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Multiphoton entangled states are a crucial resource for many applications in quantum information science.
Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon
correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically
limits coherence (and hence entanglement) between photons to the spin T ∗

2 time of a few nanoseconds. We
propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust
against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is
instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present
scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states
and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
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I. INTRODUCTION

A crucial requirement for photonic measurement-based
quantum computing schemes is a resource of entangled states
[1–10]. The generation of such states is being pursued on
various platforms; among these are continuous variable quan-
tum optics [11], spontaneous parametric down-conversion in
nonlinear crystals [12], nitrogen-vacancy centers [13], and
self-assembled semiconductor quantum dots (QDs) [14]. QDs
in particular are attractive due to the combination of their
excellent optical properties [15–19], and the prospect of
deterministic interactions with single photons [15,20]. By
charging a QD with a single electron, it becomes equipped
with an internal spin degree of freedom that couples to the
polarization of optical photons [21], while also benefiting
from highly developed optical control and readout techniques
[22–30]. Using these properties, it is possible to generate spin-
photon entanglement [31,32], and by entangling a sequence
of photons with a QD, spin-multiphoton states are generated,
reducing to multiphoton entangled states once the QD spin is
measured [33–35].

A considerable challenge for the QD platform is posed
by the interaction of the QD spin with its nuclear spin
environment, which gives rise to a slowly fluctuating magnetic
Overhauser field [36,37]. Due to uncertainty in the Overhauser
field, phase coherence between the QD spin states is lost
on a time scale set by the spread of available Overhauser
states, limiting the QD spin coherence to typically only a
few nanoseconds [38–40] (usually termed the T ∗

2 , ensemble,
or inhomogeneous dephasing time). This renders practical
implementations to generate states beyond spin–single-photon
entanglement extremely challenging in their original formu-
lations [31–35,41]. Spin coherence times can in principle
be extended beyond T ∗

2 by applying spin echo or dynam-
ical decoupling sequences which unwind fluctuating phase
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evolution [38,42]. However, this not only adds operational
complexity, but, in cases which utilize photon frequency
degrees of freedom [43], will not extend photon coherence
times, as the Overhauser field is imprinted onto the photonic
component of the state not affected by echo pulses. Spin
coherence may also be extended by polarization of the nuclear
environment [39,44–49], though a very high (>90%) and as
yet unachievable degree of polarization is required.

II. DEPHASING-RESILIENT PROTOCOL

As a solution to this, we propose a QD-based protocol to
generate multiphoton entangled states that is naturally robust
against slow Overhauser field fluctuations, with the coherence
being instead limited only by faster pure-dephasing (homoge-
neous) processes, with a typical time scale of microseconds
(termed the T2 time). The central feature of our proposed
protocol is that it combines (1) an external field to ensure the
nuclear environment gives rise to a fluctuating magnetic field
amplitude only, with (2) narrow-band excitation, which means
an entangled state is generated in which all terms have the
same energy. This means only a global inconsequential phase
is acquired over time, thus ensuring robustness against the
dominating slow nuclear spin fluctuations. We benchmark our
protocol against a multiphoton extension of the experimental
realizations in Refs. [43,50,51] and the theoretical schemes
in Refs. [31,33], showing that with realistic noise models
these cannot be scaled to create entanglement beyond the
spin–single-photon regime as they lack one or both of the
above properties. Using the proposed protocol in combination
with a suitable frequency quantum eraser, we show that three-
photon GHZ states can be generated near deterministically
with near-unity fidelity, and without any active measures taken
to avoid nuclear spin dephasing. Several of these microclusters
could then be efficiently transformed to a large cluster state
using only passive linear optical elements [52].

Our protocol is based on a negatively charged QD
in a single-sided, polarization-degenerate cavity, operating
in the weak-coupling regime. An external magnetic field
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FIG. 1. (a) QD in a polarization-degenerate, single-sided cavity
is exposed to an external magnetic field perpendicular to the cavity
axis. (b) Electron and hole configurations for the ground states and
trions, which in zero field are connected via circularly polarized
transitions. (c), (d) The Voigt-geometry magnetic field leads to
linearly polarized transitions (labeled H and V ) between hybridized
levels as indicated, split by the Zeeman energy bx . Shown in (c)
is a spectrally narrow photon resonant with the zero field transition
energy ω0, which can lead to a spin-flip Raman scattering process
changing the photon’s energy and polarization [orange arrows in
(d)], or a coherent scattering process leaving energy and polarization
unchanged (blue arrows). Occurring in superposition these processes
lead to spin-photon entanglement.

perpendicular to the optical axis splits the QD transitions,
and results in linearly polarized transitions to the excited trion
states. We now consider an H -polarized photon incident on the
cavity, with the QD in the external magnetic-field eigenstate
|φ+〉 = (1/

√
2)(|↑〉 + |↓〉), where |↑〉 and |↓〉 denote the

ground-state electron spin projection along the optical axis
(defining the z direction). If the incoming photon is resonant
with the bare QD transition energy in zero field, labeled ω0,
there are two off-resonant scattering possibilities. A Raman
transition can take place, in which the spin of the QD is
flipped, and the photon frequency and polarization are changed
[orange arrows in Fig. 1(d)], or the photon can coherently
scatter, leaving it and the QD unchanged (blue arrows).
As such, the composite QD-photon system will evolve in
superposition, and we write a single-photon scattering event
as |H,ω0〉1|φ+〉 → |ψ (1)〉 with

|ψ (1)〉 ≡ 1√
2

(|H,ω0〉1|φ+〉 − i|V,ω+〉1|φ−〉), (1)

where ω± = ω0 ± (bx/2) with bx being the Zeeman splitting,
and |α,ω〉i denoting photon i in polarization state α with
frequency ω. The superscript on |ψ (n)〉 denotes the photon
number in the scattered state.

