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Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system
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We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a
nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction
within the triplet. Through an analytical diagonalization based on the SU(3) Lie algebra, we find that the electron
spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction,
but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system
shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or
electron spin polarization.
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I. INTRODUCTION

The phenomena of level crossings play an important role
in a variety of quantum mechanical systems [1,2], which date
back to early works of Hamilton [3], von Neumann and Wigner
[4], and Landau and Zener [5,6]. These considerations led
to various interesting results, including Berry’s phase [7,8],
the Hanle effect [9], and so on. More recent topics involving
level crossings include quantum phase transitions [10,11],
quantum entanglement [12], the Feshbach resonance [13], and
electron gases [14]. In particular, the level crossing phenomena
can generally appear in the magnetic resonance of atoms or
molecules by adjusting an external field, a quantum number,
or a coupling constant between submolecular constituents.

As a prototypical model for magnetic resonance, the Breit-
Rabi Hamiltonian [15] describes the hyperfine interaction
between an electron spin and a nuclear spin, as well as
their Zeeman coupling to the external magnetic field [16–19].
In particular, for the Breit-Rabi Hamiltonian with a spin-1
coupled to a nuclear spin with size K , a curious degeneracy
with 2K + 1 level crossings is shown to occur at a fixed
magnetic field when the nuclear Zeeman splitting is ignored
[20,21]. Specifically, the Hamiltonian

Ĥ (x) = x(K + 1/2)Ŝz + K̂ · Ŝ

has been studied in Refs. [20,22], which describes the
exchange interaction of two spins Ŝ and K̂, with a Zeeman
splitting for spin Ŝ included. Here S = 1 and K can be arbitrary
and x represents a dimensionless magnetic field. It was found
[20] that there is always a nontrivial degeneracy at x = ±1.0
for arbitrary K (Fig. 1). The degeneracy has shown up as
resonances in the spin relaxation rate and has provided key
evidence for the particular mechanism of spin relaxation [22].
Bai et al. used the Yangian algebra to explain the emergence
of such a curious degeneracy in the spin-1 system [23,24].

However, for an electron spin-triplet system, the electron
spin-spin interaction plays an essential role, which will greatly
affect the properties of system. In recent years, the nitrogen-
vacancy (NV) center in diamond has attracted much attention
due to the system’s long coherence time [25–27]. Such a
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system is described by the spin-1 Breit-Rabi Hamiltonian
with the electron spin-spin interaction included [28–30]. Based
on this system, excited-state spectroscopy [31] and dynamic
polarization [32] have been studied in a 15NV center coupled
to a nuclear spin with K = 1/2. It is also proposed to enhance
the optical readout fidelity in the 14NV center with a K = 1
nuclear spin [33]. Thus, the spin-1 Breit-Rabi Hamiltonian
with arbitrary nuclear spin K and with electron spin-spin
interaction included deserves further theoretical study in order
to better understand the evolution of the level (anti)crossing
and the associated spin relaxations.

In this work, we consider a spin-1 Breit-Rabi Hamiltonian
with the electron spin-spin interaction included and at the same
time allowing for arbitrary size of K . We will focus on the
influence of electron spin-spin interaction on the lifting of
the original curious level crossings. By using the fact that the
total magnetization along the z axis of the hybrid spin system is
conserved, we employ an analytical diagonalization procedure
based on the SU(3) Lie algebra to obtain explicit expressions
for the eigenvalues. The discriminant method developed in
Refs. [34,35] is used as an auxiliary tool to probe the level
crossings of the system. It is found that the electron spin-
spin interaction removes the original curious degeneracy and
generates other level crossings near this point in the weak spin-
spin coupling regime. As the spin-spin interaction strength
increases, the level crossings develop into level anticrossings
(LACs) at some magnetic fields, which has been shown to be
relevant to the dynamic polarization of nuclear spin at a certain
magnetic field in a NV center [32,33]. The number of LACs is
found to be 2K − 1 and originates from the fact that the sum
of the eigenenergies in each block is a constant that depends
on the hyperfine coupling strength only.

