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Spyros Tserkis* and Timothy C. Ralph†

Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics,
University of Queensland, St. Lucia, Queensland 4072, Australia

(Received 6 September 2017; published 29 December 2017)

Entangled two-mode Gaussian states are a key resource for quantum information technologies such as
teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement
is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum
correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast,
logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers,
even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement
of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states
with balanced correlations. We define simple expressions for entanglement of formation in physically relevant
situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious
conclusions.
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I. INTRODUCTION

Entanglement is a nonclassical physical property, emerging
from the quantum mechanical superposition principle. The-
oretically, it can be described as the inability to separate a
global quantum state of a composite system into a product of
individual subsystems. Experimentally, it is manifested as the
correlations of the observables of different subsystems, which
cannot be classically reproduced.

In order to quantify entanglement of bipartite systems,
we employ the axiomatic theory of entanglement measures
[1,2], where an entanglement measure, E , should satisfy the
following postulates: (i) E vanishes on separable states, and
(ii) E does not increase on average under local operations
and classical communication (strong monotonicity). Besides
the above postulates, there are several other mathematical
properties that it is desirable for E to satisfy, such as additivity,
strong superadditivity, convexity, and asymptotic continuity.

For pure states, entropy of entanglement is the bona
fide measure of quantum correlations, defined as E(|ψ〉) :=
S(trB |ψ〉〈ψ |), where S(ρ) := −tr(ρ log2 ρ) is the von Neu-
mann entropy, and trB denotes the partial trace over subsystem
B [3]. For mixed states, entanglement can be measured via
different quantifiers, which, in general, do not coincide with
each other. One of them is entanglement of formation, defined
as the convex-roof extension of the von Neumann entropy,
EF (ρ) := inf{∑ipiS(trB |ψi〉〈ψi |)}, where the infimum is
taken over all ensembles {pi,ψi} of ρ := ∑

ipi |ψi〉〈ψi | [4].
Specifically, for two-mode Gaussian states, where EF has been
proven to be additive [5] (and thus strongly superadditive as
well [6]), it coincides with the entanglement cost, EC(ρ) :=
lim

n→∞EF (ρ⊗n)/n [7]. For a given state ρ, entanglement cost has

a clear operational meaning, since it quantifies the minimum
entanglement needed (cost of quantum resources) to produce
ρ [7], which is of great importance in quantum technologies.
In discrete-variable bipartite systems, an explicit form of
entanglement of formation has been found for generic states
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(qubits) [8], while in the continuous-variable regime, and
specifically for two-mode Gaussian systems, there are only
two families for which the entanglement of formation can be
analytically calculated: (a) for symmetric states [9] and (b) for
nonsymmetric extremal (maximally and minimally) entangled
states for fixed global and local purities [10–13]. An explicit
form of the measure for arbitrary two-mode Gaussian states is
yet considered an open problem.

The inability to define entanglement of formation through
an explicit closed form for arbitrary states led researchers to
use other, more easily computable measures. Specifically, in
two-mode Gaussian systems the most widely used quantifier
is the logarithmic negativity, EN (ρ) := log2‖ρ̃‖, where ρ̃

denotes the partially transposed density matrix ρ, and ‖x‖ :=
tr
√

x†x is the trace norm [14–16]. However, unlike EF ,
EN does not satisfy convexity, asymptotic continuity, and
strong superadditivity [1,2,17]. Asymptotic continuity and
strong superadditivity are requirements for an entanglement
measure to satisfy the widely accepted extremality of Gaussian
states; i.e., for a given covariance matrix the entanglement
is minimized by Gaussian states [17,18]. Not only does
logarithmic negativity fail to satisfy these requirements, but
also counterexamples have been found, showing that EN can
actually defy the extremality of Gaussian states, leading to
an overestimation of entanglement [17]. Furthermore, since
logarithmic negativity is not asymptotically continuous, it does
not reduce to the entropy of entanglement in all pure states [1],
which is why it is usually referred to as a monotone, instead
of a measure.