A second photon can then be sent to the QD-cavity system
after some time, and the total composite state will be the three-

qubit entangled state (cf. Appendix C for details):

|ψ (2)〉 = 1
2 (|H,ω0〉1{|H,ω0〉2|φ+〉 − i|V,ω+〉2|φ−〉}
+ |V,ω+〉1{−i|H,ω0〉2|φ−〉 + |V,ω−〉2|φ+〉}). (2)

This state is local unitary equivalent (LUE) to a three-qubit
linear cluster state [8] and a GHZ state, provided that the
frequency degree of freedom is erased. For three or more
photons, the state is no longer LUE to a GHZ or linear cluster
state, though it possesses a rich entanglement structure with
maximal localizable entanglement and infinite entanglement
length. Of particular note, when the QD spin is projected out
of the state |ψ (3)〉 in the {φ±} basis, the remaining state is LUE
to a three-photon polarization encoded GHZ state [53].

The most important feature of Eq. (2), however, is that each
term has the same total energy. This is because the first Raman
process flips the spin from |φ+〉 to |φ−〉, transferring energy bx

from the QD to the photon. In the second spin-flip event, the
opposite happens, and the photon transfers energy bx to the
QD. Consequently, the state |ψ (n)〉 for any n consists of a large
superposition of trajectories that all share the same total energy
nω0 + bx/2, and |ψ (n)〉 will acquire only a global phase in time.
Crucially, this means that when an ensemble of states such
as |ψ (n)〉 is prepared, phase coherence between terms in the
superposition is protected from any fluctuations in bx that may
occur between one realization and another. In particular, for a
single QD, slow variations in the Overhauser field over time
will not decohere |ψ (n)〉, allowing, for example, the generation
of three-photon GHZ states with near-unit fidelity.

As this insensitivity to nuclear spin interactions is the
essential feature of our protocol, we now consider it in more
detail. The dominant coupling between the QD electron spin
and nuclear spins is the hyperfine interaction [54]. If this
is much weaker than the electron Zeeman energy and the
number of nuclear spins is large, its effect can be modeled
as a magnetic Overhauser field, BN [37], which can be added
to the external field to give B = Bext + BN. Due to the large
number of nuclear spins BN evolves on a slow microsecond
time scale, as compared to the characteristic nanosecond time
scale governing the electron spin dynamics [37]. This allows
us to model the Overhauser field as being stationary during
a single experimental run, but probabilistically chosen from
w(Bi

N; �B) = 1/(�B

√
2π ) exp[−(Bi

N)2/(2�2
B)], describing a

Gaussian distribution with zero mean for each of the Cartesian
components, Bi

N, and with standard deviation �B [37]. If the
external field Bext = Bextx̂ is appreciably stronger than �B , we
can assume that the components of BN parallel to Bext dominate
[37]. In such a case nuclear spins can be included by writing
the effective Zeeman splitting as bx = geμB(Bext + Bx

N), with
ge the electron Landé factor and μB the Bohr magneton, and
with Bx

N averaged over using w(Bx
N; �B).

To see how ensemble dephasing can arise, consider a simple
superposition state in the magnetic-field eigenstate basis
(1/

√
2)(|φ+〉 + |φ−〉). For times t less than a microsecond,

this state becomes |ϕ〉 = (1/
√

2)(e−ibx t/2|φ+〉 + eibx t/2|φ−〉)
in a single realization. An ensemble of such states, however,
samples all Overhauser fields, giving the single-spin den-
sity operator 	 = ∫

dBx
N w(Bx

N ; �B)|ϕ〉〈ϕ|, and we find that
coherences decay as 〈φ+|	|φ−〉 ∝ exp[−(t/T ∗

2 )2] with T ∗
2 =√

2/(geμB�B), which for typical InGaAs QDs corresponds
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to nanoseconds. Crucially, however, in our protocol, states
such as |ϕ〉 above are never produced. Instead, assuming that
all scattering processes take place within the microsecond
time scale over which the Overhauser field can be considered
constant, after accumulating n photons in the composite state,
it will have the form |ψ (n)〉 = (|ψ (n)

+ 〉|φ+〉 + |ψ (n)
− 〉|φ−〉)/√2,

as we show in Appendix C. Here |ψ (n)
± 〉 is an entangled

n-photon state, in which all terms have energy 
+ = nω0

or 
− = nω0 + bx . This form eliminates the inhomogeneous
ensemble dephasing as described above, as the phase can be
factored out of the complete state. Dephasing only occurs on
a much longer time scale of the T2 time set by pure-dephasing
processes, and typically corresponding to microseconds [37].
If the spin is measured in the basis {φ+,φ−} while the
Overhauser field is unchanged, the photonic state is projected
to one of the states |ψ (n)

± 〉, which are also robust against
ensemble dephasing. Though we have emphasized resilience
to Overhauser field fluctuations, by the same arguments our
scheme is also robust against any other slow processes leading
to energy-level fluctuations, most notably those caused by
charge noise [40,55].