We also study the time evolution of the system and find
that perfect periodic spin flips appear at the LACs for arbitrary
nuclear spin. In particular, the LACs at or near the zero vertical
magnetic field will lead to periodic spin flips, for which the
average spin 〈Sz〉 of the electron changes between −1 and
1. The corresponding states of the nuclear spin will change
between |m + 1〉 and |m − 1〉, where |m| � K − 1. This might
provide some new possibilities of nuclear or electron spin
polarization.

The rest of the paper is organized as follows. In Sec. II, the
model and methodology are introduced. In Sec. III, the energy
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FIG. 1. Energy levels of Ĥ (x) = x(K + 1/2)Ŝz + K̂ · Ŝ for S =
1 and two different K: (a) K = 1/2 and (b) K = 1. Note the nontrivial
level crossing at x = ±1.0, which is independent of K .

spectrum is studied in a uniform vertical magnetic field. In
Sec. IV, the spin dynamics is presented and analyzed. Finally,
we summarize the main results in Sec. V.

II. MODEL

We consider a spin-1 or a triplet formed by an electron
spin pair Ŝ1 and Ŝ2, which is coupled to a nuclear spin K̂
of arbitrary size K via the Heisenberg hyperfine interaction.
We also include the electron spin-spin interaction that arises
from the magnetic dipole interaction between Ŝ1 and Ŝ2. By
neglecting the Zeeman splitting of the nuclear spin, the system
in the presence of a uniform magnetic field B is described by
the Hamiltonian

Ĥ = ξK̂ · Ŝ + Ŝ · D · Ŝ + gsμBB · Ŝ, (1)

where ξ is the hyperfine coupling constant and gs is the g factor
of an electron (with μB the Bohr magneton). Here D is a 3 × 3
matrix and is called the zero-field splitting tensor [36,37]. Its
general form depends on the axis frame of the system. For
the principal-axis system, it can be chosen to be diagonal as
diag[Dx,Dy,Dz] [36,37]. By choosing a uniform magnetic
field B = B0�ez along the z axis, the Hamiltonian (1) can be
made dimensionless by the rescaling Ĥ /gsμBB∗ → Ĥ0,

Ĥ0 = λB0 Ŝz + λξ K̂ · Ŝ + λD

(
Ŝ2

z − Ŝ2

3

)
+ λE

(
Ŝ2

x − Ŝ2
y

)
,

(2)

where λB0 = B0/B
∗, λξ = ξ/gsμBB∗, λD = D/gsμBB∗, and

λE = E/gsμBB∗ are dimensionless parameters with B∗ a unit
magnetic field. We choose D = 3Dz/2 and E = (Dx − Dy)/2
as the axial and nonaxial coefficients [37–40], which makes D
traceless.

We define the total spin operator Ĵ = Ŝ + K̂ of the triplet
and the nuclear spin and denote by |mS,mK〉 the basis states
|S,mS〉 ⊗ |K,mK〉, where |S,mS〉 (|K,mK〉) is the eigenstate
of Ŝ2 and Ŝz (K̂2 and K̂z). The eigenvalue m = mS + mK of
Ĵz can take values of −K − 1, −K, . . . ,K , and K + 1. It can
be easily seen that the total magnetization Ĵz is conserved for
λE = 0. However, for λE �= 0, the Hamiltonian Ĥ0 no longer
commutes with Ĵz. Since in many cases |D| 	 |E| [28–30],

we henceforth neglect the last term in Eq. (2). The so obtained
model has been used to describe a NV center in diamond when
K = 1/2 [32,41].

For a fixed magnetization Jz = m with |m| � K − 1, the
Hamiltonian H0 can be written in the bases α1 = |1,m − 1〉,
α2 = |0,m〉, and α3 = | − 1,m + 1〉 as a 3 × 3 block

Ĥ0||m|�K−1 =

⎛
⎜⎝

bm−1 + λD

3 am 0

am − 2λD

3 cm

0 cm −bm+1 + λD

3

⎞
⎟⎠, (3)

where

am = λξ

√
(K + m)(K − m + 1)/2, (4)

bm = λB0 + λξm, (5)

cm = λξ

√
(K − m)(K + m + 1)/2. (6)

In addition, the Hamiltonian (2) also has two 2 × 2 blocks for
|m| = K and two 1 × 1 blocks for |m| = K + 1:

Ĥ0|m=K =
(

bK−1 + λD

3 aK

aK − 2λD

3

)
, (7)

Ĥ0|m=−K =
(

− 2λD

3 c−K

c−K −b−K+1 + λD

3

)
, (8)

Ĥ0|m=K+1 = bK + λD

3
, (9)

Ĥ0|m=−K−1 = −b−K + λD

3
. (10)

The block structure of the total Hamiltonian Ĥ0 makes it
convenient to study the system for arbitrary nuclear spin K .