In this work we provide a clear physical interpretation of
the entanglement of formation and we derive an analytical
lower bound of it for arbitrary two-mode Gaussian states,
which saturates for symmetric states and for states with
balanced correlations. For the rest of the states, the bound
provides a measure of necessary correlations needed to
construct the state, closely approximating the exact value
(computed numerically) of the entanglement of formation.
Our approach leads to simple exact expressions for the
EF of two-mode squeezed states after passage through
typical communication channels, which we use to illustrate
significant qualitative differences between EN and EF .
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II. GAUSSIAN STATES

We begin by briefly reviewing two-mode Gaussian states
[19,20]. Any two-mode state can be fully described by a
covariance matrix (assuming for simplicity that its mean value
is 0), which in standard form [21,22] is written as

σ sf =
[
A C

C B

]
, (1)

which is a real and positive definite matrix, with A =
diag(a,a), B = diag(b,b), and C = diag(c1,c2). Its elements
are proportional to the second-order moments of the quadrature
field operators, x̂j := âj + â

†
j and p̂j := i(â†

j − âj ), where

âj and â
†
j are the annihilation and creation operators, re-

spectively, with [âi ,â
†
j ] = δij . In continuous-variable optical

systems entanglement is manifested by the correlations of
the field operators x̂ and p̂, and it is typically created
by pumping a nonlinear crystal in a nondegenerate optical
parametric amplifier. This process is described by a symplectic
map σ → S2(r)σST

2 (r), known as the two-mode squeezing
operation defined by

S2(r) :=
[

cosh r 1 sinh r Z

sinh r Z cosh r 1

]
,

where r ∈ R is the squeezing parameter and Z := diag(1,−1).
By applying S2(r) to a couple of vacuums, we obtain a pure
state called the two-mode squeezed vacuum, with a = b =
1+χ2

1−χ2 and c1 = −c2 = 2χ

1−χ2 , where χ = tanh r ∈ [0,1).
For any covariance matrix σ , there exists a symplectic

transformation S, such that σ = SνST , with ν = ν−1⊕ν+1,
where 1 � ν− � ν+. The quantities νi are called symplectic
eigenvalues [15]. The necessary and sufficient separability
criterion for a two-mode Gaussian state σ has been shown to
be the positivity of the partial transposed state σ̃ [21–23]. This
is equivalent to checking the condition ν̃− � 1 [10], where ν̃−
is the lowest symplectic eigenvalue of σ̃ .

III. ENTANGLEMENT OF FORMATION: LOWER BOUND

Any state σ sf can be decomposed (proof can be found in
Appendix A) as

σ sf = L(r1,r2)S2(r)σ cS
T
2 (r)LT (r1,r2), (2)

with L(r1,r2) = S(r1)⊕S(r2), where S(ri) := diag(e−ri ,eri ) is
the local squeezing symplectic map for each mode, and
σ c � 1 is a classical state [see Fig. 1(a)]. We call opti-
mum the decomposition with the least two-mode squeezing,
ro, i.e., σ sf = L(r1o

,r2o
)S2(ro)σ co

ST
2 (ro)LT (r1o

,r2o
). Gaussian

entanglement of formation [24], which has been proven to
be equal to the general entanglement of formation in two-
mode Gaussian systems [12], is equal to the entanglement
of formation of the pure state with a covariance matrix
given by σ p(ro)=L(r1o

,r2o
)S2(ro)1ST

2 (ro)LT (r1o
,r2o

) (with the
corresponding symplectic eigenvalue, ν̃o−=e−2ro ), and thus
EF (σ )=EF [σ p(ro)], so we have [25]

EF (σ ) = cosh2rolog2(cosh2ro) − sinh2rolog2(sinh2ro). (3)

Thus, entanglement of formation quantifies the minimum
amount of two-mode squeezing needed to prepare an entangled

a

b

σsfσc S2(r)

S(r1)

S(r2)

σsfσ̃c

S(r̃2)

S(r̃1)

S2(r̃)