Having shown that our protocol is robust against ensemble
dephasing processes, we now turn our attention to another
potential imperfection, that arising from the photon scattering
process itself, which we term the scattering fidelity. We are
interested here in a quantitative analysis of how well the
entangled states in Eqs. (1) and (2) are produced given a
realistic QD-cavity model. To assess this, we write the total
Hamiltonian as Ĥ = H0(t) + HB , where H0(t) is the QD-
cavity Hamiltonian including light-matter interactions, and HB

contains the magnetic field. In a frame rotating at ω0 we have
(we set h̄ = 1) H0(t) = η(t)e†inA + g�†A + H.c., with A =
(a+,a−)T the polarization-resolved vectorial cavity mode oper-
ator in the circular polarization basis, � = (|↑〉〈⇑ |,|↓〉〈⇓ |)T,
and g is the QD-cavity coupling strength. The incoming light
is modeled as a weak coherent pulse, described by a time-
dependent driving of the cavity field, taken to be Gaussian,
η(t) = η0 exp[−(t/t0)2], and ein is the input polarization Jones
vector in the circular basis. The magnetic-field Hamiltonian is
HB = μBB · (geSe − ghSh), with Se (Sh) the vectorial spin
operator for the electron (hole) subspace and gh the hole
Landé factor [56]. With a numerical solution of the dynamics
generated by the Hamiltonian [57], the scattering fidelity for
an n photon state is simply F (n) = Tr[ρ|ψ̃ (n)〉〈ψ̃ (n)|], where
ρ is the numerically calculated QD-photon density operator
and |ψ̃ (n)〉〈ψ̃ (n)| the ideal maximally entangled state [58].
Additional details about the dynamical model and calculation
of fidelities can be found in Appendixes A and B.

By first artificially setting the Overhauser field to zero, in
Fig. 2(a) we show how the spin-one photon Bell state fidelity
F (1) can be optimized by tuning the external magnetic field.
We see that near-unity scattering fidelity is reached when
the external field is approximately the cavity-enhanced QD
linewidth, bext  �cav = 4g2/κ , as it is depicted in Fig. 1(c).
This ensures that an incoming photon has a high probability
of scattering off one of the two possible transitions while also
ensuring that they are adequately separated. In this regime,
the fidelity is limited by the finite bandwidth of the input
photon, since any off-center frequency components lead to
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FIG. 2. (a) One photon scattering fidelity F (1) with respect
to the ideal Bell state, (1/

√
2)(|x〉|φ+〉 − i|y〉|φ−〉), as function

of external magnetic field in the absence of Overhauser field
fluctuations. Blue solid lines correspond to a low Q-factor cavity
(κ = 103 ns−1, Q  2000); red dashed lines represent a high Q-
factor cavity (κ = 150 ns−1, Q  13000). Other parameters: t0 =
8/�cav, g = 15 ns−1, gh/ge = 0.2, η0/κ = 10−3 (10−2) for the low
(high) Q cavity and geμB�max

B = 0.2 ns−1. (b) FidelityF (1) including
nuclear spin noise as a function of the degree of nuclear spin
polarization. The external field has been tuned to the optimal value
found numerically in (a). Line styles represent parameters as in (a).
Circles and error bars indicate ensemble averages and (25%, 75%)
quantiles of the fidelity. (c) Fidelity F (2) with respect to the ideal
spin–two-photon state, obtained by scattering two photons on the QD
with a time delay of 3t0.

an unevenly weighted superposition in the scattered state.
In Figs. 2(b) and 2(c), we show the fidelities F (1) and F (2)

including the nuclear environment, shown as a function of
the nuclear environment polarization, ranging from maximally
unpolarized (�B = �max

B ) to the fully polarized (�B = 0)
regime, and for high (red, dashed curve) and low (blue, solid)
cavity Q factors, corresponding to QDs with broad and narrow
Purcell-enhanced transition lines. We see that even for an
unpolarized nuclear environment, fidelities of the two-photon
state are above 90% for Q = 13 000. Higher Q factors are
advantageous since they correspond to larger QD linewidths
and hence larger optimal external field strengths, which in
turn mean the strength of the external field relative to the
Overhauser field is greater. This results in increased stability of
the QD eigenstructure and purity of the QD-photon scattering
process, while also ensuring that the Overhauser field leads
only to fluctuations in the magnitude of the field.