III. METHODOLOGY

In this work, an algebraic method of SU(3) Lie algebra is
used to diagonalize the 3 × 3 block Hamiltonian Ĥ0||m|�K−1

for a fixed m. Using the eight generators of the SU(3) group
in its elementary representation

I+ =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦, I− =

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦,

U+ =
⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦, U− =

⎡
⎣0 0 0

0 0 0
0 1 0

⎤
⎦,

(11)

V+ =
⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦, V− =

⎡
⎣0 0 0

0 0 0
1 0 0

⎤
⎦,

I3 = 1

2

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦, I8 = 1

3

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦,

the block Hamiltonian (3) can be written as

Ĥ0||m|�K−1 = am(I+ + I−) + cm(U+ + U−)

+ gmI3 + hmI8 − 2λξ

3
1, (12)
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where

gm = bm − λξ + λD,
(13)

hm = (3bm + λξ − λD)/2

and 1 is the 3 × 3 unit matrix. It is well known that the eight
generators given by Eq. (11) can be classified into three angular
momentum operators I+, I−, and I3, which form the SU(2)
subalgebra, and five quadrupole operators U±, V±, and I8 [42].
Equations (12) and (13) indicate that the effect of the spin-spin
interaction is included in terms proportional to the two Cartan
operators I3 and I8.

According to standard Lie algebraic theory [43–45], a
Hermitian operator that is a linear function of the N generators
of a compact semisimple Lie group can be transformed
into a linear combination of the Cartan operators of the
corresponding Lie algebra by the transformation

Ĥ0 → Ĥ ′
0 = WĤ0W

−1, W =
N∏

i=1

exp(xiCi), (14)

where {Ci} (i = 1, . . . ,N) is a basis set in the Cartan standard
form of the semisimple Lie algebra and xi is the corresponding
coefficients to be determined. Here we choose

W = ex5V+ex2I−ex4U−ex1I+ex3U+ex6V− . (15)

Note that xi can be set equal to zero if the corresponding Ci is
a Cartan operator (an element of the Cartan subalgebra) [45].
After a straightforward calculation, we have the following
diagonal form of the transformed Hamiltonian:

Ĥ ′
0||m|�K−1 = g′

mI3 + h′
mI8 − 2λξ

3
1, (16)

with

g′
m = gm + (2amx1 − cmx3),

h′
m = hm + 3cmx3/2,

(17)

where the coefficients x1 and x3 are determined by solving the
algebraic equations

cm − amx6 + (
1
2gm − hm

)
x3 − cmx2

3 = 0,(
hm + 1

2gm

)
x6 + (am + cmx6)x3 = 0,

am + cmx6 − (gm − cmx3)x1 − amx2
1 = 0.

(18)

Note that Eq. (17) only involves the two variables x1 and x3,
though x2, x4, and x5 can be solved by another three coupled
equations. In the following, we will omit the subindex m in
the variables am, bm, cm, gm, and hm for simplicity.

There are six sets of solutions (x1,x3,x6) of Eq. (18), which
are permutations of the particular solution

x1 = (−4ch − 6cg +
√

3acf + �k)/12ac,

x3 = 1

6c2
(−4ch + �k), (19)

x6 = [36c4 + 4c2h(2h − 3g) + (3gc + 2hc)�k − �2
k]/36ac3,

where

f =
√

[e − 8ch(−4ch + �k) − (−4ch + �k)2]/a2c2,

�k = (k1 −
√

k2)1/3 + (k1 +
√

k2)1/3,

e = 48a2c2 + 48c4 + 12c2g2, (20)

k1 = 54c5g − 72a2c3h + 36c5h − 18c3g2h + 8c3h3,

k2 = c6{−(12a2 + 12c2 + 3g2 + 4h2)

+ 4[36a2h + 9g2h − 4h3 − 9c2(3g + 2h)]2}.