FIG. 1. State decompositions. Any state, σ sf, can be constructed
by applying a sequence of (a) two-mode squeezing S2(r) followed
by local squeezing S(ri) to a classical state σ c or, reversely, (b) local
squeezing S(r̃i) followed by two-mode squeezing S2(r̃) to a classical
state σ̃ c.

state starting from a classical one. The optimum decom-
position, and consequently ro, cannot in general be found
analytically [5,12,24,26]

Another way to decompose a state is as

σ sf = S2(r̃)L(r̃1,r̃2)σ̃ cL
T (r̃1,r̃2)ST

2 (r̃) , (4)

since we can always disentangle a state by antisqueezing it
and then apply the corresponding local squeezing to make
the separable state classical, i.e., σ̃ c � 1 [see Fig. 1(b)]. In
order to make a state separable we have to solve the inequality
ν̃−[S2(−r̃)σ sfST

2 (−r̃)] � 1, which is satisfied for the range of
r̃− � r̃ � r̃+, with

r̃± = 1

2
ln

√
κ ±

√
κ2 − λ+λ−
λ−

, (5)

where we have set κ = 2(det σ + 1)−(a − b)2 and λ± =
det A + det B−2 det C + 2[(ab−c1c2) ± (c1−c2)(a + b)].
The physical meaning of r̃− is that it quantifies the minimum
amount of two-mode squeezing needed to disentangle a state
(in its standard form). For symmetric states, i.e., a = b, and
for states with balanced correlations, i.e., c1 = −c2, we have
r̃− = ro, but in general r̃− � ro (the proof of that statement
can be found in Appendix B), and thus we have a lower bound
of the entanglement of formation

ẼF (σ ) = EF [σ p(r̃−)] � EF [σp(ro)] = EF (σ ) . (6)

We note that for fixed global and local purities, the more
imbalanced the correlations, the larger the deviation of the
lower bound ẼF (σ ) from the real value EF (σ ).

In Fig. 2 we compare the entanglement of formation
(calculated numerically using the approach developed at [24])
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ν̃o−=e−2ro

e−2r̃−

FIG. 2. Lower bound for entanglement of formation. We plot
with black dots the optimum symplectic eigenvalue ν̃o− = e−2ro

(calculated numerically [24]) versus the corresponding value based
on r̃−, i.e., e−2r̃− , for randomly generated states. The symplectic
eigenvalue is a bounded value ∈ (0,1], which shows (a) that ẼF (σ ) �
EF (σ ) and (b) that the bound is also tight for separable and infinite
entangled states. We also depict, with blue squares [27] and red
triangles [28], the corresponding values we get from the previously
known lower bounds. The closer the dots are to the diagonal, the
smaller the deviation from the real value of entanglement. It is clear
that our bound is, on average, tighter than previous bounds. All
quantities plotted are dimensionless.

and its lower bound for randomly generated states. The
significant progress over the previously known lower bounds
of the measure derived in Refs. [27] and [28] is also depicted.
As we see, the former lower bounds deviate significantly from
the real value and, sometimes, even imply separability for an
entangled state.

For many quantum communication protocols, Gaussian
channels describe the decoherence introduced by the envi-
ronment to a quantum state and represent the basic models of
communication lines such as optical fibers [19]. Let us assume
that a single mode of a two-mode squeezed vacuum state, i.e.,
a = b = 1+χ2

1−χ2 and c1 = −c2 = 2χ

1−χ2 , with χ = tanh r ∈ [0,1),
is sent through a Gaussian channel. One-mode Gaussian
channels can be defined as the transformation of the covariance
matrix of the mode γ , i.e., γ → Uγ UT + V [19]. Typically,
these channels are phase invariant and so produce states
with balanced correlations that saturate the lower bound, i.e.,
r̃− = ro. The value of ro, derived from r̃− in Eq. (5), for three
fundamental Gaussian channels is presented here:

(a) The lossy channel, L(τ ), is defined as U = √
τ1 and

V = (1 − τ )1, with transmissivity 0 � τ � 1. Thus we have

ro = 1

2
ln

1 + χ
√

τ

1 − χ
√

τ
.

