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Low-energy electron-impact dissociative excitation of molecular hydrogen and its isotopologues
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We apply the adiabatic nuclei convergent close-coupling method to electron-impact dissociative excitation of
H2 in the low-energy regime. Differential and integrated cross sections are presented for excitation of the b3�+

u

state, the primary pathway to dissociation of H2 at low energies. Agreement with experiment is satisfactory.
Results are also presented for the isotopologues D2, T2, HD, HT, and DT, which show a pronounced isotope
effect near threshold in both the differential and integrated cross sections.
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I. INTRODUCTION

Electron-impact dissociative excitation of H2 plays an
important role in astrophysics, atmospheric physics, and
plasma modeling. Electron interactions with H2 contribute
to the heating and cooling of the Jovian and Saturnian
atmospheres, and play important roles in the cooling of
molecular clouds, a mechanism for stellar formation [1,2]. The
same processes also contributed to the energy loss of plasma
electrons during the formation of the interstellar medium [3].
Molecules such as H2 can form in the divertor region of
tokamak reactors, where external cooling results in a steep
temperature gradient. Collisionally induced dissociation of H2

is a major factor governing the dynamics and properties of the
plasma edge, which in turn affects the performance of the core
plasma [4].

At low energies, the primary pathway to dissociation of
H2 is through excitation of the b3�+

u state. This is a purely
dissociative state and produces neutral fragments H(1s) +
H(1s) with considerable kinetic energies [5]. Measurements of
the b3�+

u excitation integrated cross sections (ICS) and differ-
ential cross sections (DCS) are available at incident energies of
9.2 eV and above; see Nishimura and Danjo [6], Khakoo and
Segura [7], and Hall and Andric [8]. The review of Yoon
et al. [9] provided a recommended ICS that follows these
measurements. Agreement between the measurements is
reasonable up to about 15 eV, although the experimental
uncertainties are relatively large. The recommended cross
section follows the measurements of Khakoo and Segura
[7] up to 20 eV; however, there is disagreement at the
cross-section peak between this experiment and the measure-
ments of Nishimura and Danjo [6], which are significantly
lower.

A large number of calculations of the b3�+
u excitation

have previously been performed in the fixed-nuclei (FN)
approximation; see, for example, the calculations by Schneider
and Collins [10], da Costa et al. [11], Branchett et al. [12],
Gorfinkiel and Tennyson [13], Fliflet and McKoy [14], and
earlier calculations referenced therein. These calculations are
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all in significant disagreement with each other and with the
recommended data [9].

Recently, Zammit et al. [15] provided a comprehensive
set of accurate excitation, ionization, and grand total cross
sections for e−-H2 scattering, obtained using the single-center
molecular convergent close-coupling (CCC) method. These
calculations were performed in the FN approximation, with
the internuclear distance fixed at the mean separation Rm =
1.448a0 of the ground vibrational state. Convergence of the
CCC results was demonstrated over the entire 10–300 eV
energy range, and the calculation of the b3�+

u ICS predicted a
sharp peak at approximately 11.5 eV. The recommended data
of Yoon et al. [9] are in substantial disagreement with the
CCC results. Given the significance of the low-energy b3�+

u

excitation, it is important to determine an accurate cross section
for this excitation process.

The FN approximation is not valid near excitation thresh-
olds, where the vibrational motion of the nuclei has a signif-
icant effect. In this energy regime, the adiabatic nuclei (AN)
approximation is a more accurate approach. The AN approx-
imation has been previously applied to e−-H2 excitation; for
example, see the calculations by Trevisan and Tennyson [16],
Celiberto et al. [17], and Rescigno and Schneider [18]. As with
the FN calculations, these AN calculations are in significant
disagreement with each other. The calculation of Trevisan and
Tennyson [16] predicted a peak lower than both the Khakoo
and Segura [7] and Nishimura and Danjo [6] measurements,
and shifted to about 12.5 eV. The calculation of Celiberto
et al. [17] was in reasonable agreement with the R-matrix
calculation below 9 eV, but in substantial disagreement at
higher energies, particularly in predicting a peak closer to
15 eV.