Note that any other solution as a permutation of the particular
solution given by Eq. (19) only results in a rearrangement of
the diagonal elements in H ′

0 and hence does not affect any
physical result. We thus analytically obtain all the eigenvalues
of Ĥ0:

U
(|m|�K−1)
1 = g

2
+ h

3
+ ax1 − 2λξ

3
,

U
(|m|�K−1)
2 = −g

2
+ h

3
− ax1 + cx3 − 2λξ

3
,

U
(|m|�K−1)
3 = −2

3
h − cx3 − 2λξ

3
,

U
(m=K)
1 = 1

6
(4b − g − 3

√
4a2 + g2) − 2λξ

3
,

U
(m=K)
2 = 1

6
(4b − g + 3

√
4a2 + g2) − 2λξ

3
, (21)

U
(m=−K)
1 = 1

6
(−2b − g − 3

√
4b2 + 4c2 − 4bg + g2) − 2λξ

3
,

U
(m=−K)
2 = 1

6
(−2b − g + 3

√
4b2 + 4c2 − 4bg + g2) − 2λξ

3
,

U (m=K+1) = 1

3
(2b + g) − 2λξ

3
,

U (m=−K−1) = 1

3
(−4b + g) − 2λξ

3
.

It is worth pointing out that the transformation W given by
Eq. (15) is not a unitary one and hence we can only get
the eigenvalues rather than the eigenvectors of the system.
However, as we will see, these analytical expressions for the
eigenvalues are beneficial to the analysis of the evolution of
the energy spectrum.

FIG. 2. (a) Plot of ln(�[Ĥ λD=0
0 ] + 1), the logarithmic represen-

tation of the discriminant of Ĥ0 when λD = 0. (b) Spectrum as a
function of the rescaled dimensionless magnetic field x0. The other
parameters are K = 2, ν = 0.5, λξ = 1.0, and λD = 0.
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IV. RESULTS

A. Weak spin-spin interaction

In this section, we set λξ = 1.0 and λB0 = x0(K + ν) in the Hamiltonian (2), with ν a constant and x0 a rescaled dimensionless
magnetic field. Let us first focus on the case of S = 1 and K = 2, for example, in the case of the 87Rb vapor studied in Ref. [22].

In order to see the effect of spin-spin interaction on the energy spectrum, we first study the case of λD = 0 by using the
discriminant method [34,35]. The discriminant �[Ĥ λD=0

0 ] of Ĥ0 reads

�
[
Ĥ

λD=0
0

] = 36520347436056576λ68
B0

(
5 − 2λB0

)20(
5 + 2λB0

)20(
9 − 2λB0 + λ2

B0

)(
9 + 2λB0 + λ2

B0

)
× (

225 + 139λ2
B0

+ 16λ4
B0

+ λ6
B0

)(
900 − 1000λB0 + 875λ2

B0
− 324λ3

B0
+ 112λ4

B0
− 24λ5

B0
+ 4λ6

B0

)
× (

900 + 1000λB0 + 857λ2
B0

+ 324λ3
B0

+ 112λ4
B0

+ 24λ5
B0

+ 4λ6
B0

)
, (22)

whose zeros determine the level crossing points in the
spectrum. It is easy to see that the equation �[Ĥ λD=0

0 ] = 0
has real solutions λB0 = 0 and λB0 = ±2.5, which correspond
to the degeneracies at x0 = 0 and x0 = ±1.0 for ν = 0.5,
respectively [Fig. 2(a)]. The dips represent the level crossings.
Energy eigenvalues calculated by Eq. (21) are shown in
Fig. 2(b) as functions of the dimensionless magnetic field
x0. Due to the conservation of the total magnetization, each
energy level is labeled by a quantum number m. There are
three degenerate energies at x0 = 0, namely, U = −3.0 (for
m = −1, 0, and 1), U = −1.0 (for m = −2, −1, 0, 1, and
2), and U = 2.0 (for m = −3, −2, −1, 0, 1, 2, and 3). Of
particular interest is the degeneracy at x0 = +1.0 with energy
U = −1/2, where the energy levels corresponding to m = −3,
−1, 0, 1, and 2 are crossed. These degeneracies were revealed
in Ref. [22] and discussed in detail in Refs. [20,23].

