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Quantum key distribution (QKD) protocols make it possible for two quantum parties to generate a secret
shared key. Semiquantum key distribution (SQKD) protocols, such as “QKD with classical Bob” and “QKD
with classical Alice” (that have both been proven robust), achieve this goal even if one of the parties is classical.
However, existing SQKD protocols are not experimentally feasible with current technology. Here we suggest
a protocol, “Classical Alice with a controllable mirror,” that can be experimentally implemented with current
technology (using four-level systems instead of qubits), and we prove it to be robust.
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I. INTRODUCTION

Quantum key distribution (QKD) makes it possible for two
legitimate parties, Alice and Bob, to generate an information-
theoretically secure key [1], that is secure against any possible
attack (of the adversary Eve) allowed by the laws of quantum
physics. Alice and Bob use an insecure quantum channel and
an authenticated classical channel.

Semiquantum key distribution (SQKD) protocols limit one
of the parties to be classical, while still giving a secure key [2].
As explained in [2,3], such SQKD protocols are interesting
from both the conceptual and the practical points of view;
moreover, in a network of one quantum center and many
classical “users,” the classical users may even be oblivious
to being involved in a quantum cryptographic protocol.

The use of SQKD protocols was introduced by [2], who
also presented the “QKD with classical Bob” protocol; later,
the “QKD with classical Alice” [4,5] protocol was suggested,
as well as various other SQKD protocols (see, for example, [6—
8]). Most of the SQKD protocols have been proven “robust”:
namely [2], any successful attack by an adversary necessarily
induces some noise that the legitimate parties may notice. A
few of them also have their full security analyzed [9].

However, to the best of our knowledge, all the currently ex-
isting SQKD protocols cannot be experimentally constructed
in a secure way by using current technology, because, as
explained below, one of the “classical” operations (SIFT)
cannot be securely implemented.

We present a feasible SQKD protocol that can be exper-
imentally constructed by using a “controllable mirror.” It is
based on “QKD with classical Alice” [4,5], but it is slightly
more complicated, because it uses four-level systems instead
of qubits (two-level systems), and because it requires Alice to
choose one of four operations (instead of two). We prove this
protocol to be robust.

In Sec. II we present the original “QKD with classical
Alice” protocol, and in Sec. III we explain why this protocol
and the other currently existing protocols are experimentally
infeasible with current technology. In Sec. IV we present the
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“Classical Alice with a controllable mirror” SQKD protocol,
and in Sec. V we prove it to be robust. We conclude in
Sec. VL.

II. QUANTUM KEY DISTRIBUTION
WITH CLASSICAL ALICE

In the “QKD with classical Alice” protocol [4] (the name
is following [5]), in each round, the originator Bob sends
to Alice the qubit state |[+). Then, Alice randomly chooses
one of two classical operations: CTRL—reflect the qubit to
Bob—or SIFT—measure the qubit in the computational (i.e.,
the classical) basis {|0),[1)} and resend it to Bob. Bob then
measures the qubit he receives from classical Alice, choosing
randomly the measurement basis (the computational basis or
the Hadamard basis { |[+), |-)}). After N qubits have been sent
and received, Alice publicly announces her choice (CTRL or
SIFT) for each round, and Bob publicly announces his basis
choice for each round. Then, Alice and Bob check the error
rates in the CTRL bits and in a random subset of the SIFT bits,
aborting if they are too high. Finally, Alice and Bob perform
error correction and privacy amplification on the remaining
SIFT bits measured by Bob in the computational basis, so that
they get a final identical key that is completely secret.

As proven in [5], “QKD with classical Alice” [4] is com-
pletely robust against eavesdropping. The proof of robustness
was extended in [10] to include photonic implementations and
multiphoton pulses.

III. THE EXPERIMENTAL INFEASIBILITY OF THE SIFT
OPERATION IN SQKD PROTOCOLS

In the SQKD protocols (e.g., [2,4]), one of the classical op-
erations is SIFT: measuring in the computational basis {|0), 1)}
and then resending. In practical (photonic) implementations,
and especially if limited to the existing technology, the SIFT
operation is very hard to securely implement, because the
generated photon will probably be at a different timing or
frequency, thus leaking information to the eavesdropper; see
detailsin[11] (whichis acomment on [2]) and in the reply [12].