(b) The amplifier channel, A(τ ), is defined as U =√
τ1 and V = (τ − 1)1, with transmissivity τ � 1.

Equation (5) takes the form

ro = 1

2
ln

√
τ + χ√
τ − χ

.

(c) The classical noise channel, C(v), is defined as
U = 1 and V = v1, with v � 0. The optimum squeezing
parameter for 0 � v � 2 is

ro = 1

2
ln

2 + v + χ (2 − v)

2 + v + χ (v − 2)
,

while for u > 2, ro vanishes, i.e., entanglement-breaking
channel.

The deterministic upper bound of entanglement for a
channel, i.e., the amount of entanglement assuming that an
infinitely squeezed state is sent through the same channel [29],
is reached for χ → 1. This bound allows us to investigate
physical limits, like the calculation of the maximum possible
amount of quantum correlations that can possibly exist after a
specific decohering channel.

IV. COMPARISON WITH LOGARITHMIC NEGATIVITY

As mentioned before, besides entanglement of formation,
other quantifiers have also been used to compute entanglement
for these kinds of states, so it would be interesting to
give a direct comparison with the most popular of these
(due to its computability), i.e., the logarithmic negativity,
which is defined, for two-mode Gaussian states, as EN (σ ) :=
max[0,−log2ν̃−] [10,14–16]. In order to have a clear opera-
tional meaning of this monotone, we can define the generalized
EPR correlations û = x̂1−gx x̂2√

1+gx
2

and v̂ = p̂1+gpp̂2√
1+gp

2
, where gx,gp ∈

R are experimentally variable gains. For these operators the
separability criterion [23] takes the form β = VxVp

(1+gxgp)2 � 1,

with Vx = 〈(x̂1 − gxx̂2)2〉 and Vp = 〈(p̂1 + gpp̂2)2〉 being the
conditional variances. For β < 1 we have an entangled state,
and its minimum value β− is equal to ν̃2

− [30]. We should
note that this equality, i.e., β− = ν̃2

−, holds for any two-
mode Gaussian state. So, logarithmic negativity quantifies the
maximum possible violation of the separability criterion.

The logarithmic negativity is, in general, not directly
related to the squeezing of the state, which is a major
drawback, since squeezing is considered the resource of the
quantum correlations in the system and is, experimentally, the
primary figure of merit. Furthermore, in Fig. 3 it is apparent
that EN fails, in general, to satisfy the extremality of the
entanglement cost (which coincides with entanglement of
formation in these systems), i.e., Ei � EC [31], which was
expected since logarithmic negativity is not asymptotically
continuous. This results in an inconsistent behavior of EN ,
which, for finite squeezing, can be either an upper or a
lower bound of EF , depending on the channel that the state
is sent through. A specific example of how EN can lead
to a qualitatively different evaluation of the entanglement
sent through a physically relevant channel compared to EF

is shown in Fig. 3. To sum up, logarithmic negativity is a
quantifier widely used in the literature, since it has the merit
of being analytically computable in various quantum systems
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FIG. 3. Comparison between entanglement of formation (solid
blue line) and logarithmic negativity (dashed red line). Assuming that
a two-mode squeezed vacuum state with r = 1 is sent through a lossy
channel of transmissivity 0 � τ � 1, we compare the two measures.
The deterministic upper bounds (upper lines), i.e., the amount of
entanglement assuming that an infinitely squeezed state is sent
through the same channel, are also depicted, since they provide further
insight regarding the qualitative differences between entanglement
of formation and logarithmic negativity. The deterministic bound
for logarithmic negativity can be found in Ref. [29]. Specifically,
for logarithmic negativity, the deterministic bound of a state with
transmissivity value τa can also be reached by sending the squeezed
state (r = 1) through a channel of transmissivity τb, with τb > τa .
However, in contrast, entanglement of formation predicts that we
cannot reach the deterministic bound with a squeezed state (r = 1)
regardless of how much we raise the transmissivity. This is a critical
difference, since the two quantifiers disagree on whether or not a
physical upper bound has been reached. All quantities plotted are
dimensionless.

but, from an information-theoretic point of view, is inferior to
entanglement of formation.