In general, the degeneracy point x∗
0 (ν,K) is a function of

both ν and K . Actually, by setting the eigenenergies in the
m = −K − 1 and m = K (m = K + 1 and m = −K) blocks
equal, one can find

x∗
0 (ν,K) = ±K + 0.5

K + ν
. (23)

Note that for ν = 0.5, the degeneracy at x0 = ±1.0 holds for
arbitrary K (Fig. 3). However, the degenerate energy is still
U = −1/2 and does not depend on the values of ν or K . In
contrast, the three degenerate energies at x∗

0 = 0 are U = K ,
U = −1, and U = −K − 1, respectively, which depend on the
value of K only. In the following, we will set ν = 0.5.

When the spin-spin interaction is present, the
original degeneracies at x0 = 0 and x0 = ±1.0 are lifted.
Figure 4(a) shows the energy spectrum of H0 for a finite
spin-spin interaction λD = 0.4 and K = 2. It can be seen
that new level crossings appear around x0 = 0 and x0 = ±1
[Figs. 4(b) and 4(d)]. The behavior of the discriminant
reflecting the level crossings is shown in Fig. 4(c). Thus,
weak spin-spin interactions remove the original degeneracy
and develop new level crossings around the degenerate
points.

B. Strong spin-spin interaction

In this section, we consider strong spin-spin interaction
with λD > λξ , which is the case of a NV center in diamond
[28,29]. In the case of λξ = 0, the electronic and nuclear
spins are decoupled and the eigenenergies of the electron pair
are simply given by U1 = λD/3 − λB0 , U2 = λD/3 + λB0 , and
U3 = −2λD/3 [Fig. 5(a)], which correspond to the three states
| − 1〉, |1〉, and |0〉 in the triplet, respectively.

Figure 5(b) shows the energy spectrum for a strong spin-
spin interaction λD = 10.0, which has an outline similar to
that in Fig. 5(a), but with fine structures arising from the
hyperfine coupling. It is clear that the level crossings at
x0 = 0 and x0 � ±6.67 in Fig. 5(a) evolve into some LACs
and new level crossings in Fig. 5(b) due to the presence of
the electron-nuclear spin coupling. In order to analyze the
level (anti)crossings, we calculate the discriminant �[Ĥ0] for
general λD ,

�[Ĥ0] = 4069λ6
B0

(
λB0 − λD

)2(
λB0 + λD

)2( − 3λB0 + 2λ2
B0

+ λD − 2λB0λD

)2( − 3λB0 + 2λ2
B0

+ 2λD − 2λB0λD

)2

× (
3λB0 + 2λ2

B0
+ λD + 2λB0λD

)2(
3λB0 + 2λ2

B0
+ 2λD + 2λB0λD

)2(
4 + λ2

B0
− 2λB0λD + λ2

D

)
× (

4 + λ2
B0

+ 2λB0λD + λ2
D

)(
3λ2

B0
+ 2λ3

B0
+ 2λB0λD − 4λ2

B0
λD − λ2

D + 2λB0λ
2
D

)2

×( − 3λ2
B0

+ 2λ3
B0

+ 2λB0λD + 4λ2
B0

λD + λ2
D + 2λB0λ

2
D

)2

×(
9 + 23λ2

B0
+ 4λ4

B0
+ λ6

B0
− 2λD − 24λ2

B0
λD + 4λ4

B0
λD + λ2

D + 16λ2
B0

λ2
D − 2λ4

B0
λ2

D − 4λ2
B0

λ3
D + λ2

B0
λ4

D

)
. (24)

The dips appearing in Fig. 5(c) correspond to the level
crossings. In addition, we note that the two levels in the m = 0
sector develop a LAC at x0 = 0 [inset of Fig. 5(b)]. In fact,
when �[Ĥ0] = 0 is solved for λD = 10.0, only the last factor

on the right-hand side of Eq. (24) has pure imaginary solutions,
which implies the appearance of LAC at x0 = 0. In general,
the number of LACs around x0 = 0 depends on the value of K .
For general values of K , there are 2K − 1 LACs distributed
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FIG. 3. Relationship between ν and x∗
0 for different K , where

