
PHYSICAL REVIEW A 96, 062328 (2017)

Determination of any pure spatial qudits from a minimum number of measurements
by phase-stepping interferometry
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We present a proof-of-principle demonstration of a method to characterize any pure spatial qudit of arbitrary
dimension d , which is based on the classic phase-shift interferometry technique. In the proposed scheme a total of
only 4d measurement outcomes are needed, implying a significant reduction with respect to the standard schemes
for quantum-state tomography which require on the order of d2. By using this technique, we have experimentally
reconstructed a large number of states ranging from d = 2 up to 14 with mean fidelity values higher than 0.97.
For that purpose the qudits were codified in the discretized transverse-momentum position of single photons,
once they are sent through an aperture with d slits. We provide an experimental implementation of the method
based in a Mach-Zehnder interferometer, which allows one to reduce the number of measurement settings to four
since the d slits can be measured simultaneously. Furthermore, it can be adapted to consider the reconstruction
of the unknown state from the outcome frequencies of 4d − 3 fixed projectors independently of the encoding or
the nature of the quantum system, allowing one to implement the reconstruction method in a general experiment.
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I. INTRODUCTION

Determining the state of a quantum system is one of
the fundamental tasks in quantum information processing
and a recurrent problem in quantum mechanics [1]. In this
regard, quantum-state tomography provides a means of fully
reconstructing the density matrix which describes the state
of a quantum system. For typical quantum-state tomography
methods [2–5] the number of required measurement settings
(or outcomes) increases with the dimension of the system, d,
as d2, that makes difficult the treatment of high-dimensional
quantum systems. Therefore, as diverse applications of quan-
tum information can be enhanced by using a dimension greater
than two [6–10], there is a growing interest in estimating
d-level quantum systems (qudits) from a reduced number of
measurements.

With some a priori information of the unknown quantum
system, a reduction in the number of measurements is feasible.
For example, in the case of pure or nearly pure quantum states,
compressed sensing techniques allow one to obtain, with high
probability, the reconstruction of the state with a number
of measurements on the order of d(log d)2 [11,12]. This
technique works by randomly choosing a set of observables
and measuring their expectation values. Thus, it does not
provide an explicit measurement setup. Besides, the amount
of measurements is still far from optimal.

Flammia et al. [13] established that a measurement with
at least 2d outcomes is required to determine almost all (but
not all) pure states. Furthermore, they have also demonstrated
that 3d − 2 one-dimensional projectors are sufficient for
determining a generic pure state, with the exception of a set of
measure zero. This number increases if we want to distinguish
any two pure states. In such a case, a measurement with ∼4d

outcomes must be considered [14], or when restricting to
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projective measurements, at least four orthonormal bases are
required if d � 3, except maybe for d = 4, in which case it
is not known whether three bases would be sufficient [15].
However, the measurements do not provide a way of verifying
the purity assumption.

Recently, Goyeneche et al. [16] proposed a method to
determine an arbitrary pure state of any dimension by means
of projective measurements onto five fixed orthonormal bases,
resulting in a total of 5d measurement outcomes. They have
experimentally implemented the method for reconstructing
spatial qudits [17]. The measurement settings required for that
scheme could be interpreted as equivalent to a four-step phase-
shifting interferometry (PSI) between pairs of consecutive
slits. As it is well known PSI leads to the most accurate way
to measure the amplitude and phase distribution of a wave
front [18]. In these techniques controlled phase displacements
are introduced between the reference and the object beam;
then the wave front under test can be determined from the
interferograms corresponding to the different phase shifts.
The number of interferograms to be recorded, as the phase
is shifted, varies depending on the algorithm employed to
recover the phase distribution of the wave front. Typically,
four- or three-step algorithms are used.

In dimension d = 2, the connection between quantum-state
tomography and PSI was studied by Rebón et al. [19].
They showed that for this particular case the full quantum
tomography of any arbitrary qubit, pure or mixed, is equivalent
to a four-step PSI. In that work, a path qubit was codified as
the superposition state of a single photon occupying two arms
of a Michelson interferometer. The PSI was carried out by
obtaining the different interferograms between both paths with
one of them as the reference.

In this article we propose a quantum-state estimation
method, based on a three-step PSI algorithm, that allows one
to determine any pure spatial qudit of arbitrary dimension d

by means of a minimum number of measurements. In fact,
in our method the number of measurement bases is four,
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which is lower than the number of bases required in Ref. [16],
and, even more, it is consistent with the minimum number
of measurement outcomes reported in [13–15]. In Sec. II we
provide a complete description of the qudit estimation process
and point out how the measurements onto these four bases
are also sufficient for verifying the purity assumption of the
unknown state. In addition, for photonic qudits codified in the
transverse-momentum position of single photons, we provide
an experimental implementation of the method based on an
interferometer scheme. Our setup allows us to reduce the
number of measurement settings to only four, regardless of
the dimension d of the system. The results are presented and
discussed in Sec. III, before going into the conclusions.