The success of the molecular CCC technique at above-
threshold energies, and the need for accurate collision data
over the entire range of impact energies for the excitation of the
b3�+

u state, motivates the present low-energy AN calculations.
We also investigate the low-energy dissociation behavior of the
H2 isotopologues (D2, T2, HD, HT, and DT), which we expect
will be important in tokamak fusion plasma modeling. It is
worth noting that the AN CCC method was previously used
to investigate positron collisions with H2 [19] and electron
collisions with H2

+ [20,21], yielding good agreement with
experiment.
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II. THEORY

The molecular CCC method for e−-H2 scattering has been
described in detail in Refs. [15,21–23]. Here we give a brief
overview. Atomic units are used throughout unless specified
otherwise.

A. Molecular CCC method

The molecular CCC method utilizes the Born-Oppenheimer
approximation to separate the electronic and nuclear degrees
of freedom, allowing the electronic scattering problem to
be solved in the FN approximation. The CCC method is
formulated in the body frame, utilizing the spherical coordinate
system, with the origin set at the midpoint between the two
nuclei and the z axis aligned with the internuclear axis R.
In what follows, we suppress the explicit dependence on the
internuclear separation R in the FN formulation of the CCC
method and restore it later to make the presentation more
transparent.

Molecular electronic target states are constructed by diag-
onalizing the target electronic Hamiltonian HT in a basis of
antisymmetrized two-electron configurations for each set of
the conserved quantum numbers (mt,πt,st), where mt is the
total target angular momentum projection, st is the spin, and
πt is the parity:

�N
n (x1,x2) =

∑
αβ

C
(n)
αβ φα(r1)φβ(r2)X(sn,vn), (1)

where x1 and x2 are used to denote the spatial and spin
coordinates of the electrons, and each n represents a set of
the conserved quantum numbers. The coefficients C

(n)
αβ are

eigenvector components resulting from the diagonalization
procedure and satisfy C

(n)
αβ = (−1)snC

(n)
βα to ensure the anti-

symmetry of the two-electron configurations in Eq. (1). The
spin function is given by

X(s,v) =
∑
m1m2

Csv
1
2 m1

1
2 m2

χm1 (σ1)χm2 (σ2), (2)

where Clm
l1m1l2m2

is a Clebsch-Gordan coefficient. The one-
electron functions in Eq. (1) are given by

φα(r) = 1

r
ϕkαlα (r)Ylαmα

(r̂), (3)

where l is the angular momentum and ϕkl are the Laguerre
basis functions,

ϕkl(r) =
√

αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)l+1

× e−αlrL2l+1
k−1 (2αlr), k = 1, . . . ,Nl. (4)

Here, αl are the exponential fall-off parameters, L2l+1
k−1 are

the associated Laguerre polynomials, and Nl is the number
of functions for a given value of l. The resulting target
pseudostates {�N

n }N
n=1 satisfy〈
�N

n′
∣∣HT

∣∣�N
n

〉 = εN
n δn′n, (5)

where εN
n is the energy of the state �N

n and N is the number
of pseudostates.

The total scattering wave function is expressed as a
multichannel expansion over the target states,


N(+)
i (x0,x1,x2) = Aψ

N(+)
i (x0,x1,x2)

= A
N∑

n=1

f N(+)
n (x0)�N

n (x1,x2), (6)

where x0 is the projectile spatial and spin coordinate, (+)
denotes outgoing spherical wave boundary conditions, A =
1 − P01 − P02 is the antisymmetrization operator, and P0i is
the space exchange operator.

Substituting the expansion (6) into the Schrödinger equa-
tion,

(E(+) − H )N(+)
i = 0, (7)

results in a set of momentum-space Lippmann-Schwinger
equations for the T matrix,〈

k(−)
f �N

f |T N |�N
i k(+)

i

〉 = 〈
k(−)

f �N
f |V |ψN(+)

i

〉
, (8)

where |k(±)〉 is a projectile distorted wave with energy
εk = k2/2.

