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Casimir and Casimir-Polder forces with dissipation from first principles
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We consider Casimir-Polder and Casimir forces with finite dissipation by coupling heat baths to the dipoles
introducing, this way, dissipation from first principles. We derive a representation of the free energy as an
integral over real frequencies, which can be viewed as an generalization of the remarkable formula introduced
by Ford et al. [Phys. Rev. Lett. 55, 2273 (1985)]. For instance, we obtain a nonperturbative representation for the
atom-atom and atom-wall interactions. We investigate several limiting cases. From the limit T → 0 we show that
the third law of thermodynamics cannot be violated within the given approach, where the dissipation parameter
cannot depend on temperature by construction. We conclude that the given approach is insufficient to resolve
the thermodynamic puzzle connected with the Drude model when inserted into the Lifshitz formula. Further, we
consider the transition to the Matsubara representation and discuss modifications of the contribution from the
zeroth Matsubara frequency.
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I. INTRODUCTION

Casimir and Casimir-Polder forces are the basic interaction
between single atoms and macroscopic bodies at separations
beyond the direct overlap of the electronic wave functions.
Their range stretches from a few nanometers until macroscopic
separations. In many areas of physics, and beyond, these are
ubiquitous. Frequently, these are also called dispersion forces
[1]. These forces are due to the quantum electromagnetic
interaction between polarizable dipoles formed by the atoms
and the polarization inside the bodies. There are several
instructive explanations for these forces. One considers the
influence of the dipoles or of the bodies on the vacuum
of the electromagnetic field, generalizing the notion of zero
point energy known long ago in quantum mechanics. The
other considers the fluctuations, quantum and thermal, of the
electromagnetic field in the presence of the polarizable bodies.
The first was pioneered by Casimir for ideally reflecting bodies
[2], the second by Lifshitz [3] for polarizable bodies. In a
modern view, both have the same origin: the expectation
value of the Hamiltonian (or the energy-momentum tensor)
of the considered system taken in the vacuum or in a thermal
state. Thereby the latter is usually described by the Matsubara
formalism.

The dispersion force between macroscopic bodies is most
frequently described by the Lifshitz formula (LF) [4]. All other
cases can be obtained from here. For instance, for ideal conduc-
tors the original Casimir force follows, for rarified media the
Casimir-Polder forces for atom-wall or atom-atom interactions
follow (see [5] and citations therein). The LF is highly versatile
for describing the interaction of real bodies as it uses the
reflection coefficients of the bodies and the polarizability of
the atoms as input. By using known theoretical models or
experimental data for them, nearly any real situation can be
handled. An impressive level of precision comparison between
theoretical predictions and measurements has been reached
[6]. In line with such progress, unresolved problems remained.
On the theoretical side these manifest themselves, for instance,
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in a violation of the third law of thermodynamics (Nernst’s
heat theorem). As shown first in Ref. [7], inserting the Drude
model permittivity into the LF, for a dissipation parameter γ ,
decreasing with temperature T → 0 faster than the first power,
γ ∼ T α (α > 1), at T = 0 a nonzero entropy remains (see [6],
Sec. II D, for details). On the experimental side, the use of the
Drude model permittivity results in theoretical predictions,
which are for some configurations in growing disagreement
with measurements (see, for instance, [8]). There are similar
problems for insulators with dc conductivity. There were also
several attempts to resolve these problems, but all were not
convincing, eventually.

One of the most controversial points is the question about
the validity of the LF with Drude permittivity inserted. A
main part of this discussion concerns the assumption of
thermodynamic equilibrium assumed in deriving the LF, which
may be violated in the case of dissipation of free charge
carriers (electrons). On the other side, the LF is formulated
in terms of reflection coefficients, which may be derived, or
measured, independently. This way, it is not clear whether one
is allowed to insert the Drude model permittivity, especially
with a temperature-dependent dissipation parameter, into
the LF.

In past years, several attempts have been undertaken
to reach a derivation of the LF with Drude permittivity
from first principles. In fact, this is possible by attaching
heat baths (reservoirs) to the oscillators interacting with the
electromagnetic field and allows one to generate a Drude
permittivity in an effective equation for the electromagnetic
field. As a result, the validity of the LF with Drude permittivity
inserted could be verified. An early work in this direction was
[4]; more recent are [9–13].

In the present paper we consider and then reconsider the
heat bath approach. Thereby we give a direct derivation in
simple terms of the involved fields and their Green’s functions.
We arrive at a simple and universal representation for the free
energy of the considered configurations. These are atom-atom,
atom-wall, and wall-wall configurations at some separation
a. The first two are commonly named after Casimir and
Polder [14] and the latter corresponds to the Casimir effect
[2] and to the LF [3]. For all configurations we end up with a
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representation

F =
∫ ∞

0

dω

π

(
h̄ω

2
+ kBT ln(1 − e−βh̄ω)

)
∂

∂ω
δ(ω) (1)

for the free energy, where

δ(ω) = −1

2i
tr ln

L(ω)

L(ω)∗
(2)

(for details see below) is a kind of phase, the specific expression
for depends on the considered configuration. In the case of no
dissipation, δ(ω) turns into the scattering phase shift (in the
case of a continuous spectrum). For a recent example see eq.
(96) in [21].

In fact, the representation (1) for the free energy can be
viewed as a kind of generalization of the remarkable formula,
derived in Ref. [15] for a single oscillator, where the role of
δ(ω) is played by a generalized susceptibility or the imaginary
part of a Green’s function. In the literature there are more
generalizations and applications; one of the first can be found
in Ref. [4], Eq. (16), and a more recent one in Ref. [16], which
is in terms of modes.

As concerns the structure of Eq. (1), it must be mentioned
that in the case of no dissipation the vacuum energy (at T = 0)
can be expresses as a sum over modes

E0 = h̄

2

∑
J

ωJ , (3)

where the ωJ are the eigenfrequencies of the J th mode
(dropping any ultraviolet regularization). In the case of a
continuous spectrum, the sum must be substituted by a
corresponding integral. In equilibrium, and with no losses,
these frequencies are real. However, in the case of dissipation,
these have an imaginary part and so does the vacuum energy
(3), indicating an instability. In this context it is interesting to
remark that (1) is an integral over a real variable ω having the
meaning of a frequency. However, this frequency is not related
to the frequencies ωJ in Eq. (3). Also, the physics behind (1) is
different. Equation (1) is derived from the heat bath approach.
It assumes the coupling of each oscillator (mode) to a reservoir.
As a result, the motion of these oscillators is damped, but the
damping is in equilibrium with the driving Langevin force.
There are, in addition, the eigenmodes ωJ , but these die out
with time and will not contribute in equilibrium. For this reason
it would be misleading to call (1) a sum over modes.

Further in the present paper we check the limit of vanishing
temperature T → 0 and find in all configurations a decrease of
the temperature-dependent part of the free energy 	T F ∼ T 2

at least, which ensures nonviolation of the third law of
thermodynamics. This holds also for the case in which the
intrinsic frequency of the oscillators is zero. It must be
mentioned that the above-mentioned violation of the third
law appears if the dissipation parameter itself depends on
temperature γ (T ) and decreases sufficiently fast. We show that
this violation happens in the heat bath approach too. In other
words, the heat bath approach does not resolve the violation
problem with thermodynamics either. The point is that the
dissipation parameter, within the heat bath approach, does not
depend on temperature by construction (it may only depend
on frequency) and its temperature dependence is alien to this

approach. It remains a kind of phenomenological input and
does not follow from the first-principles approach taken here.
Thus, the solution of the mentioned problem is beyond the
approach taken in this paper and further work is necessary.

For the Casimir-Polder configurations we obtain formulas
which are nonperturbative in the polarizability α of the
dipole(s). The commonly considered case of large separations
or small polarizability is then obtained by expansion in
powers of α or 1/a. This expansion has a finite radius of
convergence which is determined by the onset of instability
when decreasing the separation a. This instability corresponds
to the spontaneous creation of photons. We assume that the
corresponding states are occupied and exclude them from
the statistical ensemble when doing the thermal averaging.
A nonperturbative approach to the Casimir-Polder force,
using a diagonalization of the corresponding Hamiltonian,
was developed in Ref. [17], where also possible applications
were discussed. Another nonperturbative approach to the
Casimir-Polder force was taken in Ref. [18], where also a
discussion of the instability was included. In electrodynamics,
for the interaction of atoms, the instability would appear for
separations a of order of the size of atoms, a ∼ α−1/3, which
is beyond the applicability of the dipole approximation. To
conclude this topic, we mention that such an instability does
not appear in the LF.

Further, in the present paper, we consider the transition
from the representation (1) of the free energy to the Matsubara
representation. This can be done by a kind of Wick rotation.
For parameters, keeping the considered configuration below
criticality and giving L(0) a finite value, we obtain in each
case the usual Matsubara representation. For the other cases
we observe a transmutation of the contribution from the zeroth
Matsubara frequency into a logarithmic term and an additional
term in the case of criticality. Thereby we pay special attention
to the case of vanishing intrinsic frequency of the oscillators
and discuss the resulting modifications of the results.

Finally, in the present paper, we consider the relation of
the considered model with the plasma model. As known, the
permittivity of the plasma model follows from that of the
Drude model by formally setting the dissipation parameter to
zero γ = 0, whereas the free energy does not turn into that of
the plasma model for γ → 0. The difference can be traced back
to contributions in Eq. (1) with ω, which are smaller than the
frequencies in the spectrum of the modes of the plasma model.

Throughout the paper three- and two-dimensional vectors
and matrices are denoted by bold letters. For instance, the
coordinate is x = (x,y,z) = (x‖,z), where x‖ is a vector in
the plane of an interface. We use units with h̄ = c = kB = 1.
We reserve the notation δ(ω) for what is called phase in this
paper. Spatial delta functions are always denoted by δ(1)(x) or
δ(3)(x), in dependence on the dimensionality.

II. MODEL, BASIC FORMULAS, AND CONFIGURATIONS

In this section we collect the basic formulas for the
considered model and configurations.