V. CONCLUSION

In conclusion, we have found a lower bound of entangle-
ment of formation which is tight for symmetric states and for
states with balanced correlations, while it deviates from the real
value for states with asymmetric correlations. The deviation,
though, is relatively small, which practically makes this lower
bound an analytical approximation of the entanglement of
formation for experimental purposes. We also have shown
via physical examples that this measure should be favored
over logarithmic negativity. We also introduced an alternative
interpretation of the measure in Gaussian systems, proving that
entanglement of formation is intrinsically related to the amount
of antisqueezing needed to disentangle a state up to the point
where the state becomes classical, which might also be helpful
for the quantification of entanglement of several other families
of states, e.g., multipartite Gaussian and non-Gaussian states.
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APPENDIX A: STATE DECOMPOSITION

Any two-mode Gaussian state can be written in the standard
form as [5,12,26]

σ sf = L(r1,r2)
[
σ sf

p (r) + ϕ
]
LT (r1,r2) , (A1)

with L(r1,r2)=S(r1)⊕S(r2), where S(ri) := diag(e−ri ,eri ) is
the local squeezing symplectic map for each mode, and ϕ is a
positive semidefinite matrix. So, we have

σ sf = L(r1,r2)

⎡
⎢⎢⎣S2(r)1ST

2 (r)︸ ︷︷ ︸
σ sf

p (r)

+S2(r) S2(−r)ϕST
2 (−r)︸ ︷︷ ︸

θ

ST
2 (r)

⎤
⎥⎥⎦

×LT (r1,r2) . (A2)

where

S2(r) :=
[

cosh r 1 sinh r Z

sinh r Z cosh r 1

]
is the two-mode squeezing symplectic map, with Z :=
diag(1,−1). Since ϕ has a structure identical to a covariance
matrix, but not necessarily in the standard form, i.e.,

ϕ =

⎡
⎢⎣

n1 0 d1 0
0 n2 0 d2

d1 0 m1 0
0 d2 0 m2

⎤
⎥⎦ , (A3)

then θ = S2(−r)ϕST
2 (−r) is also in the same form as ϕ and,

thus, a Hermitian matrix, so, based on Wigner’s theorem [32],
we know that θ � 0. So, we can write

σ sf = L(r1,r2)

⎡
⎣S2(r){1 + θ︸ ︷︷ ︸

σ c

}ST
2 (r)

⎤
⎦LT (r1,r2) , (A4)

but 1 + θ can always represent a classical state, σ c, where θ

is interpreted as the random correlated displacements applied
to a couple of vacuums, and thus we have

σ sf = L(r1,r2)S2(r)σ cS
T
2 (r)LT (r1,r2) . (A5)

APPENDIX B: LOWER BOUND

Any state can be decomposed as

σ sf = S2(r̃)L(r̃1,r̃2)σ̃ cL
T (r̃1,r̃2)ST

2 (r̃) , (B1)

since we can always disentangle a state by antisqueezing
it and then apply the corresponding local squeezing to
make the separable state classical, i.e., σ̃ c � 1. In order
to make a state separable we have to solve the inequality
ν̃−[S2(−r̃)σ sfST

2 (−r̃)] � 1, which is satisfied for the range of
r̃− � r̃ � r̃+, with

r̃± = 1

2
ln

√
κ ±

√
κ2 − λ+λ−
λ−

, (B2)

062338-4



QUANTIFYING ENTANGLEMENT IN TWO-MODE GAUSSIAN . . . PHYSICAL REVIEW A 96, 062338 (2017)

where we have set κ = 2(det σ + 1) − (a − b)2 and λ± = det A + det B − 2 det C + 2[(ab − c1c2) ± (c1 − c2)(a + b)]. Given
an r̃ which disentangles σ sf, we can always analytically calculate the local squeezing parameters r̃1 and r̃2 needed to remove
any nonclassicality. The entanglement needed to construct a state for an arbitrary decomposition of this form is equivalent to the
entanglement of the corresponding pure state