For example, let us look at the “QKD with classical Alice”
protocol implemented with two classical modes, |0) and |1),
describing two pulses (two distinct time bins) on a single arm.
The photon can be either in one pulse, in the other, or in
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a superposition (a nonclassical state). In this case, the SIFT
operation requires Alice to measure the two pulses, to generate
a single photon in a state depending on the measurement
outcome, and to resend it to Bob, while Alice can implement
the CTRL operation simply by using a mirror (reflecting both
pulses). In this case, it is indeed very difficult for Alice to
regenerate the SIFT photon exactly at the right timing, so that
it is indistinguishable from a CTRL photon.

Furthermore, in [11] it was shown that even if Alice could
(somehow) have the machinery to perform SIFT with perfect
timing, Eve would still be able to attack the protocol by taking
advantage of the fact that Alice’s detectors are imperfect: Eve’s
attack is modifying the frequency of the photon generated by
Bob. Alice does not notice the change in frequency. If Alice
performs SIFT, the photon she generates is in the original
frequency; if she performs CTRL, the photon she reflects is in
the frequency modified by Eve. Therefore, if Eve is powerful
enough, she can measure the frequency and tell whether Alice
used SIFT or CTRL. If Eve finds out that Alice used SIFT, she
can copy the bit sent by Alice in the computational basis; if
she finds out that Alice used CTRL, she shifts the frequency
back to the original frequency. (A very similar attack works
for other implementations, too, e.g., for polarization-based or
phase-based implementations.) This “tagging” attack makes
it possible for Eve to get full information on the key without
inducing noise.

IV. THE CONTROLLABLE MIRROR PROTOCOL
FOR QKD WITH CLASSICAL ALICE

We suggest an experimentally feasible SQKD protocol,
similar to the infeasible protocol “QKD with classical Alice”:
in the original protocol of “QKD with classical Alice,” Alice
could choose only between two operations (CTRL and SIFT);
in our protocol, Alice may choose between four operations
(CTRL, SWAP-10, SWAP-01, and SWAP-ALL). This protocol
avoids the need of using the infeasible operation SIFT. The
two operations SWAP-10 and SWAP-01 correspond to two
possible reflections of pulses by using a controllable mirror.
Those operations cannot be described by qubit notations, so
below we use four-level system notations. Our protocol is
based on the Fock-space notations: in those notations, the
state |mj,mq) represents m indistinguishable photons in the
mode of the qubit state |1) and m indistinguishable photons
in the mode of the qubit state |0). More details about the
Fock-space notations are given in Appendix A.

This protocol is experimentally feasible and is safe against
the “tagging” attack described in [11]. Moreover, we prove
this protocol to be completely robust against an attacker
Eve that can do anything allowed by the laws of quantum
physics, including the possibility of sending multiphoton
pulses (namely, assuming that Eve may use any quantum
state consisting of the two modes |0) and |1), that is, any
superposition of the Fock states |m,my)).

We can describe the protocol in terms of photon pulses
that correspond to two distinct time bins, and of a controllable
mirror operated by Alice: in this case, the CTRL operation
corresponds to operating the mirror on both pulses (reflecting
both pulses back to the originator, Bob); the SWAP-10
operation corresponds to operating the mirror only on the |0)
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pulse while measuring the other pulse (and similarly for the
SWAP-01 operation and the |1) pulse); and the SWAP-ALL
operation corresponds to measuring all the pulses, without
reflecting any of them.

For the experimental implementation, we note that a (very
slow) mechanically moved mirror is trivial to implement; a
much faster device can be electronically implemented by using
standard optical elements (that are commonly used in QKD): a
Pockels cell [that can change the polarization of the photon(s)
in one of the pulses] and a polarizing beam splitter (that makes
it possible to split the two different pulses into two paths,
because they are now differently polarized). Like other (fast)
QKD experimental settings, implementation is feasible but is
not trivial.

Let Alice’s initial probe be in the vacuum state |0,0)4,
and let us assume that a single photon is arriving from Bob;
thus, the system as a whole can be described as a four-level
system (a single photon in four modes). Alice’s operations are
as follows.