A. Model

The model consists of polarizable atoms and their interac-
tion with the electromagnetic field and with heat baths. From
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the Maxwell equations we have(
∂2
t − 	 + ∇ ◦ ∇)

E(t,x) = 4π∂t j (t,x) (4)

as the equation for the electric field in dyadic notation with the
current density j (x) as the source. The magnetic field follows
with rotE = −∂t B. The atoms are described by point dipoles
and the interaction is taken in the dipole approximation. The
ith atom is described by a dipole with the charge e at location
x = ai and the displacement ξ i(t) of its charge. Its dipole
moment is pi(t) = eξ i(t) and this dipole is equipped with the
dynamics of a harmonic oscillator

m
(
∂2
t + γ ∂t + 
2

)
ξ i(t) = eE(t,ai) + Fi(t), (5)

where 
 is the intrinsic frequency of the oscillator, γ is the
damping constant, and F(t) is the Langevin force. The current
density generated by the atoms is

j (t,x) = e∂t

∑
i

ξ i(t)δ
(3)(x − ai). (6)

The considered system has a Lagrangian

L =
∫

dx
1

8π
[E(t,x)2 − B(t,x)2]

+
∑

i

m

2
[ξ̇ i(t)

2 − 
2ξ i(t)
2] +

∑
i

pi(t)E(t,ai), (7)

where we did not show the heat bath part, and the classical
energy is given by

E = EED + Edipole, (8)

with

EED = 1

8π

∫
d3x[E(t,x)2 + B(t,x)2],

Edipole =
∑

i

m

2
[ξ̇ i(t)

2 + 
2ξ i(t)
2]

(9)

[see [19], p. 334, or [20], Eq. (9.37)]. The heat bath part, which
we do not show here, as well as how it results in the damping
term and the Langevin forces, was discussed in detail in the
scalar example in Ref. [21] and also elsewhere in literature
(see, for example, [22]). From the above Lagrangian (including
the heat bath part), the equations of motion, Eqs. (4) and (5)
for field and the oscillators, and the equations for the bath
variables as well, can be derived. This way, the approach starts
from first principles.

Since our setup keeps the translation invariance in time, it
is meaningful to apply the Fourier transform in time. For the
electric field we have

E(t,x) =
∫ ∞

−∞

dω

2π
e−iωt Ẽω(x),

Ẽω(x) =
∫ ∞

−∞
dt eiωt E(t,x), (10)

and similar for all other time-dependent quantities. The
transformed quantities are always denoted by a tilde. After
the Fourier transform (10), we get from Eq. (4) for the
electric field and from Eq. (5) for the displacements the set

of equations

(−ω2 − 	 + ∇ ◦ ∇)Ẽω(x) = 4πeω2
∑

i

ξ̃ω,iδ
(3)(x − ai),

m(−ω2 − iγ ω + 
2)ξ̃ω,i = e Ẽω(ai) + F̃ω,i , (11)

which is the starting point for the following.
As said above, we assume an individual continuous heat

bath coupled to each oscillator. As known, a heat bath, or
reservoir, can be represented as a continuous set of harmonic
oscillators. In simple terms this procedure is described in detail
for a one-dimensional case in Ref. [21]. In [23], the most
general formulation and its relation to the oscillator model are
discussed along with different couplings between the bath and
oscillator. The procedure goes as follows. First one solves the
Heisenberg equation of motion of the bath operators. As a
result, in the equations of motions of the dipole oscillators [the
second of Eqs. (11)], the friction term −iγ ω and the Langevin
force F̃ω,i , on the right side, appear. The damping parameter
γ may depend on frequency, being a positive function, but we
restrict ourselves to a constant γ > 0. The Langevin force F̃ω

can be expressed in terms of the heat bath operators. Here we
need only their thermal averages

〈F̃ω,i F̃ω′,j 〉 = γmω

π
δ(ω + ω′)δij coth

βω

2
. (12)

Below we consider the following thermodynamic potentials.
The internal energy U is the thermal average of the Hamilto-
nian (6),

U = 〈H 〉. (13)

It will be calculated by solving Eqs. (4) and (5) for the cor-
responding configuration, expressing the electric field and the
displacement fields in terms of the Langevin forces and using
the averages (12). Further, by means of the thermodynamic
relations

U = ∂

∂β
(βF ), S = − ∂

∂T
F, (14)

the free energy F and the entropy S can be calculated.

B. Solutions for the electric field and the displacements

In this section we solve the system (11). As discussed in
Ref. [21], two ways are possible. The first starts with solving
first the equation for the displacements, the second of Eqs. (11),
which then will be inserted into the equation for the electric
field, the first of Eqs. (11). The second way, which we will
follow now, goes in inverse order. We start by solving the
equation for the electric field from (11),

Ẽω(x) = 4πeω2
∑

i

G(0)
ω (x − ai)ξ̃ω,i, (15)

where we introduced the free-space Green’s function G(0)
ω (x),

obeying the equation

(−ω2 − 	 + ∇ ◦ ∇)G(0)
ω (x − x′) = δ(3)(x − x′). (16)

It has the representation

G(0)
ω (x) =

(
1 + ∇ ◦ ∇

ω2

)
G(0)

ω (x), (17)
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where G(0)
ω (x) is the scalar Green’s function

G(0)
ω (x) =

∫
dk

(2π )3

eikx

−ω2 + k2 + i0
= eiω|x|

4π |x| . (18)

Carrying out the derivatives in Eq. (68), we get

G(0)
ω (x) =

(
A − 1 − iω|x|

(ω|x|)2
B

)
eiω|x|

4π |x| , (19)

with

A = 1 − x ◦ x
|x|2 , B = 1 − 3

x ◦ x
|x|2 . (20)

Equation (19) is the well-known retarded potential of a dipole.
The solution (15) for the electric field can be inserted into

the second equation in Eq. (11), which gives∑
j

[
m(−ω2 − iγ ω + 
2)δij − 4πe2ω2G(0)

ω (ai − aj )
]
ξ̃ω,j

= F̃ω,i . (21)

This is an algebraic equation. Its solution can be written in the
form

ξ̃ω,i = 1

mN (ω)

∑
j

L−1
ij (ω)F̃ω,j , (22)

where L−1
ij (ω) is the inverse of

Lij (ω) = δij − α(ω)ω2G(0)
ω (ai − aj ) (23)

and where we defined

N (ω) = −ω2 − iγ ω + 
2, α(ω) = 4πe2

mN (ω)
. (24)

Finally, we insert (22) into (15),

Ẽω(x) = α(ω)ω2

e

∑
i,j

G(0)
ω (x − ai)L−1

ij (ω)F̃ω,j , (25)

and have with Eqs. (22) and (25) the solutions of the
inhomogeneous equations (11) for the displacements and for
the electric field, expressed in terms of the Langevin forces.

For the relation of the free energy with the vacuum energy,
which will be discussed below, it is meaningful to consider the
first way too. We solve the second equation in Eq. (11),

ξ̃ω,i = 1

mN (ω)
[e Ẽω(ai) + F̃ω,i], (26)

and insert the result into the first equation,(
−ω2 − 	 + ∇ ◦ ∇ − α(ω)ω2

∑
i

δ(3)(x − ai)

)
Ẽω(x)

= α(ω)ω2

e

∑
i

δ(3)(x − ai)F̃ω,i . (27)

This is an effective equation for the electric field. It is like a
Schrödinger equation with δ-function potentials. This prob-
lem, especially equations like (27), were recently discussed
in Ref. [24]. The δ functions in this equation are three
dimensional and therefor the equation is ill defined. All known
methods to handle this situation were discussed in Ref. [24].

In terms of electrodynamics, one needs to exclude from the
solution of Eq. (27) the action of the electric field created from
a dipole acting on the dipole itself, i.e., its self-field. With these
remarks, Eq. (27) can be easily solved. For that we introduce
the corresponding Green’s function Gω(x,x′), obeying(

−ω2 − 	 + ∇ ◦ ∇ − α(ω)ω2
∑

i

δ(3)(x − ai)

)
Gω(x,x′)

= δ(3)(x − x′). (28)

This Green’s function is related to the T operator by

Gω(x,x′) = G(0)
ω (x − x′) +

∑
i,j

G(0)
ω (x − ai)

× T ij (ω)G(0)
ω (aj − x′), (29)

with the free Green’s function defined in Eq. (16). Inserting
(29) into (28), one obtains the equation∑

k

[
δij − α(ω)ω2G(0)

ω (ai − ak)
]
T kj (ω) = α(ω)ω2δij (30)

for the T operator. Returning to Eq. (23), we note its relation
to the Lij (ω),

T ij (ω) = α(ω)ω2 L−1
ij (ω), (31)

which allows for the expression

Ẽω(x) = 1

e

∑
i,jj

G(0)
ω (x,ai)T ij (ω)F̃ω,j ,

ξ̃ω,i = 1

4πe2ω2

∑
j

T ij (ω)F̃ω,j

(32)

of the electric field and the displacements in terms of the T

operator.
These formulas will represent the correct solution only if

we account for the remark on the self-field. It can be excluded
by writing the T operator in the form

T −1
ij (ω) = 1

α(ω)ω2

[
δij − α(ω)ω2G(0)

ω,ij

]
, (33)

where

G(0)
ω,ij =

{
0, i = j

G(0)
ω (ai − aj ), i �= j,

(34)

i.e., where the diagonal terms were dropped. This way,
Eqs. (32) and (33) describe the solutions for the electric field
and for the displacements in the case of dissipation.

C. Thermal averages and the free energy

In this section we calculate the internal energy U by taking
the thermal averages of the Hamiltonian (8). We insert (32)
and use the averages (12). In these averages we have to insert
the corresponding time-dependent quantities, i.e., we have to
go back using (10). Now suppose a field A(t) has the Fourier
representation

Â(t) =
∫ ∞

−∞

dω

2π
e−iωt

∑
i

hi(ω)F̃ω,i . (35)
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The corresponding thermal average, using (12), is then

〈Â(t)Â(t)〉 =
∫ ∞

0

dω

2π

∫ ∞

0

dω′

2π
ei(ω+ω′)t

×
∑
i,j

hi(ω)hj (ω′)〈F̃ω,i F̃ω′,j 〉

=
∫ ∞

0

dω

π
γmh̄ω coth

βω

2

∑
i

hi(ω)hi(−ω).