σ p = S2(r̃)L(r̃1,r̃2)1LT (r̃1,r̃2)ST
2 (r̃) , (B3)

but the covariance matrix of this pure state is always identical to the covariance matrix constructed in the following way:

σ p = L(r ′
1,r

′
2)S2(r ′)1ST

2 (r ′)LT (r ′
1,r

′
2) , (B4)

where

r ′(r̃ ,r̃1,r̃2) = cosh−1

(
1

2

√
e−r̃1−r̃2

√
cosh(2r̃)(e2r̃1 + e2r̃2 ) + e2r̃1 − e2r̃2

√
cosh(2r̃)(e2r̃1 + e2r̃2 ) − e2r̃1 + e2r̃2 + 2

)
, (B5)

r ′
1(r̃ ,r̃1,r̃2) = log

(
e

r̃1+r̃2
2

4
√

e2r̃1 cosh2(r̃) + e2r̃2 sinh2(r̃)
4
√

e2r̃1 sinh2(r̃) + e2r̃2 cosh2(r̃)

)
, (B6)

and

r ′
2(r̃ ,r̃1,r̃2) = 1

(e2r̃1 + e2r̃2 ) 4
√

e2r̃1 cosh2(r̃) + e2r̃2 sinh2(r̃)
log

(
csch(r̃)sech(r̃)e

3(r̃1+r̃2)
2

4

√
e2r̃1 sinh2(r̃) + e2r̃2 cosh2(r̃)

×
√

e−r̃1−r̃2

√
e2r̃1 sinh2(r̃) + e2r̃2 cosh2(r̃)

√
e2r̃1 cosh2(r̃) + e2r̃2 sinh2(r̃) − 1

×
√

e−r̃1−r̃2

√
e2r̃1 sinh2(r̃) + e2r̃2 cosh2(r̃)

√
e2r̃1 cosh2(r̃) + e2r̃2 sinh2(r̃) + 1

)
. (B7)

Let us assume that we have the optimum decomposition for the entanglement of formation, i.e., σ sf =
L(r1o

,r2o
)S2(ro)σ co

ST
2 (ro)LT (r1o

,r2o
), which corresponds to σ sf = S2(r̃o)L(r̃1o

,r̃2o
)σ̃ co

LT (r̃1o
,r̃2o

)ST
2 (r̃o) with r̃− � r̃o � r̃+. We

know that ro must be a function of r ′, i.e., ro = r ′(r̃o,r̃1o
,r̃2o

). It is straightforward to prove that r ′(r̃ ,r̃1,r̃2) � r ′(r̃ ,r̃1 = r̃2), since
∂r ′
∂r̃1

= ∂r ′
∂r̃2

= 0 ⇒ r1 = r2 and ∂2r ′
∂r̃2

1
� 0, ∂2r ′

∂r̃2
2

� 0 for any r̃ > 0. So, for the case of r̃1o
= r̃2o

= 0, r ′(r̃o,r̃1o
,r̃2o

) � r ′(r̃o,r̃1o
= r̃2o

= 0)

should hold as well. It is apparent that r ′(r̃o,r̃1o
= r̃2o

= 0) = r̃o, and thus

r̃− � ro ⇒ ẼF (σ ) = EF [σ p(r̃−)] � EF [σ p(ro)] = EF (σ ) , (B8)

where ẼF (σ ) is the lower bound of the entanglement of formation. The reason this lower bound is tight for balanced states is that
for these states the local squeezing parameters of the optimum decomposition are found to be r1 = r2 = 0 [5,12,26], and thus
the two decompositions, i.e., Eq. (A5) and Eq. (B1), coincide. For symmetric states, where the local squeezing parameters of

the optimal decomposition are r1 = r2 =
√

a+c2
a−c1

[5,12,24,26], the bound is tight since the operation L(r1,r2)S2(r)ST
2 (r)LT (r1,r2)

is identical to S2(r)L(r1,r2)LT (r1,r2)ST
2 (r) for r = r1 = r2, so again, the two decompositions [Eq. (A5) and Eq. (B1)]

coincide.
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