I (CTRL): Do nothing:

110,0)4 [my,mg) = 0,0)4 |my,mo)z. (D

S1 (SWAP-10): Swap half of Alice’s probe (the left mode)
with the |m)g half of Bob’s state:

S$110,0)a [my,mo)s = [m1,0)a |0,mo)s. 2

So (SWAP-01): Swap half of Alice’s probe (the right mode)
with the |m)p half of Bob’s state:

S010,0)a [m1,mo)s = [0,mo)a |m1,0)s. 3)

S (SWAP-ALL): Swap the entire probe of Alice with the
entire state |m,mg)g of Bob:

§10,0)4 |my,mo)g = |mq,mg)a |0,0)p. 4

After each of the three SWAP operations, Alice measures
her probe (the |-)o state) in the computational basis and
sends to Bob the |-)g state. If there is no noise and no
eavesdropping, and if we analyze the “ideal case” (in
which exactly one photon is arriving from Bob to Alice),
then each round is described by the four-dimensional
Hilbert space  Span{|0,0)4 |0,1)5, |0,0)4 |1,0)g, [0,1)a
|0,0)g, |1,0)4 |0,0)g}, namely, by a four-level system; for
our protocol, we use this four-level system instead of the
qubit used by BB84 and by many other QKD schemes. In
the most general “theoretical attack™ (the attack analyzed by
standard QKD security proofs), Eve attacks Alice’s and Bob’s
states using any probe of her choice, but she cannot modify
the four-dimensional Hilbert space of the protocol: she can
only use those four levels. However, in practical attacks (as
analyzed in our robustness analysis), Eve may use an extended
Hilbert space (the entire Fock space).

While Eve is fully powerful, it is common to assume that
Alice and Bob are limited to use only current technology. In
particular, Alice and Bob are limited in the sense that they
cannot count the number of photons in each mode, but can
only check whether a detector corresponding to a specific mode
clicks (detects at least one photon in that mode) or not (detects
an empty mode). For our protocol to be practical (and for our
robustness analysis to be stronger), we assume that Alice and
Bob are indeed limited in that sense. Therefore, when Alice and
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TABLE I. The four possible measurement results by Alice or
Bob (measuring in the computational basis), depending on the
state obtained by him or her (that is represented in the Fock-space
notations).

Obtained state Measurement result Sum
|0,0) 00 0
|0,mq) (mo > 0) 01 1
|my,0) (m; > 0) 10 1
|my,my) (m; > 0,my > 0) 11 2
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TABLE III. Interpretations of Alice’s and Bob’s measurement
results for SWAP-x states.

Alice’s sum Bob’s sum Interpretation

0 0 A loss

0 1 Alice and Bob share a bit

1 0 Alice and Bob do not share a bit
1 1 An error

Oorl 2 An error

2 Impossible

Bob measure in the computational basis, their measurement
results are denoted as 111, with 7,7, € {0,1}. Similarly,
when Bob measures in the Hadamard basis, his measurement
result is m_rm ., with m, ,m_ € {0,1}.

This limitation leads to the definition of “sum,” as follows:
let us look at a measurement result of Alice or Bob (that
is 00, 01, 10, or 11). The sum of this measurement result
is the number of distinct modes detected to be nonempty
during the measurement (namely, the sum of the digits in the
measurement result). This definition is summarized in Table 1.

The protocol consists of the following steps.

(1) In each of the N rounds, Bob sends to Alice the
state |+)p; Alice randomly chooses one of her four classical
operations (CTRL, SWAP-10, SWAP-01, or SWAP-ALL)
and sends the result back to Bob; Bob measures the state
he receives, choosing randomly whether to measure in the
computational basis or in the Hadamard basis.

(2) Alice reveals her operation choices [CTRL, SWAP-
x (x € {01,10}), or SWAP-ALL; Alice does not reveal her
choices between SWAP-10 and SWAP-01, that she keeps as
a secret bit string], and Bob reveals his basis choices. They
discard all CTRL bits Bob measured in the computational basis
and all SWAP-x bits he measured in the Hadamard basis.

(3) For each of the SWAP-x and SWAP-ALL states, Alice
and Bob reveal the sums of their measurement results.