(36)

With these formulas, substituting hi(ω) →
1
e

∑
i G(0)

ω (x,aj )T ji(ω) for the electric field and
αi(ω) → 1

mω2
pω2 T ji(ω) for the displacement field, we get

U =
∫ ∞

0

dω

π
γmω coth

βω

2

∑
i

Mii, (37)

with

Mij = tr
∑
k,l

T ik(ω)

[
1

8πe2

∫
dx G(0)

ω (ak,x)

×
(

1 + −	 + ∇ ◦ ∇
ω2

)
G(0)

ω (x,al)

+ m

2

ω2 + 
2

(4πe2ω2)2
δkl

]
T lj (−ω), (38)

and the trace is over the spatial structure. In the first term,
which results from EED [Eq. (9)], the second term in the
square bracket results from the magnetic field.

The first term in Eq. (38) can be simplified by taking the
Green’s functions in the momentum representation (17) and
(18), ∫

dx G(0)
ω (ak,x)

(
1 + −	 + ∇ ◦ ∇

ω2

)
G(0)

ω (x,al)

=
∫

dk
(2π )3

eik(ak−al )m(k)

= 1

ω4
(−1 + ω∂ω)ω2G(0)

ω (ak − al), (39)

where we used the calculation

m(k) = 1 − k◦k
ω2

−ω2 + k2 + i0

(
1 + k2 − k ◦ k

ω2

)
1 − k◦k

ω2

−ω2 + k2 + i0

= 1

ω4
(−1 + ω∂ω)ω2 1 − k◦k

ω2

−ω2 + k2 + i0
, (40)

carried out in momentum space. Inserting (39) into (38)
delivers

Mij = 1

2m
(
ω2

pω2
)2 tr

∑
k,l

T ik(ω)
[
(ω2 + 
2)δkl

+ω2
p(−1 + ω∂ω)ω2G(0)

ω,ij

]
T lj (−ω), (41)

where we used (34) to exclude the self-field. At this point it is
meaningful to switch completely to matrix notation. We have
to pay attention to the fact that we have two matrix structures,
one structure resulting from the dipoles, corresponding to
the indices i and j , and a 3 × 3 structure resulting from

the spatial structures and that we must consider their tensor
product. Matrixes in the corresponding space are denoted by
a circumflex. In this sense, Eq. (41) can be written in the form∑

i

Mii = m

2(4πe2ω2)2
trT̂ (ω)

[
ω2 + 
2

+ω2
p(−1 + ω∂ω)ω2Ĝ(0)

ω

]
T̂ (−ω), (42)

where the trace is now over the whole space.
The expression (42) can be rewritten in a more compact

form. From (31) and (23), we can write the inverse of the T

operator in the form

4πe2

m
ω2T̂−1(ω) = −ω2 − iγ ω + 
2 − 4πe2

m
ω2Ĝ(0)

ω (43)

and for its derivative

∂ω

(
4πe2

m
ω2T̂−1(ω)

)
= −2ω − iγ − 4πe2

m
∂ω

(
ω2Ĝ(0)

ω

)
(44)

holds. We compose

∂ω

(
4πe2

m
ω2T̂−1(ω)

)(
4πe2

m
ω2T̂−1(−ω)

)

−
(

4πe2

m
ω2T̂−1(ω)

)
∂ω

(
4πe2

m
ω2T̂−1(−ω)

)

= −2iγ

[
ω2 + 
2 − 4πe2

m
(−1 + ω∂ω)

(
ω2Ĝ(0)

ω

)]
. (45)

This relation allows us to represent
∑

i Mii [Eq. (42)] in the
form ∑

i

Mii = 1

2mγ
δ(ω), (46)

with

δ(ω) = 1

2i
tr ln

T̂ (ω)

T̂ (−ω)
. (47)

This way, from (37) we get, for the internal energy,

U = 1

2

∫ ∞

0

dω

π
ω coth

βω

2
∂ωδ(ω) (48)

and, using (14), for the free energy

F =
∫ ∞

0

dω

π

(
ω

2
+ T ln(1 − e−βω)

)
∂ωδ(ω). (49)

With Eqs. (49) and (47), we have a representation of the free
energy in terms of the T operator related to the effective
equation (28) for the electric field.

On a formal level (at least), it is possible to establish also a
relation to the Green’s function Gω(x,x′), defined by Eq. (28).
In matrix notation, we have from (28) a formal solution

Ĝω = Ĝ(0)
ω

(
1 − V̂ Ĝ(0)

ω

)−1 = Ĝ(0)
ω

[
1 + T̂ (ω)Ĝ(0)

ω

]
, (50)

where the last equality follows from (29). Written in matrix
form, Eq. (30) reads (1 − V̂ Ĝ(0)

ω )T̂ = V̂ and can be rewritten
in the form

V̂
[
1 + Ĝ(0)

ω T̂ (ω)
] = T̂ . (51)
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The potential V̂ is in our case V (x) = α(ω)ω2 ∑
i δ

(3)(x − ai),
which was the result of the interaction with the dipoles. Now
we use the chain of relations

tr ln T̂ (ω) = tr ln V̂
[
1 + Ĝ(0)

ω T̂ (ω)
]

= tr ln Ĝω − tr ln Ĝ(0)
ω + tr ln V̂ . (52)

On the formal level, we did not care about the existence of
the individual contributions, especially about the ultraviolet
divergences which are there. Next we drop the last two terms
as giving a constant contribution to the free energy. This is
justified, especially if we have in mind as the final goal the
Casimir or Casimir-Polder forces. If doing so, we can write,
in place of (47),

δ(ω) = 1

2i
tr ln

Ĝω

Ĝ−ω

. (53)

Also, provided Ĝ−ω = Ĝ∗
ω holds, a further rewriting delivers

δ(ω) = Im tr ln Ĝω. (54)

Inserted into the free energy (49), the relation to the remarkable
formula, mentioned in the Introduction, is more direct.

D. Configurations considered

We are going to apply the formulas developed above
for a generic collection of dipoles, represented by their
displacements ξ̃ω,i , to three specific configurations, which we
describe in this section. These configurations are the following.

The atom-atom (AA) configuration. Here we consider two
atoms at positions ai (i = 1,2). Each atom is modeled as a
dipole with dipole moment pi(t) = eξ i(t) and has its own
displacement vector ξ i(t) (i = 1,2). The corresponding current
density is

j (x) = e

2∑
i=1

∂tξ i(t)δ
(3)(x − ai). (55)

This is basically the same equation as (6), only the index i

is now restricted to i = 1,2. In a similar way, we get, for
Eqs. (11),

(−ω2 − 	 + ∇ ◦ ∇)Ẽω(x) = 4πeω2
2∑

i=1

ξ̃ω,iδ
(3)(x − ai),

m(−ω2 − iγ ω + 
2)ξ̃ω,i = e Ẽω(ai) + F̃ω,i (i = 1,2).

(56)

At this point we mention that, in general, the parameters of the
atoms, for instance, their intrinsic frequency 
 or their mass,
can be chosen individually for each. However, in order to
keep formulas as simple as possible, we take these parameters
to be equal for both atoms and do the same in the other
configurations too.

The atom-wall (AW) configuration. For the atom we have a
single dipole, which we give the number i = 0, at location a0

with az > 0, i.e., in the half space above the (x,y) plane, and
with displacement ξ 0(t). We give its parameters entering (24)
an index 0, i.e., we use γ0, 
0, and ωp,0. For the wall we assume
a collection of dipoles with i = 1,2, . . . , which are distributed

homogeneously in the half space z < 0, i.e., below the (x,y)
plane. Further, we increase their density to form a continuous
distribution of dipoles such that their displacements turn into
a displacement field ξ i(t) → ξ (t,x). Accordingly, the dipole
moments turn into a continuous polarization pi(t) → p(t,x).
In all formulas for this transition we use

ai → x,

∞∑
i=1

→ ρ

∫
dx �(−z),

δij → ρδ(3)(x − x′),

(57)

where ρ is the density (number per unit volume) of the
dipoles in the wall. In this configuration, the equations for
the electric field and for the displacements are, again after
Fourier transform in time,

(−ω2 − 	 + ∇ ◦ ∇)Ẽω(x) = 4πeω2ξ̃ω,0δ
(3)(x − a0)

+ 4πeρω2ξ̃ω(x)�(−z),

m
( − ω2 − iγ0ω + 
2

0

)
ξ̃ω,0 = e Ẽω(a0) + F̃ω,0,

m(−ω2 − iγ ω + 
2)ξ̃ω(x) = e Ẽω(x) + F̃ω(x) (z < 0),

(58)

which in fact constitute a special case of (11). Again, we have
a Langevin force F̃ω,0 for the atom and a continuum of these
F̃ω(x) for the polarization of the medium.

The wall-wall (WW) configuration. Here we assume two
half spaces, one at z < 0 and the other at z > a, both filled
with a medium having the same properties as in the AW
configuration. The displacement field ξ̃ω(x) exists in the two
half spaces z < 0 and z > a. The gap between the half spaces
has width a and is assumed to be empty. Equations (11) take
here the form

(−ω2 − 	 + ∇ ◦ ∇)Ẽω(x)

= 4πeρω2ξ̃ω(x)[�(−z) + �(z − a)],

m(−ω2 − iγ ω + 
2)ξ̃ω(x)

= e Ẽω(x) + F̃ω(x) (z < 0, z > a) (59)

and F̃ω(x) is the continuum of the Langevin forces.
The first two configurations AA and AW correspond to the

Casimir-Polder force [14] and the third one WW corresponds
to the Casimir effect [2] for ideal conductors and [3] for
dielectric slabs.