The projectile wave function is expanded in partial waves,

|k(±)〉 = 1

k

∑
L,M

iLe±iδLY ∗
LM (k̂)|kL〉, (9)

where δL is the distorting phase shift and the sum is truncated at
some Lmax. This allows a set of close-coupling equations to be
formulated for the partial-wave T matrix. These equations are
formed for each total symmetry specified by the total angular
momentum projection M , parity �, and spin S:

T M�S
f Lf Mf ,iLiMi

(kf ,ki)

= V M�S
f Lf Mf ,iLiMi

(kf ,ki) +
N∑

n=1

∑
L′M ′

∑∫
k

dk

×
V M�S

f Lf Mf ,nL′M ′(kf ,k)T M�S
nL′M ′,iLiMi

(k,ki)

E(+) − εk − εN
n + i0

, (10)

and are solved by standard techniques [23,24].
The FN DCS analytically averaged over orientations is

given by [15,23]

dσS
f,i(R,Ein)

d�
=

∑
j

D
Sj

f,iPj (cos θ ), (11)

where Pj is the Legendre polynomial and the DCS coefficients
are

D
Sj

f,i = π2 qf (R; Ein)

qi

∑
M,�

M ′,�′

∑
Lf ,Li

Mf ,Mi

∑
L′

f ,L′
i

M ′
f ,M ′

i

iLi−Lf +L′
i−L′

f

× (−1)M
′
f +M ′

i L̂i L̂
′
i L̂f L̂′

f (2j + 1)−1

× T M�S
f Lf Mf ,iLiMi

(R,Ein)T M ′�′S∗
f L′

f M ′
f ,iL′

iM
′
i
(R,Ein)

× C
j0
Li0,L′

i0
C

jM ′
i−Mi

Li−Mi,L
′
iM

′
i
C

jMf −M ′
f

Lf Mf ,L′
f −M ′

f

× C
j0
Lf 0,L′

f 0δMi−M ′
i ,Mf −M ′

f
. (12)
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Here, L̂ = √
2L + 1, and qf , qi are the outgoing and incident

projectile momenta, respectively:

qf (R; Ein) = √
2[Ein − εf,i(R)], (13)

qi =
√

2Ein. (14)

Note that qf depends only on the incident energy Ein and
the electronic excitation energy εf,i(R) = εf (R) − εi(R). The
on-shell physical FN T matrix T M�S

f Lf Mf ,iLiMi
(R; Ein) in Eq. (12)

is obtained from the solution of the Lippmann-Schwinger
equations (10) [22], where we have restored the explicit R

dependence.
The FN ICS σS

f,i are obtained by integrating Eq. (11).
As a result of the orthogonality property of the Legendre
polynomials, only the j = 0 term of the summation is nonzero
after integration over solid angle, which gives

σS
f,i(R; Ein) =

∫
dσS

f,i

d�
d� = 4πDS0

f,i

= 4π3 qf (R; Ein)

qi

∑
M,�

Lf ,Li

Mf ,Mi

∣∣T M�S
f Lf Mf ,iLiMi

(R; Ein)
∣∣2
.

(15)

B. Adiabatic nuclei method

Bound target vibrational wave functions χnvn
(R) are ob-

tained by diagonalizing the Born-Oppenheimer Hamiltonian,

H = − 1

2μ

d2

dR2
+ J (J + 1) − m2

n

2μR2
+ εn(R), (16)

in a basis of nuclear functions which have the same form as
the one-electron functions (3). Here, μ is the reduced mass of
the molecule (calculated for each isotopologue using 1836.15,
3670.48, and 5496.92 for the proton, deuteron, and triton mass,
respectively), J is the rotational quantum number, mn is the an-
gular momentum projection, and εn(R) is the potential-energy
function for the electronic state �N

n . At present, we remove
the rotational dependence of the vibrational wave functions
by setting J = 0. Note that vibrational wave functions depend
only weakly on J since the rotational term of Eq. (16) is of
the order of 1/μ ≈ 10−3 and is therefore negligible compared
to the potential-energy term. The basis size is chosen to yield
convergent bound-state solutions of the Schrödinger equation,〈

χnv′
n

∣∣H∣∣χnvn

〉 = εvn
δv′

nvn
, (17)

where εvn
is the energy of the bound vibrational wave function

χnvn
. The vibrational wave functions satisfy the following

closure property:∑∫
vn

χnvn
(R)χnvn

(R′) = δ(R − R′), (18)

where the summation is over the discrete spectrum and the
integration is over the continuum.