(4) Alice and Bob interpret their measurement results: they
consider several types of measurement results as errors, losses,
or valid results. See Tables II-IV for the details.

(5) For all the SWAP-x (x € {01,10}) states, if Bob’s sum
is 1 and Alice’s sum is 0O, then Alice and Bob share a (secret)
bit b, because Alice knows (in secret) what operation S;_;
she performed, and Bob knows (in secret) what mode |b) he
detected. Each one of Alice and Bob keeps this sequence of
bits b as his or her bit string.

(6) Alice and Bob reveal some random subset of their bit
strings, compare them, and estimate the error rate (this is the
error rate in the way from Alice back to Bob). They abort

TABLE II. Interpretations of Bob’s measurement results for
CTRL states.

the protocol if the error rate in those bits, or any of the error
rates measured in step 4, is above a specified threshold. They
discard the revealed bits.

(7) Alice and Bob perform error correction and privacy
amplification processes on the remaining bit string, yielding a
final key that is identical for Alice and Bob and is fully secure
from any eavesdropper.

Notice that Bob does not have a special role in the
beginning: he always generates the same state, |+). It is even
possible that the adversary Eve generates this state instead of
him.

V. ROBUSTNESS ANALYSIS

To prove robustness, we will prove that for Eve’s attack to
be undetectable by Alice and Bob (namely, for Eve’s attack
not to cause any errors) it must not give Eve any information.

Eve’s attack on a state can be performed in both directions:
from the source (Bob) to Alice, Eve applies U; from Alice
back to Bob, Eve applies V. We may assume, without limiting
generality, that Eve uses a fixed probe space Hg, for her attacks.

According to the definition of robustness, we will prove
that if, during a run of the protocol, no error can be detected by
Alice and Bob, then Eve gets no information on the raw key.

If Alice and Bob cannot find any error, the following
conditions must be satisfied for all the measurement results
that were not discarded due to basis mismatch.

(1) For all CTRL states, Bob’s measurement result (in the
Hadamard basis) must not be 10 or 11 (namely, Bob must
never detect any photon in the |-) mode).

(2) For all SWAP-x states, Alice’s sum and Bob’s sum (in
the computational basis) must not be both 1.

(3) For all SWAP-x states, Bob’s sum (in the computational
basis) must not be 2 (namely, Bob’s measurement result must
not be 11).

(4) For all SWAP-x states, no error (that may be detected
during the protocol) can exist. In other words, (a) for all SWAP-

TABLE 1IV. Interpretations of Alice’s and Bob’s measurement
results for SWAP-ALL states.

Bob’s result Interpretation Alice’s result Bob’s result Interpretation
00 A loss 00 00 A loss

01 Gi.e., |+)) A legal result 01 or 10 00 A legal result
10 G.e., |-)) An error 11 00 An error
11 An error 01,10,0r 11 An error
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TABLE V. The (non-normalized) state of the Bob+Eve system
after Alice’s operation, given Alice’s sum. Note that the states |¢; o),
|@o.1), and |¢g o) are defined in Eqgs. (7)-(9).

Operation Alice Bob+Eve state

CTRL [Werre) 2 1910) + l@o1) + lgoo)
SWAP-10 0 [Wsho) 2 leo1) + leoo)
SWAP-01 0 [wson) 2 lo10) + l90.0)
SWAP-10 L pdho 23,0 10.0)5(0.01 ® |Ep, 0)E(Enm, ol
SWAP-01 Lo 2300 10.0)5(0.01 & |Eo,um)E(Eom,|
SWAP-ALL psaLL 2 pglio + P + 1@00) (@ool

10 states, Bob’s measurement result (in the computational ba-
sis) must not be 10, and (b) for all SWAP-01 states, Bob’s mea-
surement result (in the computational basis) must not be O1.

(5) For all SWAP-ALL states, Alice’s measurement result
must not be 11.

(6) For all SWAP-ALL states, Bob’s measurement result
must not be 01, 10, or 11.