II. METHOD

The encoding process of the d-dimensional quantum system
is performed in the discretized transverse momentum of single
photons once they are sent through an aperture with d slits
[20,21]. Such a pure state can be expressed as

|�〉 =
d−1∑
k=0

ck|k〉, (1)

where the c′
ks are the complex coefficients that represent the

complex transmission amplitude of each slit, and |k〉 denotes
the state of the photon passing through the slit k. These
coefficients can be explicitly written as ck = |ck|eiϕk , where
ϕk represents the argument of the complex number ck . For
reconstructing the quantum state of these systems we use one
of the slits as a phase reference and implement the three-step
PSI algorithm to find the phase of each of the remaining slits
with respect to the reference, that is, finding the argument
ϕk . The additional measurement of the intensity of each slit
allows the unambiguous reconstruction of the state up to an
arbitrary global phase and also gives us a way to certify
if the state is pure—or nearly pure—without any a priori
assumptions. The total number of measurement outcomes in
this method is 4d − 3 when the procedure is performed in an
adaptive way, or 4d in the case of fixed measurement settings.
Even more, the proposed experimental setup for reconstructing
spatial qudits has the advantage that each of the four sets of
d measurements corresponds to a single interferogram; thus,
using photon-counting cameras [22] instead of a pointlike
single-photon detection module (SPDM), d measurements can
be recorded in only one acquisition (i.e., only four pictures
are needed, in any dimension d, to determine the unknown
state). Nevertheless, the set of 4d − 3 quantum projectors to
be used in order to perform the tomographic process do not
depend on the particular encoding or the nature of the quantum
system and they could be applied in a completely general
setup.

Let us start by briefly describing the state preparation,
which is carried out by using the first part of the optical setup
sketched in Fig. 1. The light source is a HeNe laser that is
expanded, filtered, and collimated by the objective OBJ, the
spatial filter SF0, and the lens L1. To test the proposed method
at the single-photon level we inserted neutral-density filters to
highly attenuate the power of the laser beam to 0.005 nW. It
implies that, for an interferometer with a total length of 140

FIG. 1. Experimental setup for reconstructing pure spatial qudits.
Preparation: An expanded and collimated HeNe laser impinges onto
a phase-only LCoS modulator. In conjunction with the 4f processor
formed by the lenses L2 and L3 and the spatial filter SF1 the quantum
state is encoded in the planes π ′ and π ′′. Tomography: A lens Limg

on the image arm of the Mach-Zehnder interferometer images the
plane π ′ onto the output plane π ′′′. The lens in the Fourier arm, Lft,
performs the Fourier transform of the only slit that is not blocked by
the spatial filter SF2.

cm as in our case, less than one photon on average is present,
at any time, in the experiment. This source can be used to
mimic the single-photon qudit state given by Eq. (1), and, as is
usual in optical implementations of quantum-states estimation,
it is enough to test the feasibility of the proposed method
[23–25]. The beam that impinges on the spatial light modulator
(SLM) used to codify the slit states has approximately constant
amplitude and phase over the regions of interest (ROI) where
the slits are displayed. The method for codifying arbitrary
complex amplitudes of spatial photonic qudits was developed
for our group in previous works [26,27]. We briefly explain
here the main features of the method: Blazed phase gratings are
displayed onto each slit region. The real amplitude of the slit is
determined by the diffraction efficiency achieved through the
phase modulation of the grating. On the other hand, the desired
phase value is obtained just by adding an adequate constant
phase. The required pure phase modulation is provided by
a parallel-aligned liquid-crystal-on-silicon (LCoS) display
Holoeye PLUTO with HDTV resolution (1920 × 1080) and
pixel size of 8 μm. In our case the width of the slits is 10
pixels, and the separation between slit centers is 30 pixels. In
order to implement the mentioned codification we use a typical
4f processor conformed by lenses L2 and L3 (f0 = 20 cm).
The spatial period of the gratings displayed onto the slit
regions is 16 pixels, which is enough to select by means of the
spatial filter SF1 the first diffracted order. This optical setup
together with the nonpolarizing beam splitter BS1 allows one
to obtain on planes π ′ and π ′′ the desired complex amplitude
distribution.

The tomographic process employed to characterize the
d-dimensional spatial qudit is implemented by using the
Mach-Zehnder interferometer schematized in the second part
of Fig. 1. Let us call the image arm (IA) the one that contains
lens Limg. This lens in configuration 2f − 2f (fimg = 35 cm)
images the input state obtained on π ′ over the final plane π ′′′.
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FIG. 2. Interferogram for a state of dimension d = 5. The vertical
lighted bands correspond to the image of the five slits. The horizontal
lighted band corresponds to the Fourier transform of the filtered
slit in the FA of the interferometer, which acts as the reference.
The rectangles indicate the regions on which the measurements are
performed, and 0,1, . . . ,4 are the corresponding slit numbers.