III. ATOM-ATOM CONFIGURATION

In this section we investigate in detail the AA configuration,
i.e., the interaction of two dipoles at separation a = |a1 − a2|,
as introduced in Sec. II D. The relevant equations are (56). The
calculation of the free energy goes literally the same way as
in Sec. II C, with the restriction of the indices to the values
i = 1,2. This way, the free energy is given by (49) and (47),
together with (31) and (23). With these formulas we express
δ(ω) in the form

δ(ω) = −1

2i
tr ln

L̂(ω)

L̂(−ω)
, (60)

which is rewritten as compared to (47) using (31), dropping
contributions, which do not depend on the separation between
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the atoms. The matrix L̂(ω) is now 2 × 2 in the indices i and
j and, using (33), it can be rewritten in the form

L̂(ω) = 1 − α(ω)ω2σ 1G(0)
ω , (61)

where with (34) we defined G(0)
ω = G(0)

ω,12 (i.e., excluding the

self-field) and σ 1 = (0,1
1,0).

The trace in Eq. (60) can be calculated in two steps. First,
we consider the 2 × 2 structure related to the two atoms. It
gives simply

tr ln L̂(ω) =
∑

σ=±1

tr ln
[
1 − σα(ω)ω2G(0)

ω

]
. (62)

The terms with σ = ±1 correspond to symmetric and antisym-
metric solutions of Eq. (27), which is a result of the symmetry
under exchanging the two dipoles. In (62), the remaining trace
is over the spatial 3 × 3 structure. Now G(0)

ω is given by (18)
with x = a1 − a2 and we can use the explicit formula (19)
with |x| = a. For the trace we use the formula

tr ln(1 + pA + q B) = 2 ln(1 + p + q) + ln(1 − 2q), (63)

where p and q are some numbers and A and B are the matrices
given by (20). This way, and carrying out the sum over σ = ±1,
we get

δ(ω) = 2δ1(ω) + δ2(ω), (64)

with

δi(ω) = −1

2i
ln

Li(ω)

Li(−ω)
, (65)

where we defined

L1(ω) = 1 −
[
α(ω)eiωa

4πa3
(1 − iωa − (ωa)2)

]2

,

L2(ω) = 1 −
[

2α(ω)eiωa

4πa3
(1 − iωa)

]2

.

(66)

With these formulas, and inserting the representation (64)
for δ(ω) into F [Eq. (49)], we have explicit formulas for
the free interaction energy of two atoms in the case of
dissipation. It should be remarked that these expressions
constitute a nonperturbative generalization of the Casimir-
Polder interaction potential, which can be obtained backward
by expanding in powers of the coupling α(ω).

In the following, we consider limiting cases of the free
energy and the transition to the Matsubara representation.

A. Limiting cases

In this section we consider the limiting cases of vanishing
dissipation parameter and the relation to the vacuum energy
and check the low-temperature expansion.

1. Vanishing dissipation parameter and vacuum energy

We split the free energy (49) according to the phase (64),

F = 2F1 + F2, (67)

with

Fi =
∫ ∞

0

dω

π

(ω

2
+ T ln(1 − e−βω)

) ∑
σ=±1

∂ωδi(ω). (68)

The δi(ω) are given by (65). Instead, we use

δi(ω) = − 1

2i
ln

�i(ω) − iγ ω

�i(ω) + iγ ω
, (69)

where

�1(ω) = −ω2 + 
2 − σ
e2

ma3
eiωa,

�2(ω) = −ω2 + 
2 − 2σ
e2

ma3
eiωa,

(70)

and, again using (24), we dropped a factor, resulting in a
contribution to the free energy which does not depend on the
separation.

Next we consider the limit γ → 0 and apply the Sokhotski-
Plemelj theorem to

∂ωδi(ω) = − 1

2i

(
∂ω�i(ω) − iγ

�i(ω) − iγ ω
− ∂ω�i(ω) + iγ

�i(ω) + iγ ω

)
, (71)

which results in

lim
γ→0

∂ωδi(ω) = −πδ(�i(ω))∂ω(�i(ω)). (72)

Inserting into (68) gives, for the free energy at vanishing
dissipation,

Fi |γ=0
= −

∫ ∞

0
dω

(
ω

2
+ T ln(1 − e−βω)

)
× δ(�i(ω))∂ω(�i(ω)). (73)

Using the δ function, the integration can be carried out.
Let ωJ be the zeros of the equation �i(ω) = 0, i.e., the
eigenfrequencies of the system of two dipoles interacting with
the electromagnetic field without dissipation. Then the integral
can be written as a sum

F|γ=0 =
∑

J

(ωJ

2
+ T ln(1 − e−βωJ )

)
. (74)

Here we assumed the sum over σ and over the two contri-
butions 2F1 + F2 being included in the sum over J and we
accounted for ∂ω(�i(ω)) < 0, which can be seen from (70) at
least for small ω2

p. The vacuum energy can now be obtained
from (74) by simply taking T → 0,

E0 = (F|γ=0 )|T =0 = 1

2

∑
s

ωs, (75)

in agreement with (3), again ignoring the necessary regular-
ization.

At this point another remark concerning the sum over the
eigenfrequencies ωs is in order. As discussed in detail in
[21], the considered system of two dipoles does not have real
eigenfrequencies in empty space, since any excitation would be
radiated away. The way out is to put the system, including the
electromagnetic field, into a box. Then the eigenfrequencies
are real and the sum in Eq. (75) makes sense. Afterward the
volume may tend to infinity and the vacuum energy (75) is
obtained.

Another way to get the vacuum energy from the free energy
is to let γ → 0 directly in Eq. (68). Thereby one has to pay
attention to the singularities of �i(ω) − iγ ω being in the lower
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half plane and from −iγ one has to keep a +i0 prescription.
This can be done in the following way:

E0 = (F|γ=0 )|T =0 = −1

2

∫ ∞

0

dω

π
ω∂ω

× 1

2i
tr

(
2 ln

L1(ω − i0)

L1(ω + i0)
+ ln

L2(ω − i0)

L2(ω + i0)

)
. (76)

In this representation, it makes sense to integrate by parts and
to make the Wick rotation. One arrives at

E0 = 1

2

∫ ∞

0

dξ

π
[2 ln L1(iξ ) + ln L2(iξ )], (77)

with, explicitly,

L1(iξ ) = 1 −
[
α(iξ )e−aξ

a3
(1 + aξ + (aξ )2)

]2

,

(78)

L2(iξ ) = 1 −
[

2α(iξ )e−aξ

a3
(1 + aξ )

]2

,

with α(iξ ) = ω2
p

ξ 2+
2 . These formulas constitute the nonpertur-
bative formulation of the Casimir-Polder interaction energy
of two dipoles (without dissipation). We mention that the
functions Li(iξ ) (i = 1,2) may have zeros and change sign.
This is the criticality mentioned in the Introduction. It happens
with L2 for α/4πa3 < 1/4 and with L1 for α/4πa3 < 1 for
constant α and for e2/
2 in place of α for α(ω) given by
(24), provided 
 �= 0. In the case 
 = 0, there is criticality
for all values of the parameters. This instability was mentioned
in the literature earlier, for example, in Ref. [18], which also
mentioned that the onset of criticality coincides with the radius
of convergence of the long separation expansion.

At this point it is easy the check that (78) gives the correct
long separation expansion. Expanding (78) in powers of α and
substituting ξ → ξ/a, we get

E0
∼= −1

a

∫ ∞

0

dξ

π

(
α(iξ )

4πa3

)2

(3 + 6ξ + 5ξ 2 + 2ξ 3 + ξ 4) e−2ξ ,

(79)

and carrying out the integration for constant α, E0
∼=

− 23
4πa7 ( α

4π
)2 holds, in agreement with Eq. (57) in Ref. [14].

2. Low-temperature expansion

For the expansion for T → 0 of the temperature-dependent
part of the free energy,

	T F = T

∫ ∞

0

dω

π
ln(1 − e−βω)∂ωδ(ω), (80)

which results from the second term in large parentheses in
(49), we need the expansions of the phases δi(ω) for ω → 0.
From (66) we get, with (24), for 
 �= 0,

L1(ω) = 1 −
(

e2

ma3
2

)2

+ O(ω),

L2(ω) = 1 −
(

2e2

ma3
2

)2

+ O(ω),

(81)

and for the phase

δ(ω) = 6(γ + 2a
2)
[
8π2a6
4 − (

4πe2

m

)2]
[
ω8

p − 20π2
(

4πe2

m

)2

4 + 64π4a12
8

]

2

ω + O(ω3)

(82)

holds. We note that formulas (81) do not depend on the
dissipation parameter γ . In (82) one may set γ = 0 without
principal changes.

If we set 
 = 0, these expressions simplify and the Li

become more singular,

L1(ω) =
(

e2

ma3γ

)2
1

ω2
+ O

(
1

ω

)
,

L2(ω) =
(

2e2

ma3γ

)2
1

ω2
+ O

(
1

ω

)
,

(83)

and for the phase,

δ(ω) = −6(1 + 2γ a)

γ
ω + O(ω3) (84)

holds. Finally, if we set, in addition, also γ = 0, we get an
even more singular behavior,

L1(ω) = −
(

e2

ma3

)2
1

ω4
+ O

(
1

ω3

)
,

L2(ω) =
(

2e2

ma3

)2
1

ω4
+ O

(
1

ω3

)
,

(85)

and for the phase,

δ(ω) = −12aω + O(ω3) (86)

holds. Below we need, for 
 �= 0 the values Li(0), which are
finite, and for 
 = 0 the derivatives, which are, for γ �= 0,

∂ω ln Li(ω) = − 2

ω
+ O(1), (87)

and, in addition, for γ = 0,

∂ω ln Li(ω) = − 4

ω
+ O(1). (88)

It must be mentioned that the leading orders of the expansions
of the phases for the cases considered result from the next-order
contributions in the expansions of Li(ω), which are not shown.
Also we mention that the phases δ(ω) always start from the first
order in ω since any constant contribution disappears under the
derivative ∂ω in Eq. (80).