We emphasize that the internal photon-QD interaction in
the protocol is in principle deterministic, with the quantum
efficiency being limited only by scattering of light into non-
cavity modes, which is heavily suppressed in moderate to high
Q cavities [17,19]. To obtain a purely polarization-entangled
state, however, it is necessary to erase the frequency degree
of freedom in |ψ (n)〉. This is an unavoidable consequence
of the state’s insensitivity to ensemble dephasing, and could
be achieved, for example, using fast single-photon detectors
[59,60] or ultrafast nonlinear frequency converters [51].

III. COMPARISON TO ALTERNATIVE PROTOCOLS

To benchmark our protocol, we compare it to three alterna-
tive existing schemes. The first scheme (Protocol A) is based
on coherent scattering of single linearly polarized photons on a
charged QD in the absence of an external field [31,32]. Using
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FIG. 3. Comparison of the present scheme with existing Protocols
A, B, and C described in the main text. (a) Ensemble-averaged
spin–one-photon Bell state scattering fidelity F (1) as in Fig. 2(b)
for protocol A (crosses) and for the present scheme [circles, already
shown in Fig. 2(b)]. Red and blue lines correspond to high and low
Q-factor parameters as in Fig. 2(b). (b) Ensemble-averaged photonic
state fidelity after spin projection as a function of time, assuming unit
scattering fidelity, shown for Protocols B (stars) and C (triangles).
Both show a rapid decay due to large spread of possible Overhauser
fields, while the present scheme (circles) is unaffected due to the form
of Eq. (1) which acquires only a global phase in time.

our noise model, we calculate the scattering fidelity of this
protocol in the presence of the same realistic nuclear spin
environment. The fidelity of generating the spin–one-photon
Bell state F (1) is shown in Fig. 3(a), where crosses indicate
values using Protocol A, and the circles correspond to values
using the present dephasing-resilient scheme [already shown
in Fig. 2(b)]. We see that the scattering fidelity of Protocol
A is generally low, reaching values close to unity only for
very high degrees of nuclear spin polarization. The reason
for this protocol’s sensitivity to dephasing processes can be
attributed to its lack of an external field, which leaves the QD
eigenstructure highly exposed to Overhauser field fluctuations.

The second alternative scheme we consider (Protocol B) is a
multiphoton extension of the schemes used in Refs. [43,50,51],
that use emission of a QD in an external in-plane field. This
protocol resembles the scheme we propose here, but with the
crucial difference that single-photon scattering in our scheme
is replaced by full π -pulse excitations followed by spontaneous
emission. While the magnetic field does ensure stability of the
spin eigenstructure and high scattering fidelity (unlike Protocol
A), the spectrally broad π pulses mean energy is not conserved
in all paths of the evolution. As we show in Appendix D,
the result is that the n-photon state contains terms which
acquire phases that depend on the fluctuating total effective
Zeeman energy bx = geμB(Bext + Bx

N) in different ways, and
the state therefore loses its phase coherence on a short T ∗

2 =√
2/(geμB�B) ∼ ns time scale, in much the same way as a

single electron spin. Fidelities of a two-photon state obtained
after excitation with two π pulses followed by spin projection
are shown in Fig. 3(b) with stars, where unit scattering fidelity
is assumed, and t represents time after spin projection. Also
shown with triangles is the corresponding two-photon state
fidelity for the linear cluster state generation proposal of
Ref. [33], Protocol C, again assuming unit scattering fidelity.
As in the case of Protocol B, this scheme is also sensitive
to ensemble dephasing of the electron spin. The form of
Eq. (1), however, ensures the present scheme does not dephase

by this mechanism, leading to coherence times well beyond
nanoseconds, as shown by the open circles.

In summary, we have presented a spin-mediated multipho-
ton entanglement protocol which is robust against slow Over-
hauser field fluctuations, meaning that coherence is limited to
the pure spin dephasing time T2 of microseconds, rather than
the inhomogeneous dephasing time T ∗

2 of nanoseconds. With a
suitable frequency eraser, the protocol can be used as a source
of high-fidelity three-photon GHZ states, which through linear
optical operations can be transformed to a universal quantum
resource for measurement-based quantum computing [52]. We
emphasize that no spin echo or nuclear polarization techniques
are necessary, and that optical excitation could be achieved
with readily obtainable weak coherent laser pulses, or instead
with narrow-band single photons for deterministic operation.
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APPENDIX A: DESCRIPTION OF MODEL

We consider a singly negatively charged quantum dot
(QD) in a one-sided cavity, which is driven by a polarized
weak optical pulse. The cavity field is resolved in two
orthogonal circular polarizations with mode operators a+
and a−, satisfying [aλ,a

†
λ′ ] = δλλ′ , [aλ,aλ′ ] = [a†

λ,a
†
λ′ ] = 0. We

assume that the cavity is resonant with the QD transition
at a frequency of ω0. Further, the cavity is coupled to
the optical electromagnetic environment, resolved in two
polarizations with mode operators bλq , where λ = ± denotes
the polarization and q denotes the mode index. As a basis
for the QD, we use the spin eigenstates projected along the
z direction, taken as the optical axis. For the charged ground
states, these are |↑〉 and |↓〉, while for the corresponding trion
states they are |⇑〉 and |⇓〉, denoting the heavy-hole spin states
with spin projection eigenvalues Jz = ±3/2. Due to isotropic
strain, the light holes with Jz = ±1/2 are split off from the
heavy holes by an energy, �LH, much larger than the linewidth
of the transition, and we can ignore them in the light-matter
interaction [61]. The QD is subject to a magnetic field, B in an
arbitrary direction described by the polar (azimuthal) angle, θ