λξ = 1.0 and λD = 0.

symmetrically with respect to x0 = 0, each resulting from a
pair of states in the m sector for |m| � K − 1. Figure 5(d)
shows the structures of the LACs for K = 3/2 and K = 3.
Actually, it can be seen from Eq. (21) that the sum of the three
eigenenergies in the m sector with |m| � K − 1 is a constant,

3∑
i=1

U
(|m|�K−1)
i = −2λξ , (25)

which is independent of K and m, as well as all other system
parameters except for λξ . As an illustration, we show in
Fig. 6(a) the three ordered eigenenergies UT � UM � UB at
x0 = 0 for K = 1 and m = 0, as functions of the electron
spin-spin coupling λD . It can be seen that as |λD| increases,
two of the three eigenenergies become closer to each other
and result in a LAC. In order to study other general LACs
away from x0 = 0, we define a LAC point by equating the

FIG. 4. (a) Spectrum as a function of the rescaled dimensionless
magnetic field x0 for λD = 0.4. (b) Magnification of the energy
spectrum near x0 = 0. (c) Discriminant of Ĥ0 (the finite height
of the dips is due to the limitation of the graphic resolution). (d)
Magnification of the energy spectrum near x0 = 1.0. The other
parameters are K = 2, ν = 0.5, λD = 0.4, and λξ = 1.0.

FIG. 5. Spectrum as a function of the rescaled dimensionless
magnetic field x0 for (a) K = 1, ν = 0.5, λξ = 0, and λD = 10.0
and (b) K = 1, ν = 0.5, λξ = 1.0, and λD = 10.0. (c) Discriminant
of Ĥ0 when K = 1, ν = 0.5, λξ = 1.0, and λD = 10.0. (d) The LACs
around x0 = 0 for different K .

slopes of two relevant eigenenergies with respect to x0 for each
fixed m, i.e.,

∂U
(m)
i

∂x0
= ∂U

(m)
j

∂x0
, (26)

where i and j label the two eigenenergies involved. Thus, a
LAC is also the point at which the energy gap between the two
states reaches a minimum. For example, for K = 1, the LACs
in the m = ±1 sectors are calculated to be x0 = ∓6.667, while
there are three LACs in the m = 0 sector at x0 = 0 and ±6.036
[Fig. 6(b) and the inset of Fig. 5(b)].

V. SPIN DYNAMICS

In this section, we study the real-time dynamics of the
hybrid electron-nuclear spin system. Due to the conservation
of the total magnetization m, we solve the time-dependent
Schrödinger equation in each m block for given initial states.
In addition, λξ = 1.0 and ν = 0.5 are used in this section.

First, we consider the initial state |ψ0〉 = |0, − K〉 so
that the dynamics is described by the 2 × 2 block Hamil-
tonian Ĥ0|m=−K . From Eq. (8), the probabilities P|χ〉(t) =

FIG. 6. (a) Spectrum as a function of the coupling strength λD at
x0 = 0 for K = 1 and m = 0. (b) Derivative ∂U/∂x0 for K = 1 and
λD = 10.0. Here λξ = 1.0 and ν = 0.5.
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FIG. 7. Evolution of the probability P|χ〉 from the initial state
|ψ0〉 = |0, − K〉 for (a)–(d) K = 1 and (e)–(h) K = 5. The solid and
dotted curves show the results for λD = 1.0 and 10.0, respectively.
The other parameters are λξ = 1.0, ν = 0.5, and (a) x0 = 0.667,
(b) x0 = 0.909, (c) x0 = 2.545, (d) x0 = 6.667, (e) x0 = 0.667, (f)
x0 = 0.909, (g) x0 = 2.545, and (h) x0 = 6.667.

|〈χ |e−iĤ0t |ψ0〉|2 of finding the state in |χ〉 = |0,−K〉 and
|−1,−K + 1〉 at time t are

P|−1,−K+1〉(t) = 16K

A1
sin2

(√
A1

4
t

)
, (27)