We now analyze each round of the protocol. After the round
begins, the source (Bob) sends to Alice the state [0,1)x p €
‘Hg. Eve can now interfere: she attaches her own probe state (in
the Hilbert space Hg) and applies the unitary transformation
U. The resulting Bob+Eve state (including Eve’s probe) is of
the form

Wini) 2D m1,m0)s | EmymoEs )

my,mo

where |E; ;)g are non-normalized vectors in Hg.
Condition 5 means that |E,, ,,)g =0 for all m;,mg
satisfying m; > 0 and m( > 0. Therefore,

[¥init) = 1.0} + |®o.1) + l9o.0), (6)
with
9100 £ ) 1m1,0)8 | Em, 0)E, (7)
m;>0
@01} £ > 10.m0)5 | Eomy)E. ®)
mo>0
|goo,o>0é 10,05 | Eo.0)E- ©)

Alice now applies one of the four possible operations
(CTRL = I, SWAP-10 = S;, SWAP-01 = Sj, or SWAP-ALL
= S) and destructively measures her probe state. The (non-
normalized) state of the Bob+4Eve system after Alice’s
operation (and measurement) is written in Table V.

Then, Eve applies a second unitary transformation V on
the state sent from Alice to Bob (and on her own probe state).
According to conditions 2, 3, and 6, the density matrices
V,oé{{OVT, V,oé%l Vi, and Vps.az, VT must only overlap with
|0,0)p. It follows that there exists |Hp o)g € Hg such that

Vl@o,0) = 10,0)5 | Ho0)E-

Let V @10 = D, mo 171:m0)B | Finy mo)E- Let us look at
a SWAP-01 state for which Alice’s sum is zero. For this state,

(10)
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the Bob+Eve state after Eve’s attack is
VI[uE) = Viero) + Voo
= > Imi.mo)s |Fuymg)g + 10,08 |Hooe. (11)

my,mo

and following conditions 4(b) and 3 Bob must not detect a
photon in the |0) mode (otherwise, the error may be detected
during the protocol). Therefore, |F,,, ) = 0forall my > 0.
It follows that

Vigro) = Y 1m1.0)s |Fu0)s + 10,008 | Foo)e-

m;>0

(12)

Similarly [following conditions 4(a) and 3],

Vigoa) = Y 10.m0)5 |Gom)y + 10.0)5 1Goo)e.  (13)

mo>0

Now, Egs. (10), (12), and (13) imply that if Alice applies
CTRL the Bob+Eve state after Eve’s attack is

V ¥errL) = Z[ [m,0)B | Fin0)E + |0,m)B |Go,m)E]

m>0

+10.0)s [H)E

with |H)g = |Fo.0)e + |Go.0)e + |Ho o). Following condi-
tion 1, the probability of Bob getting a photon in the |-) mode
must be zero.

We now use the following lemma, the proof of which is
given in Appendix B.

Lemma 1. 1f |y') =3, olIm,0)p|Fno)e + [0.m)s
|Go.m)E] + 10,0)p |H)E is a bipartite state in Hp ® Hg, and
if there is a zero probability that Bob gets a photon in the |-)
mode, then |F1o)g = |Go1)E, and [F0)g = |Gom)e =0
forallm > 1.

Applying Lemma 1, we deduce that |F,, 0)g = |Gom)E =
0 forallm > 1,and that |Fio)g = |Go.1)g = |F)g.

It follows that the Bob+Eve states after Eve’s attack, when
Alice performed SWAP-x and her sum is zero (those are the
only states for which Alice and Bob may share a bit), are

(14)

V{¥lo) = 10,15 |F)g + 10,008] 1Go,0)e + |Hoo)el, (15)

V{wh) = 11,008 1F)e + 10,008] | Foo)e + |Hoo)el. (16)

Therefore, the state of Eve’s probe is independent of all Alice’s
and Bob’s shared bits, and is equal to |F)g whenever Alice
and Bob share a bit. Eve can thus get no information on the
bits shared by Alice and Bob without being detected.

VI. CONCLUSION

We have presented a semiquantum key distribution proto-
col, and have proved it robust (security analysis is left for the
future). Unlike all the previous SQKD protocols, our protocol
can be experimentally implemented in a secure way.