(φ), and with a magnitude of B. Moving to a frame rotating
with the resonance frequency, ω0, the total Hamiltonian can be
written as Ĥ (t) = H0(t) + HB + H 0

EM + HI
EM, with (h̄ = 1)

H0(t) = η(t)e†inA + g�†A + H.c.,

HB = μBB · (geSe − ghSh),

H 0
EM =

∑
λq

(ωq − ω0)b†λqbλq,

H I
EM =

∑
λq

gqbλqa
†
λ + H.c., (A1)
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where A is the polarization-resolved vectorial mode operator
(a+,a−)T, � = (|↑〉〈⇑|,|↓〉〈⇓|)T is the spin-resolved QD tran-
sition operator, g is the QD-cavity coupling rate, μB is the Bohr
magneton, ge (gh) is the electron (hole) Landé factor, Se (Sh) is
the vectorial spin operator for the electron (hole) subspace, ωq

is the frequency of the qth environmental mode, and gq is the
coupling rate between the cavity and the qth environmental
mode. The pulse envelope, η(t), is taken to be Gaussian,
η(t) = η0 exp[−(t/t0)2], and ein the input polarization Jones
vector in the circular basis.

To write down a practical form of HB, we use the spin
eigenstates as a basis. For the electron spin in the ground-
state manifold, we use the Zeeman eigenstates determined
by the direction of the magnetic field, |φ+〉 = cos θ/2|↑〉 +
eiφ sin θ/2|↓〉, |φ−〉 = e−iφ cos θ/2|↑〉 − sin θ/2|↓〉. As for
the trion spin, treating the magnetic-field interaction pertur-
batively to first order in the parameter μBghB/�LH, the light-
and heavy-hole manifolds remain uncoupled. The heavy-hole
eigenstates are then |⇓〉 and |⇑〉 with associated energies
±3/2μBghB cos θ . In this basis, HB takes the form

HB = −3

2
g̃hb cos θ (|⇑〉〈⇑| − |⇓〉〈⇓|)

+ b

2
(|φ+〉〈φ+| − |φ−〉〈φ−|), (A2)

with b = μBgeB and g̃h = gh/ge.
The interaction with the electromagnetic environment can

be simplified by applying a standard Born-Markov approxi-
mation, corresponding to assuming a flat spectral density over
the relevant frequency range [62]. With this approximation
and neglecting the environmentally induced Lamb shift, the
perturbative master equation treating HI

EM to second order is
ρ̇(t) = L(t)ρ(t) with L(t) the time-dependent Liouvillian,

L(t) = −i[H0(t) + HB, · ] + κ
∑
λ=±

(
aλ · aλ − 1

2
{a†

λaλ,·}
)

,

(A3)

where κ is the cavity dissipation rate. This master equation
can be solved numerically to obtain the time evolution of the
density operator [63].

The polarization resolved reflected output modes, ξλ,
can be calculated from the cavity mode using input-output
theory [64] as ξλ(t) = ie†λein

η(t)
κ

+ e†λA with eλ the Jones
polarization vector describing the polarization mode λ. The
H and V polarizations are described by the Jones vectors
eH = 1√

2
(1,1)T, eV = 1√

2
(1, − 1)T.

APPENDIX B: FIDELITY MEASURES

With the full-time evolution of the cavity-QD density
operator, ρ(t), at hand, we can calculate any properties of
the system. In particular, we can calculate the fidelity of the
composite state consisting of the polarization of scattered light
and the internal spin state of the QD. However, this fidelity
cannot be evaluated directly from the time-resolved density
operator. Care must be taken, because the light polarization
must be defined in terms of the reflected light from the cavity,
described by the output field operators, ξH (t) and ξV (t).

First, we consider a single photon scattered on the QD. In
general, the two-qubit space spanned by the QD spin and
the polarization of the scattered photon can be described
by the basis B(1) = {|Hφ+〉,|V φ−〉,|Hφ−〉,|V φ+〉}, with the
superscript (1) signifying that the space spans the polarization
of one photon and the QD spin. We denote the true density
matrix of the postscattering state of the single-photon–spin
system in this basis by ρ(1). We denote by χ (1) the ideal
density operator corresponding to the pure state |ψ (1)

pure〉 =
α|Hφ+〉 + β|V φ−〉. In the basis B(1) it takes the form

χ (1) =

⎛
⎜⎜⎜⎝

|α|2 αβ∗ 0 0

α∗β |β|2 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠. (B1)

The fidelity between two density operators, ρ1 and ρ2, takes
the form F12 = tr(ρ1ρ2), if at least one of the density operators
is pure. In our case, χ (1) is pure and we may write the fidelity
as