Summarizing, introducing the notation c1 for the coefficient
in the expansion (82), (84), and (86),

δ(ω) = c1ω + O(ω3), (89)

we get in the temperature-dependent part of the free energy
(80), after the substitution ω → ωT ,

	T F = T 2
∫ ∞

0

dω

π
ln(1 − e−h̄ω)∂ω(c1ω + O(T 2ω3)), (90)

which gives

	T F = −c1ζ (2)

πh̄
T 2 + O(T 4), (91)
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where ζ (2) = π2/6 is the Riemann zeta function. In this
formula, c1 is first nonzero coefficient in the expansion of
the phase for ω → 0 for all values of the parameters. Thus, the
low-temperature behavior of the entropy (16),

S = 2c1T + O(T 2), (92)

never violates the third law of thermodynamics. We mention
that the same holds if we allow for a temperature dependence
of the dissipation parameter γ (T ) with a low-T behavior
γ (T ) ∼

T →0
γ1T

α (α > 1). With 
 = 0 we get, after the sub-

stitution ω → ωT ,

α(ωT ) = 4πe2

m(−ω2T 2 − iγ1T α+1)
. (93)

Now, for α < 1 this is equivalent to the case (83) and (84),
and for α > 1 it is equivalent to (85) and (86). This way,
in the AA configuration, also the temperature dependence of
the dissipation parameter does not result in thermodynamic
problems.

B. Transition to Matsubara frequencies

The starting point for the transition to Matsubara frequen-
cies is the free energy

F =
∫ ∞

0

dω

π

[
ω

2
+ T ln(1 − e−βω)

]

× ∂ω

−1

2i

(
2 ln

L1(ω)

L1(−ω)
+ ln

L2(ω)

L2(−ω)

)
, (94)

which follows from (80), (64), and (66). We mention that
Li(ω) has no singularities in the upper half plane (at least
for sufficiently small γ ). Thus we write the logarithms of the
quotients as the differences of two logarithms and turn the
integration path upward towards the imaginary axis in the first
term and in the second term correspondingly downward, which
is in fact a Wick rotation.

Below we will need the simple relation

βω

2
+ ln(1 − e−βω) = ln

(
2 sinh

βω

2

)
(95)

and its continuation

ln

(
2 sinh

iβξ

2

)
= ln

∣∣∣∣2 sin
βξ

2

∣∣∣∣ + iπ

∞∑
l=0

′
�(ξ − ξl), (96)

where ξl = 2πT l are the Matsubara frequencies. This relation
follows since the logarithm has cuts starting in ξ = ξl .
The prime on the sum symbol denotes, as usual, that the
contribution from l = 0 must be taken with a factor 1/2.

However, in doing the Wick rotation, we must split the
integral over the difference into the difference of two integrals.
In doing so, the integration over ω will not converge at ω = 0
in the cases with 
 = 0 because of the singular behavior in
(83) and (85). We note that this is not the case for 
 �= 0, as
can be seen from (81).

The difficulty arising at ω = 0 can be handled by introduc-
ing a lower integration boundary ε > 0 and taking the limit

ε → 0 after the rotations. This way we get

Fi = − 1

2πi
lim
ε→0

[ ∫ ∞

ε

dω

(
h̄ω

2
+T ln(1− e−βh̄ω)

)
∂ω ln Li(ω)

−
∫ ∞

ε

dω

(
h̄ω

2
+ T ln(1 − e−βh̄ω)

)
∂ω ln Li(−ω)

]
,

(97)

where we have split the free energy F = 2F1 + F2 in accord
with the split (64) of the phase.

Now we split the integration pathes into two parts each.
The first part is a half circle of radius ε, given by ω = εeiϕ

in the first integral and ω = εe−iϕ in the second one, with
ϕ = 0, . . . , π

2 in both cases. The second part is a straight line
along the imaginary axis with ω = iξ in the first integral and
ω = −iξ in the second one, with ξ ∈ [ε,∞) in both cases.
From the integrals along the straight lines, using (96), we have

F lin
i = − T

2πi

[∫ ∞

ε

dξ

(
ln

∣∣∣∣2 sin
βξ

2

∣∣∣∣ − iπ

∞∑
l=0

′
�(ξ − ξl)

)

× ∂ξ ( ln |Li(iξ )| + iπ�(ξ∗ − ξ ))

−
∫ ∞

ε

dξ

(
ln

∣∣∣∣2 sin
βξ

2

∣∣∣∣ + iπ

∞∑
l=0

′
�(ξ − ξl)

)

× ∂ξ ( ln |Li(−iξ )| − iπ�(ξ∗ − ξ ))
]
. (98)

An additional feature appears here in the case where the
functions Li(−iξ ) have a zero, i.e., there is a real ξ∗ > 0 such
that Li(−iξ∗) = 0 holds, as discussed in Sec. III A. For this
reason, the logarithms of Li acquire imaginary parts as shown
in the above formula. The signs follow from Li(iξ ) > 0 for
sufficiently large ξ and the side on which the branch point of
the logarithm is passed.

After simplifying in Eq. (98), we integrate by parts. In
the contribution with l = 0, accounting for �(ξ − ξ0) = 1 for
ξ > 0, we get T

2 ln |L(iε)|. In all other contribution we can set
ε = 0. This way, from (98),

F lin
i = T

2
ln |Li(iε)| + T

∞∑
l=1

ln |Li(iξl)| − T ln

∣∣∣∣2 sin
βξ∗
2

∣∣∣∣
(99)

follows. Indeed, this expression is divergent for ε → 0 in the
case of 
 = 0. For 
 �= 0, Eqs. (81) show finite Li(0). For

 = 0, using (83), we get, for γ �= 0,

T

2
ln |L1(iε)| = −T ln ε + T ln

(
e2

ma3γ

)
+ O(ε), (100)

and for γ = 0, using (85),

T

2
ln |L1(iε)| = −2T ln ε + T ln

(
e2

ma3

)
+ O(ε). (101)

The corresponding expressions for L2(iε) can be obtained
from these by the substitution ω2

p → 2ω2
p. We see that in these

cases, i.e., for 
 = 0, there is a logarithmic divergence.
It remains to calculate the contribution from the half circles.

Restricted to contributions not vanishing for ε → 0, we note
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that

h̄ω

2
+ T ln(1 − e−βh̄ω) ∼ T ln(βεeiϕ)

in the first contribution in Eq. (97) and the complex conjugate
of that in the second. Using the leading contribution in Eq. (87)
or (88), we get, from (97),

F half circ
i = −T

π

∫ π/2

0
dϕ( ln(βεeiϕ) + ln(βεe−iϕ))

= T ln(βε) + O(ε) (102)

for γ �= 0 and

F half circ
i = −T

π

∫ π/2

0
dϕ( ln(βεeiϕ) + ln(βεe−iϕ))

= 2T ln(βε) + O(ε) (103)

for γ = 0. We see that the divergence for ε → 0 compensates
just that in Eq. (100) or (101), as expected, and we get for the
sum of (99) and (103), for γ �= 0,

Fi = T ln

(
ciω

2
pβ

4πa3γ

)
+ T

∞∑
l=1

ln |L1(iξl)|

− T ln

∣∣∣∣2 sin
βξ∗
2

∣∣∣∣ (i = 1,2), (104)

with c1 = 1 and c2 = 2, and from (99) and (101), for γ = 0,
we get

Fi = 2T ln

(
ciω

2
pβ

4πa3

)
+ T

∞∑
l=1

ln |L1(iξl)|

− T ln

∣∣∣∣2 sin
βξ∗
2

∣∣∣∣ (i = 1,2). (105)

With these formulas we derive the Matsubara representation
of the complete free energy F = 2F1 + F − 2 for the non-
perturbative Casimir-Polder interaction of two dipoles with
dissipation in the case of vanishing intrinsic frequency 
 = 0.
For 
 �= 0, the same formulas hold with the usual terms
corresponding to the zeroth Matsubara frequency Li(iξ|l=0 )
in place of the first logarithmic contributions. In other words,
the modifications, coming in for 
 = 0, can be formulated in
terms of the formal substitutions of the contributions from the
zeroth Matsubara frequency according to, for γ �= 0,

L1(iξ|l=0 ) →
(

e2β

ma3γ

)2

, L2(iξ|l=0 ) →
(

2e2β

ma3γ

)2

, (106)

and, for γ = 0,

L1(iξ|l=0 ) →
(

e2β

ma3

)4

, L2(iξ|l=0 ) →
(

2e2β

ma3

)4

. (107)

The other modification in Eqs. (104) and (105), i.e., the second
logarithmic contributions, comes from the critical behavior,
which may be present for 
 �= 0 and will be present for 
 = 0.
We mention that for 
 = 0 the contributions from the zeroth
Matsubara frequency has, for T → 0, a logarithmic behavior
F ∼ −T ln T .

IV. ATOM-WALL CONFIGURATION

In this section we investigate in detail the AW configuration,
i.e., the interaction of a single dipole with a dielectric half
space, as introduced in Sec. II D. As before, the free energy is
given by Eq. (49). The phase δ(ω) is given, in general notation,
by (47). Using (31), we express δ(ω) through L̂(ω),

δ(ω) = − 1

2i
tr ln

L̂(ω)

L̂(ω)∗
, (108)

dropping terms which would not contribute to the Casimir-
Polder force. In this formula we also used L̂(−ω) = L̂(ω)∗.
With (31) and (33) we have

Lij (ω) = δij − α(ω)ω2G(0)
ω,ij (109)

for the matrix elements of L̂(ω).
For the AW configuration, the index i = 0 describes the

atom and the indices i = 1,2, . . . describe the dipoles in the
half space z < 0. The separation between the atom and the
wall is a = (a0)z.