Following the AN approximation [25], the ICS σS
f vf ,ivi

and

DCS dσS
f vf ,ivi

/d� for the vibrationally resolved transition

ivi → f vf are obtained via the substitution√
qf (Rm; Ein) T M�S

f Lf Mf ,iLiMi
(Rm; Ein)

→ 〈χf vf
|√qf (R; Ein) T M�S

f Lf Mf ,iLiMi
(R; Ein)|χivi

〉 (19)

in Eqs. (11), (12), and (15). To obtain the AN T matrix, one
has to conduct FN calculations at many internuclear distances
in order to perform accurate integration over R in Eq. (19).

The closure property (18) is used to obtain cross sections
summed over all final bound vibrational states and integrated
over all final vibrational continuum states, yielding

dσS
f,ivi

d�
=

∑∫
vf

dσ S
f vf ,ivi

d�
= 〈χivi

|dσS
f,i

d�
|χi,vi

〉. (20)

Note that this technique requires the outgoing electron mo-
mentum and FN T matrix in Eq. (19) to be independent of
the final vibrational state energy. This condition is satisfied
due to the definition of qf in Eq. (13). Closure relations
have been previously utilized to sum cross sections over
final rovibrational states, in the Born approximation in
Refs. [26–28], and in the CCC method by Zammit et al. [19,22]
and Scarlett et al. [20].

Spin-averaged cross sections are obtained using

dσf,ivi

d�
=

∑
S

2S + 1

2(2si + 1)

dσS
f,ivi

d�
, (21)

where si is the initial target state spin. The same expressions
(20) and (21) hold for the ICS. For scattering on the ground
state of H2, si = 0 and hence there is only one spin channel.
Furthermore, in this paper, we consider only scattering from
the ground vibrational level (vi = 0).

The problem of energy conservation in the AN approxima-
tion has been discussed previously for vibrational excitations
by Mazevet et al. [29] and for electronic excitations by
Shugard and Hazi [30] and Ficocelli Varracchio [31]. There
is a discrepancy between the true excitation energy and the
FN electronic excitation energy, which does not consider the
vibrational levels. For scattering on the ground vibrational
state, the error in the initial state energy is relatively small
over the extent of the v = 0 wave function, but as the integrand
in Eq. (19) varies with R, the error in the final state energy
can be much larger, except at the classical turning point(s)
of the final state wave function. The corrections suggested
by Shugard and Hazi [30] and Ficocelli Varracchio [31] both
require the use of off-shell T -matrix elements. Stibbe and
Tennyson [32] suggested an energy-balancing method for the
b3�+

u AN cross section which fixes the outgoing electron
energy at the correct value for a given fragment kinetic energy,
but varies the incident energy over R to allow the use of T

matrices which are on the energy shell in the FN formalism. It
is not clear how significant the benefits of the energy-balancing
method [32] are since, without the use of off-shell FN T

matrices, the violation of energy conservation is unavoidable.
Because of the larger number of calculations required to
perform accurate interpolation over both energy and R for
the energy-balancing method, here we apply the standard AN
method as detailed in the review of Lane [25]. This method
has been applied to dissociative processes in a number of
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previous works [20,26–28,33,34], yielding results in good
agreement with experiment. Peek and Green [35,36] showed
that the standard AN method is sufficiently accurate for the
dissociative 1sσg → 2pσu transition in H2

+ at intermediate to
high energies.

III. METHODOLOGY

In the previous FN CCC calculations of e−-H2 scattering
[15], we have conducted detailed convergence studies for
the b3�+

u excitation. We found that for incident electron
energies below 12 eV, the close-coupling calculations that
include nine states are in good agreement with calculations
that include a larger number of states in the close-coupling
expansion (up to the maximum of 491 states). Since the
effect of interchannel coupling is weaker at low energies
and because the AN approach requires a large number of
calculations at many internuclear distances, here we have
performed AN calculations with a model that includes the
following 12 states: X1�+

g , b3�+
u , a3�+

g , c3�u, B1�+
u ,

E,F 1�+
g , C1�u, B ′ 1�+

u , and D1�u. Note that � states
enter the close-coupling expansion twice (for mt = +1 and
mt = −1). We have reserved the notation CCC for models
that account for coupling to ionization channels and CC for
the models that include only the electronic bound states. In
addition to the AN calculations performed with the CC(12)
model, we have also conducted AN calculations with the
CC(48) model to verify the convergence of the AN b3�+

u

cross sections. The latter model contains the first 48 states
for R = 1.448. The target wave functions for the CC(12) and
CC(48) models have been obtained with the same one-electron
basis and set of two-electron configurations as described in
Ref. [15] for the CCC(491) model.