F (1) = |α|2ρ(1)
11 + |β|2ρ(1)

22 + 2 Re
{
αβ∗ρ(1)

21

}
, (B2)

which shows that we only need to calculate four matrix
elements of ρ(1) to evaluate the fidelity. To evaluate these
matrix elements, we define the joint spin-polarization ex-
pectation values 〈SPλ

P ′λ′ 〉 = ∫
dt〈ξ †

P (t)ξP ′(t)σλλ′(t)〉/N (1) with
Mλλ′ = |φλ〉〈φλ′ | the input intensity normalization N (1) =∫ ∞
−∞ dtξ ∗

in(t)ξin(t) = √
π/2η2

0t0/κ
2, obtained using ξin(t) =

iη(t)/κ . This normalization accounts for the fact that we model
the incoming photon as a weak coherent pulse. We then find
that the F (1) can be calculated as

F (1) = |α|2〈SH+
H+

〉 + |β2|〈SH+
V −

〉 + 2 Re
[
α∗β

〈
SV −

V −
〉]
.

Now we shall consider the scattering of a second photon on
the cavity after some time, τ . In Appendix C, we calculate the
explicit state, but here we shall simply use the general form
for the ideal scattered state∣∣ψ (2)

pure

〉 = α|H1H2φ+〉 + β|H1V2φ−〉
+ γ |V1H2φ−〉 + δ|V1V2φ+〉, (B3)

with corresponding density operator χ (2) = |ψ (2)〉〈ψ (2)|. Note
that the coefficients α and β are not those entering χ (1). In
analogy with the single-photon scattering case, we shall denote
the true postscattering density operator by ρ(2). The fidelity
becomes

F (2) = |α|2〈SHH+
HH+

〉 + |β|2〈SHV −
HV −

〉 + |γ |2〈SV H−
V H−

〉
+ |δ|2〈SV V +

V V +
〉 + 2 Re

{
α∗β

〈
SHV −

HH+
〉 + γ ∗δ

〈
SV V +

V H−
〉

+ eibxτ
[
α∗γ

〈
SV H−

HH+
〉 + α∗δ

〈
SV V +

HH+
〉

+β∗γ
〈
SV H−

HV −
〉 + β∗δ

〈
SV V +

HV −
〉]}

, (B4)

with

〈
S

PQλ
P ′Q′λ′

〉 = 1

N (2)(τ )

∫
dt〈ξ †

P (t)ξ †
Q(t + τ )

× σλλ′ (t + τ )ξQ′(t + τ )ξP ′(t)〉
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and

N (2)(τ ) =
∫ ∞

−∞
dtξ ∗

in(t)ξ ∗
in(t + τ )ξin(t + τ )ξin(t)

= 1

κ4

∫ ∞

−∞
dt |η(t)|2|η(t + τ )|2.

Due to the symmetries of the proposed protocol as described
in the main text, the fidelity turns out to be independent of the
photon separation time, τ .

APPENDIX C: MULTIPHOTON ENTANGLEMENT
STRUCTURE

1. Unitary dynamics

The interaction between a string of n photons and the QD
can be entirely described by the unitary scattering operator,
U , describing the asymptotic composite state resulting from a
single-photon scattering event. To find U , we have numerically
calculated the postscattering state of four orthogonal initial
conditions using the methods described in Appendixes A and
B,

|H,ω0〉|φ+〉 U−→ 1√
2

(|H,ω0〉|φ+〉 − i|V,ω0 + bH 〉|φ−〉),

|V,ω0〉|φ+〉 U−→ 1√
2

(|V,ω0〉|φ+〉 − i|H,ω0 + bH 〉|φ−〉),

|H,ω0〉|φ−〉 U−→ 1√
2

(|H,ω0〉|φ−〉 + i|V,ω0 − bH 〉|φ+〉),

|V,ω0〉|φ−〉 U−→ 1√
2

(|V,ω0〉|φ−〉 + i|H,ω0 − bH 〉|φ+〉).

(C1)

To establish the full unitary operator, we would need to find the
evolution of initial conditions with photon frequencies ω0 ± b

as well. However, to this end we are only interested in the
scattering dynamics of photons resonant with the zero-field QD
transition at ω0. In particular, when restricting the discussion
to H -polarized input photons, we only need to know how U

works on |H,ω0〉|φ±〉. We then write the total scattered state
as

|ψ (n)〉 =
⎛
⎝∏

j

Uj

⎞
⎠|H,ω0〉1 · · · |H,ω0〉n|φ+〉, (C2)

where Uj acts on the j th photon and the QD. In particular,
for two photons, we obtain the state in Eq. (1) of the main
text. Generally speaking, the n-photon entangled state has
the form |ψ (n)〉 = 1√

2
(|n,+〉|φ+〉 + |n,−〉|φ−〉). Here, |n,+〉

contains all superpositions of polarization permutations with
an even number of y-polarized photons, where each term in
the superposition has a total photonic energy of nω0. Similarly,
|n,−〉 contains all terms with an odd number of y-polarized
photons and all terms have a photonic energy of nω0 + bx .