Meanwhile the Fourier arm (FA) is the one that contains the
lens Lft in configuration f − f (fft = 70 cm), giving the exact
Fourier transform of plane π ′′ over π ′′′. The spatial filter SF2
(a slit of width 200 μm), placed on plane π ′′, blocks all but
one slit that acts as a reference. The resulting output is the
interference pattern between the complex amplitude of the d

slits and the reference. Finally, intensity measurements are
carried out by means of a high-sensitivity camera based on
complementary metal-oxide semiconductor (CMOS) technol-
ogy placed in π ′′′. The camera used is an Andor Zyla 4.2
sCMOS.

As an example, one of the interferograms obtained at the
output of the Mach-Zehnder interferometer for a qudit of
dimension d = 5 is shown in Fig. 2. The lighted bands in the
vertical direction correspond to the image of the five slits. The
lighted band in the horizontal direction is the Fourier transform
of the only slit that is not blocked by SF2 in the FA of the
interferometer. This is the slit that acts as the reference. The
drawn rectangles delimit the ROI on which the measurements
are performed.

It is important to note that a similar implementation of
the reconstructing method can be done with exactly the same
setup by using a SPDM which must be displaced over the
final plane π ′′′ in order to measure sequentially the counts
in the different ROIs. However, the use of high-sensitivity
cameras, which have increasingly become an interesting option
for single-photon detection in quantum optics experiments
[28–30], makes possible the completion of the measurement
stage by taking four snapshots, no matter the dimensionality
of the unknown spatial qudit. This is possible both due to the
proposed setup, which enables one to perform a simultaneous
detection of the d regions (see Fig. 2), as well as the selected
PSI scheme. In fact, a simultaneous measurement is not
possible using the set of measurement bases presented in [16]
since, in such a case, the tomographic process is equivalent
to a PSI scheme which requires the sequential interference of
contiguous slits; i.e., there is not a unique reference beam as
in our case.

We now proceed to analyze the tomographic reconstruction
method. In order to characterize the quantum state in Eq. (1)
it is necessary to know the complex amplitudes ck , i.e., the
amplitude and phase of the wave front just in the region of the
slit k. To this end we implemented the classical PSI technique
of three steps, involving successive phase shifts of π/2 that
were introduced in the reference arm of the interferometer
by means of the piezoelectric actuator, PZT. The recorded

intensities of the interferograms corresponding to the different
phase shifts can be described as [18]

I�(x,y) = I0(x,y)
{

1 + γ (x,y) cos
[
ϕ(x,y) − π

4
+ π

2
�
]}

,

� = 1,2,3, (2)

where (x,y) represents the transverse position in the output
plane π ′′′, I0(x,y) is the arithmetic sum of the intensity of the
light beams in each arm of the interferometer, ϕ(x,y) is their
relative phase, and γ (x,y) is the modulation of the interference
fringes. From these three interferograms it is possible to obtain
the relative phase of the object beam (IA) with respect to the
reference beam (FA) at every point of π ′′′:

ϕ(x,y) = tan−1

(
I3(x,y) − I2(x,y)

I1(x,y) − I2(x,y)

)
. (3)

In our case, the phase over each slit region should be a constant.
However, there exist slight variations (∼2%) mainly due to
inhomogeneities of the LCoS display used as SLM, so we have
taken as an argument of the coefficient ck in Eq. (1) the average
of the obtained phase, ϕk = ϕ(x,y), over the interference
region assigned to the slit k (see Fig. 2). It should be considered
that when applying the PSI algorithm the recovered phase is
not ϕk but ϕk − ϕ0. Hence, for reconstructing the quantum
state up to a global phase, we can always define the phase of
the reference slit, ϕ0, as zero. The modulus of the coefficients
c′
ks correspond to the square root of the slit intensities and can

be obtained just by blocking the reference arm and averaging
over the same ROI.

It is obvious that the slit selected as a reference, for a
given quantum state, must have a non-null intensity value. It
means that the presented algorithm fails when the quantum
state to be determined has a null coefficient c0. To prevent
such a case, a possibility is to first measure the intensity of
the d slits and obtain the modulus of each coefficient, |ck|;
then, the slit with the greater intensity value can be selected
as the reference and accordingly, the position of SF2 can be
adjusted. The drawback of this strategy is that the reference
must be redefined every time, which entails changing the filter
position and realigning the setup during the measurements. In
order to avoid that, which is experimentally inconvenient and
time consuming, we adopted an alternative possibility which
consists of adding an extra slit with maximum transmission
amplitude to be used as a reference, totaling d + 1 slits of
which only d are used to codify the state. Hence, we are
able to reconstruct arbitrary pure states without changing the
experimental configuration. Besides, with the addition of these
intensity measurements, we can distinguish between pure and
mixed states. Pure states are characterized by interference
patterns with maximum visibilities (bound to the ratio of
intensities between interfering beams) and denote maximum
coherence between any pair of slits, whose value can be easily
obtained from the set of measurement outcomes [18].