Each model utilized the same underlying description of
the H2 wave functions. The one-electron functions (3) were
constructed from a Laguerre basis including Nl = 17 − l func-
tions up to lmax = 3, with exponential falloffs ranging from
0.76 to 0.85. The 1sσg one-electron orbital was constructed
using Nl = 60 − l functions up to lmax = 8, with αl = 0.9.
The CC(12) scattering calculations were performed using a
projectile partial-wave expansion up to Lmax = 6, including
all total angular momentum projection M , even and odd
parity �, and total spin S = 1/2 channels up to Mmax = 6.
Each CC(12) calculation at a fixed energy and internuclear
separation required approximately six hours of CPU time,
distributed over 24 parallel threads on a 12-core Haswell
processor. For the CC(48) model, we took Lmax = Mmax = 5,
with each calculation requiring approximately 60 hours,
distributed over 120 parallel threads on five processors. We find
that for triplet state excitations, the partial-wave convergence is
readily established with Mmax = 5, not only at the low energies
considered in this work, but across all energies [15]. This has
also been observed in the R-matrix calculations of Trevisan
and Tennyson [16].

Calculations were performed over a range of internuclear
separations up to R = 2.5 and energies up to 14 eV. At a
given incident energy, the R-dependent ICS exhibit complex
resonance structures which shift towards lower R at higher
incident energies. To minimize the number of calculations
required, we utilized a relatively coarse R mesh (steps of 0.1)
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X1 Σg
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b3 Σu
+

v=0
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y 
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s)

Internuclear separation (units of a0)

FIG. 1. Potential-energy curves of the X1�+
g and b3�+

u states
of H2 obtained from structure calculations performed in the present
scattering calculation model (points), compared with the accurate
calculations (solid lines) of Kolos et al. [37] (X1�+

g ) and Staszewska
and Wolniewicz [38] (b3�+

u ). The ground (electronic and vibrational)
wave function of H2 is also shown (dashed line).

in regions where the cross section is smooth, but used a much
finer mesh (steps of 0.01) around the resonances to ensure the
accuracy of the AN calculations.

IV. RESULTS

In Fig. 1, we present the potential energy curves (PEC) of
the X1�+

g and b3�+
u states obtained using the present (single-

center spherical coordinate) structure model and compare with
the accurate calculations of Kolos et al. [37] (X1�+

g ) and
Staszewska and Wolniewicz [38] (b3�+

u ). On the same figure,
we have also presented the ground-state (v = 0) vibrational
wave function of H2. We find that the present structure model
is sufficiently accurate to perform scattering calculations over
the range of R points at which the v = 0 vibrational wave
function is nonzero (below 2.3). To improve the accuracy of
the AN CCC cross sections, we have obtained the vibrational
wave functions using the accurate PEC of Kolos et al. [37].

A. Convergence studies

AN calculations of electron-impact excitation of the b3�+
u

state of H2 have been performed in the range of incident
energies from 6 to 14 eV. In Fig. 2, we present the AN
CC(12) b3�+

u cross sections and compare with a number
of AN CC(48) calculations to demonstrate convergence. We
also compare the AN results with the CC(12) and CCC(491)
FN cross sections performed at R = 1.448. The FN CC(12)
results have prominent resonance structures near 12 eV. The
same resonance structures were observed in the calculations
of Branchett et al. [12] and Trevisan and Tennyson [16]. The
previous FN CCC(491) calculations were performed over a
1 eV mesh (at these low energies), and no attempts were made
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FIG. 2. Electron-impact excitation cross section of the b3�+
u

state of H2. Convergence is demonstrated for the AN CC(12) and
CC(48) models described in the text. The FN CCC(491) and CC(12)
calculations performed at R = 1.448 are also presented.

to map out resonances because it was expected that they will
be averaged over in the AN calculations, as indeed can be seen
from Fig. 2.