2. Entanglement structure of spin-multiphoton state

If we assume that the photon frequency degree of freedom is
erased and can be factored out of the remaining state, the gener-

ating scattering transformation, (C1), becomes nonunitary and
takes the form Gj = 1√

2
(1QD ⊗ 1j − YQD ⊗ Xj ), with YQD =

i(|φ−〉〈φ+| − |φ+〉〈φ−|) and Xj = |H 〉〈V |j + |V 〉〈H |j . Us-
ing this form of the scattering operator, we can write down the
n-photon–spin entangled state. To do so, we change notation by
defining the computational basis for the photon polarization
as |H 〉k = |0〉k, |V 〉k = |1〉k and |φ+〉 = |0〉, |φ−〉 = |1〉 for
the QD spin. The ket subscripts k = 1, . . . ,n shall be used
for the photonic qubits, while k = 0 denotes the spin qubit.
We shall use ik ∈ {0,1} to denote the value of a qubit in the
computational basis, i = (i1, . . . ,im) denotes an m-bitstring,
and |i〉S the corresponding state with respect to the qubits
in the ordered set S. Further, we shall neglect normalization
factors for ease of notation. The n-photon scattered state can
then be written as

|ψ (n)〉 =
∏
j

Gj |0, . . . ,0〉{0,...,n}

= |0〉0

∑
i∈Se(n)

|i〉{1,...,n} − i|1〉0

∑
i∈So(n)

|i〉{1,...,n}, (C3)

with Se(n) = {|i1, . . . ,in〉|
∑

k ik = 2m,m ∈ N} and So(n) =
{|i1, . . . ,in〉|

∑
k ik = 2m + 1,m ∈ N}. By singling out the

kth, lth, and mth photonic qubits from the sums, we can rewrite
this state as

|ψ (n)〉 = |c′
+〉klm|R+〉 + |c′

−〉klm|R−〉, (C4)

with the k,l,m-qubit states |c′
+〉 = |000〉 + |110〉 + |011〉 +

|101〉, |c′
−〉 = |001〉 + |111〉 + |010〉 + |100〉 and the residual

qubit states

|R+〉 = |0〉0

∑
i∈Se(n−3)

|i〉{1,...,n}\{k,l,m}

− i|1〉0

∑
i∈So(n−3)

|i〉{1,...,n}\{k,l,m},

|R−〉 = |0〉0

∑
i∈So(n−3)

|i〉{1,...,n}\{k,l,m}

− i|1〉0

∑
i∈Se(n−3)

|i〉{1,...,n}\{k,l,m}. (C5)

The states |c′
±〉klm are local unitary equivalent to three-qubit

linear cluster states, which are local unitary equivalent to
three-photon GHZ states [65]. This is seen by applying
the Hadamard transformation,H = |0〉〈0| + |1〉〈0| + |0〉〈1| −
|1〉〈1| to the lth photon, Hl|c′

±〉{klm} = |c±〉{klm}, where |c±〉
are the two orthogonal cluster states |000〉 ± |111〉 + |100〉 ∓
|110〉 + |001〉 ∓ |011〉 + |101〉 ± |111〉. From this form, we
can easily calculate all single-qubit reduced density operators,
which all take the form ρk = 1. Furthermore, we can calculate
the two-qubit reduced density operators, which for two pho-
tonic qubits, kl, take the form ρkl = |B1〉〈B1| + |B2〉〈B2| with
the two Bell states |B1〉 = |00〉 + |11〉, |B2〉 = |01〉 + |10〉.
Two-qubit reduced density operators involving the spin qubit
take the similar form ρ0k = |B′

1〉〈B′
1| + |B′

2〉〈B′
2| with the

rotated Bell states |B′
1〉 = |00〉 − i|11〉, |B′

2〉 = |01〉 − i|10〉.
From these reduced density operators, we can show that the
generated state is not local unitary equivalent to a linear cluster
state for more than three qubits. This is due to the necessary
condition for local unitary equivalence that all reduced density
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operators must also be local unitary equivalent [66]. Since for
a linear cluster state with more than three qubits there exist
indices kl such that ρkl = 1, the two states cannot be local
unitary equivalent.

However, from (C4), we can infer that performing local
projective measurements on any n − 3 photons and the spin in
the computational basis leaves the remaining three photons
in an entangled state that is local unitary equivalent to a
three-qubit GHZ or linear cluster state. This also holds in
the particular case where there are only three photons in the
scattered state, and a projective measurement is performed
on the spin. A similar series of local measurements on n − 2
photons and the spin leaves the remaining two photons in a Bell
state, which is maximally entangled. Since these properties do
not depend on the indices of the photonic qubits, we infer that
the localizable entanglement is maximal and the entanglement
length is infinite [67].