For the subsequent derivations we return for a moment to
Eq. (28) for the Green’s function

[−ω2 − 	 + ∇ ◦ ∇ − V (x)]Gω(x,x′) = δ(3)(x − x′),

(110)

where we introduced the notation

V (x) = Vs(x) + V1(x), (111)

with

Vs(x) = α(ω)ω2δ(3)(x − a0),

V1(x) = α(ω)ω2
∞∑
i=1

δ(3)(x − ai).
(112)

Here Vs(x) is the potential from the single atom with α(ω)
given by Eq. (24) and V1(x) is the potential from the dipoles in
the half space. Next we switch to the operator and matrix
notations as used already at the end of Sec. II C. From
Eqs. (109) and (112) we have

tr ln L̂(ω) = tr ln
[
1 − (V̂ s + V̂ 1)Ĝ(0)

ω

]
. (113)

We continue by rewriting

tr ln L̂(ω) = tr ln
(
1 − V̂ 1Ĝ(0)

ω

)
+ tr ln

[
1 − (

1 − V̂ 1Ĝ(0)
ω

)−1
V̂ s Ĝ(0)

ω

]
, (114)

where the first term does not depend on the atom-wall
separation and will be dropped as not contributing to the
Casimir-Polder force. In the other term, we use the cyclic
property of the trace and an equation which is analogous to
(50) with V1(x) in place of V (x), defining the Green’s function
Ĝ(1)

ω (x,x′), which is the Green’s function in the presence of
the dipoles in the half space alone, and arrive at

tr ln L̂(ω) = tr ln
(
1 − V̂ s Ĝ

(1)
ω

) + · · · , (115)

which we will use in the following. The next step is the limiting
transition ai → x with i = 1,2, . . . to a continuous medium
in z < 0. Thereby the potential V1(x) turns into

V1(x) = [ε(ω) − 1]ω2�(−z) (116)
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and we introduced the permittivity

ε(ω) = 1 + ω2
p

N (ω)
, ω2

p = 4πe2

m
ρ, (117)

where ρ is the density (number of atoms per unit volume).
Representing

Ĝ
(1)
ω = Ĝ

(0)
ω + 	Ĝ

(1)
ω (118)

as a sum of the free space Green’s function (17) and an
addendum from the half space, we note that

G(1)
ω (x,x′) = lim

ai→x
aj →x′

[
G(0)

ω (ai − aj ) + 	G(1)
ω (ai − aj )

]
.

(119)
Now, in Eq. (115), the arguments x and x′ will be set equal to
one another due to the potential Vs(x) [Eq. (112)]. Thus, the
free Green’s function G(0)

ω (ai − aj ) must be set equal to zero
in order to avoid self-fields and we are left with the addendum
and arrive at

tr ln L̂(ω) = tr ln
(
1 − V̂ s	Ĝ

(1)
ω

) + · · · . (120)

After performing the transition to the continuum, the Green’s
function G(1)

ω (x,x′) obeys the equation

{−ω2 − 	 + ∇ ◦ ∇ − [ε(ω) − 1]ω2�(−z)}G(1)
ω (x,x′)

= δ(3)(x − x′). (121)

Here, in view of the translational invariance in the (x,y) plane,
we perform the corresponding Fourier transform

G(1)
ω (x,x′) =

∫
dk‖

(2π )2
eik‖(x‖−x′

‖) g�(z,z′), (122)

with � =
√

ω2 − k2
‖ + i0, and the equation{−�2 − ∂2

z + ∇ ◦ ∇ − [ε(ω) − 1]ω2�(−z)
}

g�(z,z′)

= δ(1)(z − z′) (123)

holds. In this representation, the gradient is ∇ = (ik‖,∂z). This
Green’s function is well known (see, for example, Appendix A
in Ref. [25] or Chap. 13 in Ref. [20]). We use its decomposition
into polarizations

g�(z,z′) = ETEgTE
� (z,z′)E†

TE + ETMgTM
� (z,z′)E†

TM, (124)

with the polarization vectors

ETE =
⎛
⎝−k2

k1

0

⎞
⎠ 1

k‖
, ETM =

⎛
⎝−ik1∂z

ik2∂z

−k2
‖

⎞
⎠ 1

k‖ω
(125)

and we dropped the δ-function contribution at z = z′ since it
results from the free space part in Eq. (118), which we drop.

For the scalar functions gX
� (z,z′) with X = TE or X = TM,

we use the representation

gX
� (z,z′) = uX(z<)vX(z>)

w
, (126)

with

vX(z) = (eikz + rXe−ikz)�(−z) + tXeiqz�(z),

uX(z) = t̄Xe−ikz�(−z) + (e−iqz + r̄Xeiqz)�(z),

w = −2iqtX,

(127)

and the well-known reflection coefficients

rTE = q − k

q + k
, rTM = ε(ω)q − k

ε(ω)q + k
. (128)

The momenta are related by

ω2 = k2
‖ + q2, ε(ω)ω2 = k2

‖ + k2. (129)

Now, since the polarization vectors are the same for the free
space part G(0)

ω and for the addendum in Eq. (118), we get
the free space part from the above formulas with rX → 0 and
tX → 1. Therefore, we get, at z = z′ = a,

	gX
� (a,a) = t̄Xeiqa(e−iqa + rXeiqa)

−2iqt̄X
− 1

−2iq

= rX

−2iq
e2iqa. (130)

Further, using (122), we arrive at

	G(1)
ω (a,a) =

∫
dk‖

(2π )2

∑
X=TE,TM

trEX

rX

−2iq
e2iqaE

†
X, (131)

where the trace is over the spatial structure. Inserting into (115)
and using (125) for the polarization vectors, under the trace
we arrive at

tr ln L̂(ω) = ln[1 − α(ω)ω2	G(1)] ≡ ln L(ω), (132)

with

	G(1) =
∫

dk‖
(2π )2

(
rTE + −q2 + k2

‖
ω2

rTM

)
e2iqa

−2iq
. (133)

We take (132) as the definition for L(ω), which we will use
in the following. For convenience, we recall here the formulas
(49) and (108),

F =
∫ ∞

0

dω

π

(
ω

2
+ T ln(1 − e−βω)

)
∂ωδ(ω), δ(ω)

= − 1

2i
ln

L(ω)

L(−ω)
, (134)

which, together with (132), give the distance-dependent part
of the free energy.

In the following sections we analyze the limiting cases
and the transition to the Matsubara representation. It will turn
out that this analysis goes much in parallel to that in the AA
configuration in Secs. III A and III B.

A. Limiting cases

1. Vanishing dissipation parameter and vacuum energy

Here we restrict ourself to the second way mentioned in
Sec. III A using the +i0 prescription and take vanishing both
γ → 0 and γ0 → 0. We start from the representation (134) for
T = 0,

E0 = (F|γ=0 )|T =0 = 1

2

∫ ∞

0

dω

π
ω∂ω

−1

2i
ln

L(ω − i0)

L(ω + i0)
, (135)

where L(ω) is given by (132) with γ = γ0 = 0. Doing the
Wick rotation and integrating by parts we get

E0 = 1

2π

∫ ∞

0
dξ ln L(iξ ), (136)
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where we assumed that criticality is absent. The explicit
formulas are

L(iξ ) = 1 + α(iξ )ξ 2	G(1)(iξ ), (137)

with

	G(1)(iξ ) =
∫

dk‖
(2π )2

[
rTE +

(
1 − 2η2

ξ 2

)
rTM

]
e−2aη

2η
.

(138)

Under the Wick rotation, the momenta turn into q = iη and
k = iκ and from the relations (129) one arrives at

η =
√

ξ 2 + k2
‖, κ =

√
(ε(iξ ) − 1)ξ 2 + η2. (139)

Expressed in these momenta, the reflection coefficients are
now

rTE = η − κ

η + κ
, rTM = ε(iξ )η − κ

ε(iξ )η + κ
. (140)

In the integration in Eq. (138), it is meaningful to change the
variable for η and the final formula for L(iξ ) is

L(iξ ) = 1 + α(iξ )

4π
ξ 2

∫ ∞

ξ

dη

[
rTE +

(
1 − 2η2

ξ 2

)
rTM

]
e−2aη,

(141)

with α(iξ ) = ω2
p

ξ 2+
2
0
. With this notation, E0 [Eq. (136)] gives

the Casimir-Polder vacuum interaction energy in the AW
configuration. We mention that this E0 is nonperturbative in
the polarizability.

We check the above formula by considering the case of an
ideally conducting wall. In that case the reflection coefficients
are rTE = −1 and rTM = 1 and the integration over η can be
carried out. Then the vacuum energy simplifies

E0 = 1

2π

∫ ∞

0
dξ

× ln

(
1 − 2α(iξ )

4π (2a)3
[2 + 2(2aξ ) + (2aξ )2]e−2aξ

)
.

Making here an expansion for small α(iξ ) or for large
separation a in leading order one arrives at

E0 = − 3

8πa4

α(0)

4π
, (142)

in agreement with Eq. (25) in Ref. [14] or Eq. (16.28) in Ref.
[5].

At this point it should be mentioned that the onset of
criticality follows from (141) to be at α(0)

4π(2a)3 > 1
4 for 
0 �= 0

and that criticality is always present for 
0 = 0. These are the
same relations as in the AA configuration.

2. Low-temperature expansion

We start from the representation (80) for the temperature-
dependent part of the free energy and Eq. (132) for L(ω). How-
ever, we distinguish now between α(ω) [Eq. (24)] for the atom
[this is i = 0 in Eq. (112)] and ε(ω) [Eq. (117)] for the half

space, by giving an index 0 to the parameters entering α(ω),

α(ω) = 4πe2

m
(−ω2 − iγ0ω + 
2

0

) . (143)

This way we will be able to trace the origin of different
behavior.

Again, we need the expansion for ω → 0. From (132) and
(133) we get, for 
0 �= 0,

L(ω) = 1 − α(0)ω2
p

π (2a)3
(
ω2

p + 2
2
) + O(ω), (144)

and for the phase,

δ(ω) =
(

2γ

ω2
p + 2
2

+ γ0


2
0

)
ω + O(ω3). (145)

In the case 
0 = 0 we get

L(ω) = ie2ω2
p

2ma3γ0
(
ω2

p + 2
2
) 1

ω
+ O(1),

δ(ω) =
(

2γ

ω2
p + 2
2

+ 1

γ0

)
ω + O(ω3).