P|0,−K〉(t) = 1 − P|−1,−K+1〉(t), (28)

where

A1 = 4λ2
D + 4K2(x0 − 1)2 + (x0 + 2)2 + 4K

(
2 + x0 + x2

0

)
− 4λD[2 + 2K(x0 − 1) + x0]. (29)

Figure 7 shows the time evolution of these probabilities and
we find that perfect periodic switchings between |0,−K〉
and |−1,−K + 1〉 are achieved at the LACs, i.e., x0 = 0.667
(0.909) for K = 1 (5) when λD = 1.0 [solid curves in
Figs. 7(a) and 7(f)] and x0 = 6.667 (2.545) for K = 1 (5)
when λD = 10.0 [dotted curves in Figs. 7(d) and 7(g)]. These
LACs are determined by substituting the two eigenenergies
U

(m=−K)
1 and U

(m=−K)
2 into Eq. (26), giving

x̃0(ν,K,λD) = K − 1 + λD

K + ν
, (30)

which is presented by open points in Fig. 8 for different K and
λD . The period T = 4π/

√
A1 for the perfect oscillations of

P|χ〉 at the LACs is also shown by solid points in Fig. 8. It is
found that T decreases with increasing K and is independent
of the coupling strength λD . Actually, by substituting Eq. (30)
into Eq. (29), we have A1 = 16K and hence T = π/

√
K . So

the amplitude |16K/A1| for P|χ〉(t) reaches unity at the LACs,
which explains the perfect oscillations observed above.

We next consider the initial state |ψ0〉 = |−1,m + 1〉 with
|m| � K − 1. The perfect flip of states will still appear
at the LACs. For K = 1 and λD = 10.0, there are two
LACs for m = 0 [see Fig. 6(b)] at x̃0 = ±6.036, which
have been noticed before [32,33]. The time evolution of the
probabilities in the states |0,0〉, |−1,1〉, and |1,−1〉 at the
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FIG. 8. Variation of the oscillation period of perfect switching be-
tween |0,−K〉 and |−1,K + 1〉 (closed points), and the corresponding
LACs (open points) with different K and coupling strength λD . The
other parameters are λξ = 1.0 and ν = 0.5.

LAC x̃0 = 6.036 are shown as dashed curves in Fig. 8(a).
The corresponding dynamics for the electron polarization
〈Sz(t)〉 = 〈ψ0|eiĤ0t Sze

−iĤ0t |ψ0〉 is shown in Fig. 8(b). It can
be seen that 〈Sz(t)〉 oscillates periodically between −1 and 0.
At the LAC point x̃0 = 0, the evolution of the probabilities is
mainly distributed between |−1,1〉 and |1,−1〉 [solid curves in
Fig. 9(a)]. The dynamics of 〈Sz(t)〉 shown in Fig. 9(b) indicates
that the spin flip occurs between 〈Ŝz〉 = −1 and 〈Ŝz〉 = 1.

Actually, in the m = 0 sector and at the LAC x̃0 = 0, the
dynamics of the probabilities of the three states P|1,m−1〉(t),
P|0,m〉(t), and P|−1,m+1〉(t) can be obtained analytically (see
the Appendix). The corresponding electron polarization 〈Sz(t)〉

FIG. 9. (a) Evolution of the probability P|χ〉 from the initial state
|ψ0〉 = |−1,m + 1〉 at the LACs x0 = 0.0 (solid curves) and x0 =
6.036 (dashed curves) for m = 0. (b) Corresponding dynamics of
the electron polarization 〈Sz(t)〉. The other parameters are K = 1,
λξ = 1.0, λD = 10.0, ν = 0.5, and λB0 = 1.5x0.
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FIG. 10. Dynamics of the electron polarization 〈Ŝz〉 for different
spin-spin coupling strength λD . Here K = 1, λξ = 1.0, x0 = 0, ν =
0.5, λB0 = 1.5x0, and (a) λD = 0, (b) λD = 0.05, (c) λD = 0.1, (d)
λD = 0.9, (e) λD = 1.0, (f) λD = 2.1, (g) λD = 5.0, (h) λD = 10.0,
and (i) λD = 20.0.

reads

〈Sz(t)〉 = − 1

2C1

[
C2 cos

(−1 + λD − √
C1

2
t

)

+C3 cos

(−1 + λD + √
C1

2
t

)]
, (31)

where

C1 = (λD − 1)2 + 4K + 4K2,

C2 = C1 + (λD − 1)
√

C1,

C3 = C1 − (λD − 1)
√

C1.