APPENDIX D: ANALYSIS OF PROTOCOL B

A protocol very similar to the one proposed in the main
text has been used for generation of entanglement between a
single photon and a QD [43,50,51]. Here, the QD is initialized
in the |φ+〉 ground state and excited to 1√

2
(|⇑〉 + |⇓〉) by

an H -polarized π pulse resonant with the transition |φ+〉 ↔
1√
2
(|⇑〉 + |⇓〉) at ω0 − bx/2. As this state decays, a photon is

emitted, which is entangled with the spin of the QD,

|ψ (1)〉 = cH |H,ω0 − bx/2〉1|φ+〉+cV |V,ω0 + bx/2〉1|φ−〉,
(D1)

with |ci |2 = 1/2. This state is protected against dephasing,
because both terms in the superposition have the same total
energy of ω0. To add a second photon to the state, the QD is
excited again. This time, we have to use a two-color π pulse,
because the QD is in a superposition of the two ground states.
Immediately after the excitation, the system is in the state

cH |H, − bx/2〉1
|⇑〉 + |⇓〉√

2
+ cV |V, + bx/2〉1

|⇑〉 − |⇓〉√
2

,

(D2)

where we have transformed to a frame rotating with ω0. As
the QD decays, the state becomes

|ψ (2)〉 = cHH |H,−bx/2〉1|H,−bx/2〉2|φ+〉
+ cHV |H,−bx/2〉1|V,+bx/2〉2|φ−〉
+ cV H |V,+bx/2〉1|H,+bx/2〉2|φ−〉
+ cV V |V,+bx/2〉1|V,−bx/2〉2|φ+〉, (D3)

with |cαβ |2 = 1/4 Here, the two first terms have an energy of
−bx/2, whereas the two last terms have an energy of +bx/2. In
the time until the next excitation event, τ , the state will evolve

freely. Recalling that bx = bx
ext + bx

N, the time evolution is

|ψ (2),τ 〉 = e+i(bx
ext+bx

N)τ/2[cHH |H, − bx/2〉1|H, − bx/2〉2|φ+〉
+ cHV |H, − bx/2〉1|V, + bx/2〉2|φ−〉]
+ e−i(bx

ext+bx
N)τ/2[cV H |V,+bx/2〉1|H,+bx/2〉2|φ−〉

+ cV V |V, + bx/2〉1|V, − bx/2〉2|φ+〉]. (D4)

The fidelity with respect to |ψ (2)〉 is |〈ψ (2)|ψ (2),τ 〉|2 =
1
2 {1 + cos[(bx

ext + bx
N)τ ]}. On performing an ensemble average

over the weight distribution of the Overhauser field, the fidelity
becomes F = 1

2

∫ ∞
−∞ dbx

Nw(bx
N; δb){1 + cos[(bx

ext + bx
N)τ ]} =

1
2 {1 + e−(τ/T ∗

2 )2
cos(bx

extτ )}, with T ∗
2 = √

2/(geμB�B). Such
dephasing processes will take place between all of the follow-
ing excitation events. The time between excitations is limited
by the lifetime of the QD, and if we assume that this is much
shorter than the coherence time, T ∗

2 , we may neglect dephasing
between excitations for a few photons. However, after spin
projection, the photonic state will be subject to dephasing of
the same nature. Measuring the spin in the basis {φ+,φ−}
leaves the two emitted photons in either of the two states:

|ψ (2)
+ 〉 =

√
2 〈φ+|ψ (2)〉

=
√

2[cHH |H, − bx/2〉1|H, − bx/2〉2

+ cV V |V, + bx/2〉1|V, − bx/2〉2],

|ψ (2)
− 〉 =

√
2 〈φ−|ψ (2)〉

=
√

2[cHV |H, − bx/2〉1|V, + bx/2〉2

+ cV H |V, + bx/2〉1|H, + bx/2〉2]. (D5)

After the projective measurement, the states evolve as

|ψ (2)
+ ,t〉 =

√
2 〈φ+|ψ (2)〉

=
√

2[cHHe+i(bx
ext+bx

N)t |H, − bx/2〉1|H, − bx/2〉2

+ cV V |V, + bx/2〉1|V, − bx/2〉2],

|ψ (2)
− ,t〉 =

√
2 〈φ−|ψ (2)〉 =

√
2[cHV |H,−bx/2〉1|V,+bx/2〉2

+ cV H e−i(bx
ext+bx

N)t |V, + bx/2〉1|H, + bx/2〉2].

(D6)

The fidelity of these states with respect to the |ψ (2)
± 〉 is

f± = |〈ψ (2)
± |ψ (2)

± ,t〉|2. Since the outcome of the projective
spin measurement is |φ+〉 and |φ−〉 with equal probability,
the average fidelity is 1

2 (f+ + f−). When performing an
ensemble average over the Overhauser weight distribution, the
resulting fidelity is F (2) = 1

2

∫ ∞
−∞ dbx

Nw(bx
N; δb)(f+ + f−) =

1
2 {1 + e−(t/T ∗

2 )2
cos(bx

extt)}. In conclusion, the fidelity of the
photonic state after spin projection decays with a time scale
of T ∗

2 . This calculation can straightforwardly be extended to
cover the spin-projected three-photon state, yielding a fidelity
of F (3) = 1

8 {3 + 4e−(t/T ∗
2 )2

cos(bx
ext) + e−(2t/T ∗

2 )2
cos(2bx

ext)}.
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