(146)

If, in addition, we have γ0 = 0, we get

L(ω) = ie2ω2
p

2ma3
(
ω2

p + 2
2
) 1

ω2
+ O(1),

δ(ω) = 2γ

ω2
p + 2
2

ω + O(ω3).

(147)

In the derivation of these formulas, in Eq. (133) the expansion
is straightforward and, after that, the integration over k‖ is
simple.

From (144) we see that a vanishing 
 does not change the
behavior essentially, whereas 
0 = 0 changes the behavior of
L(ω). The phases are not affected and start with the first power
in ω. Also we see that vanishing dissipation may increase only
the power of the leading order. Thus, using Eqs. (88)–(92), we
see a T 2 behavior of the temperature-dependent part of the free
energy (at least) and, consequently, no violation of the third
law is possible. This holds also for a dissipation parameter
vanishing with temperature due to the factor ω2 in front of
	G(1)(ω) in Eq. (132) (see also the discussion in Sec. 16.3.3
in Ref. [5]). We do not consider problems reported for dc
conductivity (see Secs. 12.6.3 and 16.4.3 in Ref. [5]), where
the TM polarization becomes important, in this paper.

B. Transition to the Matsubara representation

The starting point for the transition to the Matsubara
representation is Eq. (134) for the free energy. Further, we
can use a number of formulas from Sec. III B by dropping the
index i, namely, (95)–(99). For 
0 �= 0 and without criticality,
we get simply

F = T

∞∑
l=0

′
ln L(iξl). (148)

For 
0 = 0, L(0) is not finite and we need to go through the
limiting procedure like in Sec. III B. However, all calculations
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go completely in parallel. The difference starts from (100), in
place of which we get

T

2
ln |L1(iε)|

= −T

2
ln ε + T

2
ln

(
e2ω2

p

2ma3γ0
(
ω2

p + 2
2
)
)

+ O(ε).

(149)

For the contributions from the half circles first we need

∂ω ln L(ω) = − 1

ω
+ O(1) (150)

in place of (146) and similar to (102) we have now

F half circ = T

2
ln(βε) + O(ε). (151)

Again, the divergent logarithmic terms cancel as expected and
we get finally

Fi = T

2
ln

(
e2ω2

pβ

2ma3γ0
(
ω2

p + 2
2
)
)

+T

∞∑
l=1

ln |L1(iξl)| − T ln

∣∣∣∣2 sin
βξ∗
2

∣∣∣∣. (152)

This way, for 
0 = 0 we have the formal substitution

L(iξ|l=0 ) → e2ω2
pβ

2ma3γ0
(
ω2

p + 2
2
) . (153)

A similar result can be obtained if we have γ0 = 0 in addition.

V. WALL-WALL CONFIGURATION

In this section we consider the WW configuration. As set up
in Sec. IV B, it consists of two half spaces filled with a medium
and a gap of width a between them. This is just the setup of
the Casimir effect. The free energy is given by Eq. (49) with
δ(ω) given by Eq. (108) and L(ω) by (23). We act in parallel
to the preceding section and introduce a potential

V (x) = V1(z) + V2(z), (154)

with

V1(z) = [ε(ω) − 1]ω2�(−z),
(155)

V2(z) = [ε(ω) − 1]ω2�(z − a),

where ε(ω) is given by (117). Next we consider

tr ln L̂(ω) = tr ln
{
1 − [V1(z) + V2(z)]Ĝ

(0)
ω

}
. (156)

This expression can be split into

tr ln L̂ = tr ln
[
1 − V1(z)Ĝ

(0)
ω

] + tr ln
[
1 − V2(z)Ĝ

(0)
ω

]
+ tr ln(1 − M), (157)

where

M = (
1 − V1Ĝ

(0)
ω

)−1
V̂ 1Ĝ

(0)
ω

(
1 − V2Ĝ

(0)
ω

)−1
V̂ 1Ĝ

(0)
ω

= T̂ 1Ĝ
(0)
ω T̂ 2Ĝ

(0)
ω . (158)

Here T̂ 1 and T̂ 2 are the T operators for the potentials V1(x)
and V2(x) taken separately. Further, in deriving this equation,
formulas like (50) and (51) were used as well as the cyclic
property of the trace. Equation (157) is nothing but the
well-known transition to the T GT G formula [26]. Equivalent
formulas can be found also in the so-called scattering approach
[27]. The first two terms in Eq. (157) give contributions to the
free energy, which will not depend on the width of the gap and
we drop them. This way, we have to consider

tr ln L̂ = tr ln(1 − M), (159)

which is a well-known expression in connection with the
Casimir effect (see, for instance, Sec. 10.1.2 in Ref. [5]). At
this point it should be mentioned that the known formulas
are very similar to those derived here, which, however, follow
from the heat bath approach.

Continuing from Eq. (159), we can use the known explicit
formulas (see, for example, Sec. 12.1 in Ref. [5]) (however,
with slightly different notation). This way we get

tr ln L̂ =
∫

dk‖
(2π )2

∑
X=TE,TM

ln
(
1 − r2

Xe2iaq
)
, (160)

where the reflection coefficients rTE and rTM are defined in
Eq. (128), the momenta q and k are defined in Eq. (129), and
ε(ω) is defined in Eq. (117).

For the convenience of the following, we rewrite the above
representation of the free energy in the form

F = 1

4π2

∫ ∞

0
dω

(
ω

2
+ T ln(1 − e−βω)

)
∂ωφ(ω), (161)

where

φ(ω) = −1

2i
[ϕ(ω) − ϕ(ω)∗], (162)

with

ϕ(ω) =
∫ ∞

0
dk‖k‖

∑
X=TE,TM

ln
(
1 − r2

Xe2iaq
)
. (163)

With formulas (161)–(163) we have in fact a representation
of the Lifshitz formula with finite dissipation γ in terms
of real frequencies. In fact, it is not really new. A similar
formula was obtained in Ref. [28], however starting from
the Matsubara representation with Drude permittivity inserted
and applying the Abel-Plana formula [Eq. (58) in Ref. [28]].
Equations (62) and (63) in Ref. [28] correspond to the above
(161)–(163), however with slightly different notations. Also
we mention that the analysis done in Ref. [28] contains
nearly all calculations which are needed here to investigate
the limiting cases of the free energy (161) and its relation to
the Matsubara representation.

We mention that the representation (161) for the free energy
can also be rewritten using the same notation as in Eq. (49)
and (47), with a different definition for T̂ (ω) and the trace.
However, because we take over a number of formulas from
[28], it is meaningful also to use the notation from there.

A. Limiting case T → 0

In fact, the limiting case for T → 0 was calculated in
Ref. [28] (and earlier; see literature cited therein). For this
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reason we restrict ourselves here to a short review of the
methods used and display the results.

The first step of the method is the same as in Sec. III A,
Eqs. (89)–(91). One derives an expansion of δ(ω) for ω →
0 and inserting this expansion into the free energy gives its
expansion for T → 0. In order to get the expansion for ω → 0,
it is meaningful to divide the integration region in Eq. (163)
into two regions, (a) with ω > k‖ and (b) with ω < k‖, splitting
ϕ(ω) accordingly,

ϕ(ω) = ϕa(ω) + ϕb(ω), (164)

with

ϕa(ω) =
∫ ω

0
dk‖k‖

∑
X=TE,TM

ln
(
1 − r2

Xe2iaq
)
,

ϕb(ω) =
∫ ∞

ω

dk‖k‖
∑

X=TE,TM

ln
(
1 − r2

Xe2iaq
)
.

(165)

In this division, the first part ϕa(ω) is irrelevant for the
leading orders in ω since it decreases not slower than ∼ω2

because of the integration interval. In ϕb(ω), where we have

q =
√
−ω2 + k2

‖≡iη with η =
√
ω2 + k2

‖ real, it is meaningful
to change the integration variable for η. Then the relevant
formulas are

k = iκ, κ =
√

η2 − (ε(ω) − 1)ω2,

rTE = η − κ

η + κ
, rTM = ε(ω)η − κ

ε(ω)η + κ

(166)

and we have

ϕb(ω) =
∫ ∞

0
dη η

∑
X=TE,TM

ln
(
1 − r2

Xe−2aη
)
. (167)

We insert the permittivity (117) and N (ω) [Eq. (24)] into κ

[Eq. (166)],

κ =
√

η2 − ω2
p

ω2

−ω2 − iγ ω + 
2
. (168)

Now, for 
 �= 0, one may obtain a power-series expansion in
ω for ω → 0 and this case is not really interesting. It is largely
equivalent to a fixed permittivity, considered in Sec. 4.2 in
Ref. [28]. Therefore, we continue with the case 
 = 0. In this
case, ε(ω) [Eq. (117)] is that of the Drude model,

εDr(ω) = 1 − ω2
p

ω(ω + iγ )
. (169)

The calculation of ϕb(ω) for ω → 0 requires the expansion of
integrals like that in Eq. (165). Partly corresponding formulas
can be found in the literature. The most complete expansion
is given in Appendix A in Ref. [28]. Using these results, the
following expansions were obtained. From Eqs. (165) and
(171) in Ref. [28] we get

φTE(ω) = 2 ln 2 − 1

2

ω2
p

γ 2
ω − 1

6
√

2

(
ω2

p

γ

)3

ω3/2 + O(ω2),

φTM(ω) = −4π2γ

3ω2
p

ω + O(ω2),

(170)

and from (275) in Ref. [28]

	T F =
(

(2 ln 2 − 1)ω2
p

γ
− 2π2γ

3a2ω2
p

)
T 2

48

− ζ (5/2)ω2
p

16
√

2γ 3/2
aT 5/2 + O(T 3) (171)

follows. This way, the expansion of the free energy starts with
T 2 and the third law of thermodynamics is respected.