(32)

It can be seen that 〈Sz(t)〉 generally behaves as a modulated
oscillation controlled by both K and λD (Fig. 10). In
particular, for λD = 1.0 we have C1 = C2 = C3 and hence
〈Sz(t)〉 = − cos

√
K(K + 1)t , which oscillates with a period

T = 2π/
√

K(K + 1). In addition, in the strong spin-spin
coupling regime with λD 	 λξ ,K , we have

√
C1 ≈ λD −

1 + 2K(K+1)
λD−1 , so C2 ≈ 2(λD − 1)2 + 6K(K + 1) and C3 ≈

2K(K + 1). Since C2 	 C3, 〈Sz(t)〉 oscillates almost perfectly
with period T ≈ 2π λD−1

K(K+1) , which increases with increasing
λD [see Figs. 10(g)–10(i)].

Previous studies about dynamic polarization of nuclear
spins have shown that the strong spin mixing will occur at
the LACs in nitrogen-vacancy centers [31,32], which will lead
to the precession of a certain frequency in different states. For
14NV with nuclear spin K = 1, the LAC of the excited state is
at 500Gs and leads the precession of nuclear spin states |1〉 �
|0〉 [32,33]. The above analysis shows that the similar LACs at
x̃0 = 6.667 for m = −1 and at x̃0 = 6.036 for m = 0 also lead
to the precession in different states and causes the periodic flip
of states or spin flip. In particular, when the system lies in the
strong-coupling regime, the LACs at x0 = 0 (for m = 0) and
near x0 = 0 (for m �= 0) [see Fig. 5(d)] lead to different spin
flip between |m + 1〉 � |m − 1〉, where |m| � K − 1. This
may provide a new possible electron or nuclear spin polariza-
tion mechanism at or near the zero vertical magnetic field.

VI. CONCLUSION

We studied the static and dynamical properties of a common
system consisting of an electron pair of spin-1 and a nuclear
spin of arbitrary size. The Zeeman splitting on the electrons,
the hyperfine interaction between the electron and nuclear
spin, and the electron spin-spin interaction within the pair were
considered. Due to the conservation of the total magnetization,
the block Hamiltonian within fixed magnetization was diago-
nalized using an algebraic approach based on the SU(3) Lie
algebra, which provides a convenient way for the analysis of
the energy spectrum. The discriminant method was employed
as an auxiliary tool to probe the level (anti)crossings. It was
found that the spin-spin interaction can transform the original
curious degeneracy into some nearby LACs. We then studied
the real-time dynamics of the composite system and showed
that perfect state switching occurs at the LACs for arbitrary
nuclear spin. The special spin flip appearing at or near zero
magnetic field might shed some light on the electron-nuclear
polarization mechanism.
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APPENDIX

For the arbitrary integer K , the LAC must occur at x̃0 = 0 for m = 0. When the initial state is |ψ0〉 = | − 1,m + 1〉, the
probabilities are

P|1,−m+1〉(t) = 1

16C2
1

[
4C2

1 + C2
2 + C2

3 − 4C1C2 cos

(−1 + λD − √
C1

2
t

)

− 4C1C3 cos

(−1 + λD + √
C1

2
t

)
+ 2C2C3 cos (

√
C1t)

]
, (A1)

P|0,m〉(t) = K(K + 1)

C1
[1 − cos (

√
C1t)], (A2)
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and

P|−1,m+1〉(t) = 1

16C2
1

[
4C2

1 + C2
2 + C2

3 + 4C1C2 cos

(−1 + λD − √
C1

2
t

)

+ 4C1C3 cos

(−1 + λD + √
C1

2
t

)
+ 2C2C3 cos (

√
C1t)

]
, (A3)

where C1, C2, and C3 have been defined in the main text. Then the average spin is 〈Sz(t)〉 = P|1,−m+1〉(t) − P|−1,m+1〉(t).
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