B. Comparison of adiabatic and fixed-nuclei methods

Figure 2 shows that the CC(12) AN and FN cross sections
are in reasonable agreement by 14 eV. We therefore expect
that the vibrational motion effects become insignificant above
this energy, and hence the FN results are sufficient. In Fig. 3,
we present the R-dependent b3�+

u ICS at 9.2, 11.0, 12.2,
and 14.0 eV incident energies, obtained from FN calculations
performed at a large number of R points. At a given incident
electron energy, the AN cross section is best approximated by
the FN cross section when the threshold of the R-dependent
ICS σf,i(R) is much lower than the bond length R = 1.4.
As detailed by Zhang and Mitroy [39], expanding the R-
dependent ICS via a Taylor series about some R = R0 gives
the AN cross section in the following form:

σf,ivi
= σf,i(R0) +

(
dσf,i

dR

)
R0

〈χivi
|(R − R0)|χivi

〉 + · · · .

(22)

The error is minimized by choosing R0 = Rm = 1.448, the
mean internuclear separation of the v = 0 vibrational wave
function, since the second term of Eq. (22) vanishes. At
low energies, where the threshold of the R-dependent ICS
is near the bond length, the expansion about Rm is dominated
by higher-order terms and the FN approximation becomes
invalid. At higher energies, if the R-dependent ICS can be
approximated by a straight line over the extent of the wave
function, then the FN approximation becomes accurate as
higher-order terms vanish. This is indeed the case for the
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FIG. 3. The R-dependent electron-impact excitation cross section
of the b3�+

u state of H2 at Ein = 9.2, 11.0, 12.2, and 14.0 eV,
demonstrating the shifting of the resonances and excitation thresholds
towards lower R as Ein is increased. The ground (electronic and
vibrational) state wave function of H2 is also shown.

14 eV cross section. Interestingly, Fig. 3 also shows that the
resonances in the R-dependent ICS shift towards lower R as
the incident energy is increased.

0.0

1.0

2.0

3.0

4.0

 6  8  10  12  14  16

b 3Σu
+

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

Incident energy (eV)

CCC recommended
Trevisan & Tennyson
Celiberto et. al.
Rescigno & Schneider
Yoon et. al. recommended
Khakoo & Segura
Hall & Andric
Nishimura & Danjo

FIG. 4. Electron-impact excitation cross section of the b3�+
u state

of H2. The recommended CCC cross section is compared with the
calculations of Trevisan and Tennyson [16], Celiberto et al. [17],
and Rescigno and Schneider [18], the measurements of Khakoo and
Segura [7], Nishimura and Danjo [6], and Hall and Andric [8], and
the recommended data of Yoon et al. [9].
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FIG. 5. Electron-impact differential excitation cross section of
the b3�+

u state of H2 at 9.2 eV, calculated with the AN CC(12) model
described in the text, and compared with the experiment of Khakoo
and Segura [7].

C. Integrated cross sections

The CC(12) model is not expected to be valid at incident
energies above approximately 12 eV, as demonstrated by the
disagreement between the CC(12) and CCC(491) FN results
at higher energies (see Ref. [15] for convergence studies
of several FN CCC models). To produce a recommended
CCC cross section, we use the AN CC(12) results up to
11.5 eV and the FN CCC(491) results above 14 eV. In the
11.5–14 eV energy interval, we take an average of the CC(12)
and CCC(491) results, using a weight function which varies
linearly between 11.5 and 14 eV in order to smoothly connect
the two cross sections. These results are presented in Fig. 4 and
compared with the AN R-matrix calculations of Trevisan and
Tennyson [16], the AN semiclassical calculations of Celiberto
et al. [17], the AN complex Kohn calculations of Rescigno
and Schneider [18], the measurements of Khakoo and Segura
[7], Nishimura and Danjo [6], and Hall and Andric [8], and the
recommended data of Yoon et al. [9]. The CCC calculations
are in good agreement with all three measurements below
approximately 12.5 eV. The CCC and R-matrix results are
in good agreement between 10 and 12 eV and both methods
suggest a smaller peak shifted to lower energies compared to
what was found in experiment. As the CCC and R-matrix
calculations utilize a similar close-coupling expansion, the
small discrepancy between the two methods below 10 eV is
likely due to the use of the energy-correction method in the
R-matrix calculation, which is expected to have the greatest
effect at energies close to threshold. The present results,
however, are in better agreement with the measurements of
Khakoo and Segura [7] in this region. Clearly, the techniques
for dealing with energy conservation in the AN method deserve
further investigation.