III. RESULTS AND DISCUSSION

To evaluate the viability of the method and the quality
of the proposed setup we performed the reconstruction of
a large number of pure states, taking as examples systems
of dimension d = 2 and d = 14. As a figure of merit, we

062328-3



PEARS STEFANO, REBÓN, LEDESMA, AND IEMMI PHYSICAL REVIEW A 96, 062328 (2017)

   0°   90° 270°

180°

135°

90°

45°

0°

0.985 0.99 0.995 1

FIG. 3. Bloch sphere showing the reconstruction fidelities of
1024 states uniformly distributed on the surface. The mean value of
the fidelity is F = 0.997, and the standard deviation is σF = 0.003.

calculated the fidelity F ≡ Tr (
√√

�ρ
√

�) between the state
intended to be prepared, �, and the density matrix of the
reconstructed state, ρ [31]. Ideally, F = 1. Figure 3 represents
the obtained fidelities for 1024 qubits (d = 2) uniformly
distributed in the surface of the Bloch sphere. The mean value
of the fidelity is F = 0.997, and the standard deviation is σF =
0.003. The histogram in Fig. 4 shows the occurrence of the
fidelities for 250 states of dimension d = 14 randomly chosen.
The average fidelity is F = 0.98, while the standard deviation
is σF = 0.01. In this high-dimensional case the mean fidelity
is only slightly lower than in the bidimensional case. A similar
behavior was observed for qudits of intermediate dimensions
not shown here. Then, the limitation of the experimental setup
for implementing the reconstruction method is the number
of slits that fall under the central diffraction pattern of the
reference slit. In order to verify the purity of the states we have
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FIG. 4. Histogram of the reconstruction fidelities for 250 random
states in d = 14. The mean value of the fidelity is F = 0.98, and the
standard deviation is σF = 0.01.

compared the actual visibility, obtained from γ (x,y), with the
expected value for a pure state that can be calculated from the
intensity measurements. We have observed that they overlap
within the experimental errors.

It is worth noting the relation between the classical PSI
steps and quantum projectors. For every slit k—which defines
the state |k〉 of the canonical base—except the reference, we
can define a set of three d-dimensional states

|�(k)
� 〉 = |0〉 + eiπ/2×(�−1/2)|k〉√

2
, � = 1,2,3, (4)

where |0〉 represents the reference slit, and k runs from 1 to
d − 1. These states show the same phase relation between the
reference and the target slit as the phase shifts introduced in
the three-step PSI. To each of these states we can associate
a projector P̂(k)

� = |�(k)
� 〉〈�(k)

� |. The outcome probabilities of
this set of projectors, p

(k)
� = 〈�|P̂(k)

� |�〉 = |〈�(k)
� |�〉|2, are

given by the following expression, totally analogous to those
described in Eq. (2):

p
(k)
� = |c0|2

2
+ |ck|2

2
+ Re{c0c

∗
ke

iπ/2×(�−1/2)}. (5)

With the knowledge of c0 ≡ +√
p0 > 0, which is obtained

from the probability |〈0|�〉|2 = p0, any ck is determined by
means of the expression

√
2c0c

∗
k = (

p
(k)
1 − p

(k)
2

) + i
(
p

(k)
3 − p

(k)
2

)
. (6)

Thus, the measurement outcomes of these 3(d − 1) projectors,
in addition to a previous measurement onto the canonical base
{|k〉}d−1

k=0 , are enough to determine any pure state and certify
the a priori assumption of purity. As these projectors do not
depend on the nature of the quantum system, the tomographic
scheme is not restricted to the present setup and it can be in
principle implemented for general quantum systems.

IV. CONCLUSION

Summarizing, we have presented a method that reduces to
a minimum the number of measurements for reconstructing
all pure quantum states of arbitrary dimension d. For this
tomographic scheme the outcome probabilities of a total of
4d − 3 projectors are needed, from which we can also certify
if the quantum system is actually in a pure state. Moreover,
in the particular case of spatial qudits, we propose and
implement an experimental setup that enables us to perform
this method in a nonadaptive way and reduce the number
of measurement outcomes to only four, independently of the
dimension d of the states to be characterized. We have observed
a quite good performance of our implementation at least up to
dimension d = 14, with mean fidelities between the expected
and reconstructed states higher than 0.97 in any case.
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