In this paper, we have suggested a solution for a practical
security problem of SQKD protocols, that was discussed in
Sec. IIT and in [11]. We note that QKD protocols have, too,
some security weaknesses in their practical implementations,
such as the “photon-number splitting” attack [13], the “bright
illumination” attack [14], the “fixed apparatus” attack [15],
and other practical attacks. While some of those security weak-
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nesses can be mitigated, full security proofs for practical im-
plementations are still out of reach. A future extension of this
paper may check to what extent the practical implementations
of the SQKD protocols discussed in this paper suffer from the
same practical security problems as common QKD protocols,
and whether insights from SQKD protocols (and the methods
described in this paper) may help in solving practical security
problems of both SQKD and fully quantum QKD protocols.
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APPENDIX A: FOCK-SPACE NOTATIONS

The Fock-space notations, that serve as an extension of the
qubit space, are defined as follows: the Fock basis vector |0,1)
represents a single photon in the |0) state, and the Fock basis
vector |1,0) represents a single photon in the |1) state. The
vectors |0,1) and |1,0) could, for example, be two polarization
modes, two arm modes (e.g., arms entering an interferometer),
or two time-bin modes on a single arm. The qubit space
(representing a single photon in one of the two modes) can
be extended to the entire two-mode Fock space:

F = Span{|m,mo) | m; = 0,mqo = 0}, (A1)

where the state |m,mg) represents m; indistinguishable pho-
tons in the mode of the qubit state |1) and m indistinguishable
photons in the mode of the qubit state |0). In particular, the
state 10,0) € F is used for describing absence of photons in
both modes (the “vacuum state™).

Similarly, a single photon in the |4+) mode may be written
as 10,1)x (and similarly for |-) and |1,0)y), and the entire
two-mode Fock space can be represented as

F = Span{|m_,my)x | m_ = 0,m; > 0}, (A2)

where the state |m_,my)x represents m_ indistinguishable
photons in the mode of the qubit state |-) and m indistin-
guishable photons in the mode of the qubit state |+).

In this paper, we shorten the term “the mode of the qubit
state |0)” to “the |0) mode”, and similarly for |1), |+), |-).

APPENDIX B: PROOF FOR LEMMA 1

Proof. If there is a zero probability that Bob gets a photon
in the |-) mode, then there is a zero probability of measuring
any basis state |m_,m)x g of Hp withm_ > 0.
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For m =1, since [0,1)p = —‘0’“"’%1’0“ and |1,0)g =
|011)X.B\;>|1’0)X,R we get
2 b
1,008 | F1.0)g + 10,1)B 1Go.1)E
= '0’1)**3[|GO,I>E+ |F10)E]
V2
11,0),.
+ ﬁ"BnGo,nE — |F10)El. (B1)

Since the probability of getting a photon in the |-) mode must
be zero, it is necessary that | F} o)g = [Go.1)E-
For m > 1, using the ladder operators ay, a;, ay, and a_,

since ay = & ﬁ“ and a; = “*Jf” , we get

0,m)p = 20 =/B

“ m k +m—k
= — |Z(k>ai al" 10,005, (B2)

2% 3 (Z’)(—l)"a”aim_k 10,005, (B3)

=0
From Egs. (B2) and (B3) it follows that
|m,0)g | Fin0)e + 10,m)p |Gom)E
= 1e")p[IGom)E + |Fn0)E]
+ 10")8[Gom)E — |Funo)el,  (B4)
with

1 k +m— k
Z al” 10,008, (B5)
2"m k even ( )

k +m—k
0™y = Z( >ai al” 10,008, (B6)
V2rm! k

odd

Lk —k
where a! aim |0,0)p is, up to a constant factor, the Fock

state |k,m—k)x p. The probability of finding a photon in the

k +m—k
|-} mode must be zero; thus, the coefficient of al aim 10,0)p
for k > 0 must be zero. Substituting |e””)g and |0"™)g by

their values in Eq. (B4), the coefficient of ' al” " 0,0)s
is (up to a nonzero constant factor) |Go.)g + |Fu0)e for
even k and |Gop,)g — |Fn.o)g for odd k. Since k =m > 0
and k' = m — 1 > 0 have different parities, this implies both
|Gom)E + |Fo)e =0and [Gome — |Fno)e =0, and thus
[Fin0)e = |Gom)e =0. u
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