Above 12 eV, the present results are lower than the R-matrix
results. This is to be expected since the R-matrix calculation

included fewer states in the close-coupling expansion, in
the same way that the CC(12) model produced a larger FN
cross section than the CCC(491) model at these energies.
The calculation of Celiberto et al. [17] is in good agreement
with the measurements of Nishimura and Danjo [6] and
passes through or just below the lower error bounds of
Khakoo and Segura [7] and Hall and Andric [8]. The peak
predicted by Celiberto et al. [17] is significantly lower than the
recommended data [9], which follows the peak of Khakoo and
Segura [7]. The Celiberto et al. [17] results are semiclassical
and are not expected to be correct at low energies. Despite the
differences between the three calculations, they all predict a
cross section substantially lower than the recommended data
around 15 eV. This qualitative agreement between all three
theoretical methods indicates that the experiments have likely
overestimated the true cross section. This is unlikely due to
cascades from higher triplet states as the ICS were obtained
by integrating over DCS measurements, which were obtained
by measuring the electron energy-loss spectrum. At 15 eV,
the energy-loss spectra for the higher states overlap the b3�+

u

spectrum by approximately 20% [7], which cannot account
for the large difference between the theory and experiments.
The accuracy of the CCC b3�+

u cross section is supported by
the excellent agreement of the CCC total cross section with
experiment [15]. The calculations of Rescigno and Schneider
[18] were performed at just a few energies, with no calculations
performed below 12 eV. These calculations predicted a peak
near 15 eV, in disagreement with the present results and the
calculations of Trevisan and Tennyson [16].

D. Differential cross sections

In Fig. 5, we present the b3�+
u DCS at Ein = 9.2 eV,

compared with the measurements of Khakoo and Segura [7].
The CCC calculations were not previously available at 9.2 eV
[15] since the b3�+

u excitation is closed in the FN model at this
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the measurements of Hall and Andric [8].
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FIG. 7. Same as in Fig. 6, but at 12 eV, and including the
measurements of Nishimura and Danjo [6]. Also shown is the CC(12)
FN calculation described in the text.

energy. The low-energy b3�+
u DCS were also calculated by

Trevisan and Tennyson [16] using the AN R-matrix method;
however, they were affected by an error in the accounting of
phase factors [40] and hence we exclude them here and in the
remaining DCS figures.

In Fig. 6, we present the b3�+
u DCS at incident energies

of 10.2 and 10.5 eV. We compare with the measurements of
Khakoo and Segura [7] (10.2 eV) and Hall and Andric [8] (10.5
eV). The CCC 10.2 eV DCS is in good agreement with the
Khakoo and Segura [7] measurements. The measurements of
Hall and Andric [8] show a flattening of the DCS between 90
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FIG. 8. Probability density functions of the ground vibrational
state for H2 and its isotopologues. The R-dependent excitation cross
sections of the b 3�+

u state at 9.2 and 12.2 eV are also shown.

and 120 degrees, while the Khakoo and Segura [7] experiment
shows a sharp rise in the same region. Although the present
10.5 eV results and the measurements of Hall and Andric
[8] are in agreement up to 90 degrees, they do not agree at
backwards scattering angles.

In Fig. 7, we present the b3�+
u DCS at Ein = 12 eV. We

compare with the measurements of Khakoo and Segura [7]
(12.2 eV), Nishimura and Danjo [6] (12 eV), and Hall and
Andric [8] (12 eV). At this energy, we expect the vibrational
motion effects are still important, which is illustrated by the
quantitative and qualitative differences between the AN and
FN results. While the CC(12) FN DCS is in good agreement
with the measurements of Khakoo and Segura [7], the CC(12)
AN DCS is in good agreement with the Nishimura and
Danjo [6] measurements, and with the Hall and Andric [8]
measurements above 50 degrees. The 12 eV DCS here and
in the following section for the isotopologues have been
scaled down by approximately 2% to be consistent with the
recommended CCC AN ICS, which was scaled down above
11.5 eV to connect to the CCC(491) results.