B. Limiting case γ → 0 and relation to the plasma model

For 
 = 0, the limit γ → 0 of the vanishing dissipation
parameter is the most interesting one since it causes the
problems with the third law. There are two aspects. One is the
limit γ → 0 at fixed T and the other is the limit T → 0 with
a temperature-dependent dissipation parameter γ (T ), having
the property

γ (T ) ∼
T →0

γ1T
α (α > 1), (172)

where γ1 is some constant, i.e., vanishing faster than the first
power of the temperature.

On a formal level, setting γ = 0 turns the permittivity (169)
of the Drude model into that of the plasma model,

εpl(ω) = 1 − ω2
p

ω2
, (173)

and the same holds for the reflection coefficients. However, the
free energy does not do the same and an additional contribution
appears. This can be seen in the following way. First, we
remark that the additional contribution appears from the TE
polarization to the function ϕb(ω) in Eq. (167),

ϕTE
b (ω) =

∫ ∞

0
dη η ln

(
1 − r2

TEe−2aη
)
. (174)

Here the dissipation parameter enters through the momentum
κ [Eq. (168)], which using (169) now reads

κ =
√

η2 + ω2
pω

ω + iγ
. (175)

This way, the dependence on γ enters only through the quotient
ω/γ and we define

ϕTE
b (ω) ≡ ψ

(
ω

γ

)
. (176)

For considering γ → 0, we make the substitution ω → ωγ in
the corresponding part of the free energy (161) and get

	T F TE
b = T

4π2

∫ ∞

0
dω ln(1 − e−βγω)

×∂ω

1

2i
[ψ(ω) − ψ(ω)∗]. (177)

Now, because ψ(ω) is decreasing for ω → 0, as follows from
(170), and for ω → ∞, as can be shown easily, we can take
γ → 0 in the logarithm, ln(1 − e−βγω) = ln ω + ln(βγ ) +
· · · . The term ln(βγ ) does not contribute to 	T F and from
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the first term we get

	T F =
γ→0

T

4π2

∫ ∞

0
dω ln ω ∂ω

1

2i
[ψ(ω) − ψ(ω)∗]. (178)

The integral over ω can be carried out, as shown in Appendix
B in Ref. [28], and one arrives at [see Eq. (183) in Ref. [28]]

lim
γ→0

	T F = 	T F pl + F1T , (179)

with

F1 = −1

4π2

∫ ∞

0
dη η ln

[
1 − (

r
pl
TE

)2
e−2aη

]
, (180)

where

r
pl
TE =

η −
√

η2 + ω2
p

η +
√

η2 + ω2
p

(181)

is the reflection coefficient of the TE polarization in the plasma
model and 	T F pl is the free energy of the plasma model, i.e.,
the free energy with γ = 0 taken from the very beginning.

The observation that the limit γ → 0 delivers an additional
contribution linear in T was made already in Ref. [29] (see
also the discussion in Sec. 4.4.2 in Ref. [28] or in Sec. 14.1
in Ref. [5]) for the representation of the free energy in terms
of Matsubara frequencies, which we will consider in the next
section. Here we mention only that now this behavior follows
also within the heat bath approach.

Using the above formulas, it is easy to consider the second
aspect, i.e., the limit T → 0 with γ (T ) decreasing as shown in
Eq. (172). The relevant contribution comes again from (177).
Inserting (172) we get

	T F TE
b = T

4π2

∫ ∞

0
dω ln[1 − exp(−γ1ωT α−1)]

× ∂ω

1

2i
[ψ(ω) − ψ(ω)∗]. (182)

Now, for α > 1, T → 0 calls, like γ → 0 in Eq. (176), for an
expansion of the logarithm and using the same arguments one
arrives at

	T F = TF1 + O(T 2), (183)

where F1 is the same as in Eq. (177). This way, a temperature-
dependent dissipation parameter with the property (172)
delivers for small T a linear contribution, which violates the
third law.

Let us consider the relation to the free energy calculated
within the plasma model in more detail. We have seen that
an additional contribution comes from the TE polarization
and the frequency region (b), defined in Eq. (165), i.e., from a
region where ω � k‖ holds. In general, as discussed in detail in
Ref. [30] (see, in particular, Fig. 2), there are frequency regions
corresponding to waveguide and scattering modes. These have
ω > k‖ [region (a)]. For ω < k‖ [region (b)], there are surface
modes, however only in the TM polarization. This way, the
additional contribution comes from the frequency region (b),
where in the plasma model there are no modes.

We add a comment on the limit γ → 0. Before the
substitution ω → γω, resulting in Eq. (177), the contribution

from the region (b) to the temperature-dependent part of the
free energy, following from (161), reads

	T F TE
b = T

4π2

∫ ∞

0
dω ln(1 − e−βω)

× ∂ω

1

2i

[
ψ

(
ω

γ

)
− ψ

(
ω

γ

)∗]
. (184)

If we set γ = 0 here directly in the integrand we get zero since
ψ(∞) is real. This can be seen from (175), which turns into κ =√

η2 + ω2
p , which is the same as in Eq. (181). However, as we

have seen above, this result is incorrect. Indeed, interchanging
the limit γ → 0 and the integration in the representation (184)
is not allowed in distinction to the representation (177).

C. Transition to the Matsubara representation

In the WW configuration, the transition to the Matsubara
representation can be done the same way as is in the two
preceding sections; however now it is even easier since φX(ω =
0) = 0 [see (170)] and no problems may appear in dividing the
integral in Eq. (161) into two integrals according to (162). This
way, from (161)–(163), we arrive at the known formulas for the
free energy in the Matsubara representation, i.e., to the Lifshitz
formula with finite dissipation γ . These formulas read

F = 1

4π2
T

∞∑
l=0

′
ϕ(iξl) (ξl = 2πT L), (185)

with

ϕ(iξ ) =
∫ ∞

ξl

dη η
∑

X=TE,TM

ln
(
1 − r2

Xe−2aη
)

(186)

and the reflection coefficients

rTE = η − κ

η + κ
, rTM = ε(iξ )η − κ

ε(iξ )η + κ
, (187)

which are the same as in Eq. (166) except for momentum and
permittivity,

κ =
√

η2 + ω2
p

ξ 2

ξ 2 + ξγ + 
2
, ε(iξ ) = 1 + ω2

p

ξ 2 + ξγ + 
2
.

(188)

Here several comments are in order. In the Lifshitz formula
(185), criticality never appears. This can be seen in Eq. (186),
where we have rX � 1 since all quantities entering (187) are
non-negative. For 
 = 0, which makes the permittivity (188)
like that of a metal, for l = 0 a peculiarity appears. In general,
for ξ → 0 we note ε(iξ ) → ∞, and the reflection coefficients
turn into

rTE → 0, rTM → 1, (189)

i.e., only the reflection coefficient for the TM polarization
turns into that of an ideal conductor and that of the TE
polarization turns into zero. This way, the contribution from the
TE polarization to the zeroth Matsubara frequency is missing.
This is counterintuitive, especially since l = 0 determines the
behavior of the free energy for T → ∞. This problem is
well known and has discussed, for instance, in Chap. 14.1
in Ref. [5]. A similar problem was observed earlier for fixed
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permittivity ε [for ε → ∞ we have also (189)] and resolved
by the Schwinger prescription in Ref. [31]. Here we have to
state that this problem appears in the heat bath approach too.

We mention that the linear term F1T in Eq. (179) can
be seen in the Matsubara representation more easily since it
simply describes the difference between the Drude model for
γ → 0 and the plasma model at γ = 0, which in the Matsubara
representation shows up in the zeroth Matsubara frequency,
l = 0, and ξ0 = 0. As seen from (181), the reflection coefficient
for the plasma model does not depend on ξ and ξ = 0 gives
rTE �= 0, whereas from (187) and (188), for 
 = 0 and γ �= 0,
(189) follows for ξ = 0. This way, l = 0 turns (182) just into
F1T with F1 given by (180).

VI. CONCLUSION

In the foregoing sections we considered dipoles interacting
with the electromagnetic field and with heat baths. The aim
is to describe, in this system, dissipation from first principles.
Indeed, and this was in principle known before, this is possible
using known formulas. We got a general representation (49)
for the free energy.

This representation is similar to the remarkable formula
in Ref. [15] and one may expect that it reflects some more
general underlying structure. For our system, we have with
(47) a specific expression in terms of the T operator of the
effective equation (27) for the electric field.

We applied the general formula to three configurations: AA
and AW, which correspond to the Casimir-Polder force, and
WW, which corresponds to the Casimir effect. In each case,
we obtain a representation of the free energy in terms of an
integral over real frequencies in the presence of dissipation.

For the AA and AW configurations, we obtain formulas which
are nonperturbative in the polarizability, i.e., include all orders.
Of course, from here the known expansions (79) and (142),
for small polarizability or large separation, follow. It should
be mentioned that in this sense the WW configuration, i.e., the
Lifshitz formula, is always nonperturbative.

In the nonperturbative treatment of the AA and AW
configurations, criticality may appear. As a result, the tran-
sition to the Matsubara representation becomes modified.
Another modification of the Matsubara representation occurs
if the intrinsic frequency of the atoms in the AA and AW
configurations vanishes. This modification results in a change
of the contribution from the zeroth Matsubara frequency,
Eqs. (106), (107), and (153).

The main motivation for the present paper was to look at
the problems with thermodynamics known in connection with
the Casimir effect for the temperature-dependent dissipation
parameter, decreasing faster than the first power of the
temperature. First of all, the dissipation parameter γ , as it
appears in Eq. (11) from the heat bath, does not depend
on temperature (it may depend on frequency), so to say, by
construction. The temperature dependence comes in solely
through the averages (12). We show that in all cases, for a
constant γ , the laws of thermodynamics are respected. If,
however, inserting by hand a temperature dependence into
the dissipation parameter as given by Eq. (172), the known
problems appear, now also in the heat bath approach. We
conclude that the heat bath approach, at least in the present
form, is insufficient to solve the mentioned problems. In
calling for another approach one should bear in mind that
the temperature dependence (172) follows from the behavior
of real metals and this way cannot be ignored.
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