/PhysRevLett.71.2204
https://doi.org/10.1103/PhysRevLett.71.2204
https://doi.org/10.1103/PhysRevLett.71.2204
https://doi.org/10.1103/PhysRevLett.73.632
https://doi.org/10.1103/PhysRevLett.73.632
https://doi.org/10.1103/PhysRevLett.73.632
https://doi.org/10.1103/PhysRevLett.73.632
https://doi.org/10.1103/PhysRevLett.85.2292
https://doi.org/10.1103/PhysRevLett.85.2292
https://doi.org/10.1103/PhysRevLett.85.2292
https://doi.org/10.1103/PhysRevLett.85.2292
https://doi.org/10.1103/PhysRevA.67.043408
https://doi.org/10.1103/PhysRevA.67.043408
https://doi.org/10.1103/PhysRevA.67.043408
https://doi.org/10.1103/PhysRevA.67.043408
https://doi.org/10.1103/PhysRevLett.94.083004
https://doi.org/10.1103/PhysRevLett.94.083004
https://doi.org/10.1103/PhysRevLett.94.083004
https://doi.org/10.1103/PhysRevLett.94.083004
https://doi.org/10.1103/PhysRevLett.96.203201
https://doi.org/10.1103/PhysRevLett.96.203201
https://doi.org/10.1103/PhysRevLett.96.203201
https://doi.org/10.1103/PhysRevLett.96.203201
https://doi.org/10.1103/PhysRevLett.109.115302
https://doi.org/10.1103/PhysRevLett.109.115302
https://doi.org/10.1103/PhysRevLett.109.115302
https://doi.org/10.1103/PhysRevLett.109.115302
https://doi.org/10.1103/PhysRevA.90.032713
https://doi.org/10.1103/PhysRevA.90.032713
https://doi.org/10.1103/PhysRevA.90.032713
https://doi.org/10.1103/PhysRevA.90.032713
https://doi.org/10.1103/PhysRevLett.93.123202
https://doi.org/10.1103/PhysRevLett.93.123202
https://doi.org/10.1103/PhysRevLett.93.123202
https://doi.org/10.1103/PhysRevLett.93.123202
https://doi.org/10.1103/PhysRevLett.96.153201
https://doi.org/10.1103/PhysRevLett.96.153201
https://doi.org/10.1103/PhysRevLett.96.153201
https://doi.org/10.1103/PhysRevLett.96.153201
https://doi.org/10.1016/0009-2614(95)01018-5
https://doi.org/10.1016/0009-2614(95)01018-5
https://doi.org/10.1016/0009-2614(95)01018-5
https://doi.org/10.1016/0009-2614(95)01018-5
https://doi.org/10.1103/PhysRevA.70.062710
https://doi.org/10.1103/PhysRevA.70.062710
https://doi.org/10.1103/PhysRevA.70.062710
https://doi.org/10.1103/PhysRevA.70.062710
https://doi.org/10.1126/science.287.5455.1016
https://doi.org/10.1126/science.287.5455.1016
https://doi.org/10.1126/science.287.5455.1016
https://doi.org/10.1126/science.287.5455.1016
https://doi.org/10.1103/PhysRevA.68.051403
https://doi.org/10.1103/PhysRevA.68.051403
https://doi.org/10.1103/PhysRevA.68.051403
https://doi.org/10.1103/PhysRevA.68.051403
https://doi.org/10.1103/PhysRevA.72.041801
https://doi.org/10.1103/PhysRevA.72.041801
https://doi.org/10.1103/PhysRevA.72.041801
https://doi.org/10.1103/PhysRevA.72.041801


MATEUSZ BORKOWSKI et al. PHYSICAL REVIEW A 96, 063405 (2017)

[22] J. L. Bohn and P. S. Julienne, Phys. Rev. A 54, R4637 (1996).
[23] E. R. I. Abraham, W. I. McAlexander, C. A. Sackett, and R. G.

Hulet, Phys. Rev. Lett. 74, 1315 (1995).
[24] C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten,

B. J. Verhaar, and D. J. Heinzen, Phys. Rev. Lett. 79, 1245
(1997).

[25] C. Lisdat, N. Vanhaecke, D. Comparat, and P. Pillet, Eur. Phys.
J. D 21, 299 (2002).

[26] K. Winkler, G. Thalhammer, M. Theis, H. Ritsch, R. Grimm,
and J. H. Denschlag, Phys. Rev. Lett. 95, 063202 (2005).

[27] F. Münchow, C. Bruni, M. Madalinski, and A. Görlitz, Phys.
Chem. Chem. Phys. 13, 18734 (2011).
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