Performing the AN calculations results in a flatter DCS than
is seen in the FN (R = 1.448) results. This is a result of the
flatter FN DCS at R values to either side of R = 1.448, within
the range which makes the most significant contribution to the
AN DCS. At backwards scattering angles, the measurements
of Hall and Andric [8] appear flatter than both the present
calculations and the two other measurements. Given the
relatively large error bars at these angles, however, this is
not particularly significant.

E. The isotope effect

In the present CCC formulation, the electronic and nuclear
degrees of freedom are separated using the Born-Oppenheimer
approximation, and hence the electronic structure and FN
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FIG. 10. Electron-impact differential excitation cross sections of
the b3�+

u state of H2, D2, T2, HD, HT, and DT at 9.2 eV, calculated
using the AN CC(12) model described in the text.

collision data are identical among the isotopologues H2, D2,
T2, HD, HT, and DT. However, the AN cross sections differ
for the isotopologues due to the difference in the ground-state
vibrational wave function. The increased reduced mass of
the heavier isotopologues causes the ground-state vibrational
wave function to become contracted and display a larger
probability density near the mean internuclear separation
(see Fig. 8). At low energies, the excitation threshold of the
R-dependent cross section shifts to larger R, and hence the
smaller probability density of the vibrational wave function at
larger R for the heavier isotopologues leads to a reduced AN
cross section. This is illustrated in Fig. 8 by the R-dependent
ICS at 9.2 eV. At larger energies, such as 12.2 eV, the excitation
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FIG. 11. Same as in Fig. 10, but at 10.2 eV.
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FIG. 12. Same as in Fig. 10 but at 12 eV.

threshold shifts to lower R and the isotope effect is less
pronounced.

In Fig. 9, we compare the recommended CCC AN ICS
for the isotopologues of H2. These have been constructed in
the same manner as the H2 ICS in Fig. 4. There is a strong
isotope effect at incident energies up to approximately 11.5 eV,
above which there are minor differences between the different
species.

In Figs. 10–12, we compare the DCS for the isotopologues
of H2 at Ein = 9.2, 10.2, and 12 eV, respectively. As for the
ICS, the isotope effect is stronger at lower incident electron
energies. The 9.2 and 10.2 eV DCS are decreased significantly
at backwards scattering angles for the heavier isotopologues,
leading to a flattening of the overall DCS. At Ein = 12 eV,
there are no significant differences in the DCS for the different
species.

V. CONCLUSIONS

We have calculated integrated and differential cross sections
for low-energy electron-impact excitation of the b3�+

u state
of H2 and its isotopologues in the AN approximation. Below
12 eV, our ICS results are in good agreement with the measure-
ments of Khakoo and Segura [7] and Hall and Andric [8], and
with the previous AN R-matrix calculations of Trevisan and
Tennyson [16], but are somewhat larger than the semiclassical
calculations of Celiberto et al. [17]. Above approximately
12.5 eV, the present results are substantially lower than both the
semiclassical [17] and R-matrix [16] calculations, and all three
calculations are systematically lower than the recommended
data of Yoon et al. [9] in this region. The discrepancy between
the three calculations and the recommended data deserves
further investigation. For the DCS, we have produced a set
of theoretical b3�+

u cross sections that are in good agreement
with the available experiments in the low-energy regime from
9.2 to 12 eV.
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We have shown that the ICS and DCS are highly sensitive to
the isotope effect at energies below 12 eV, and expect that this
can be of importance for modeling low-temperature plasmas
containing these species. Above 13 eV, the AN calculations
are in reasonable agreement with the corresponding FN results
and, therefore, the much computationally cheaper FN approach
is sufficiently accurate. The reasons for the disagreement
between the AN and FN results at low energies, and agreement
at high energies have been discussed and explained. We have
presented our recommended ICS, which connect the present
AN results to the previously published [15] CCC FN results.

The theoretical techniques utilized in the present work can
be extended to low-energy excitations of excited electronic
states, scattering from hot (vibrationally excited) targets, and
calculations of fully vibrationally resolved excitations. If the
energy of the scattered electron is comparable to the vibrational
level spacings, a fully quantum mechanical treatment of the

nuclear motion, such as vibrational close coupling, may be
required. However, the present techniques are likely to be
sufficiently accurate at energies of interest in plasma modeling
applications.
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