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The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their
development an aspirational goal for quantum machine learning and quantum computing in general. Here we
provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides
additional approaches for training quantum neural networks that compare favorably to existing methods. We
further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that
further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable
of this. This verifies the long-conjectured connection between tomography and quantum machine learning.
Finally, we prove that classical computers cannot simulate our training process in general unless BQP = BPP,
provide lower bounds on the complexity of the training procedures and numerically investigate training for small
nonstoquastic Hamiltonians.
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I. INTRODUCTION

Quantum machine learning is formed out of the confluence
of machine learning and quantum computation. The use of
quantum computing allows speed-ups and improved models
for data in machine learning algorithms such as support vector
machines [1], nearest-neighbor classification [2,3], boosting
[4,5], and many others [6–9]. Artificial neural networks play a
prominent role in machine learning because of their wide array
of application. Their quantum counterparts are a much newer
concept with open questions about efficient learning methods,
computational power, and utility.

Here we present several training methods for a class of
fully quantum neural networks known as quantum Boltzmann
machines. Our work firmly establishes a connection between
quantum neural net training and quantum state estimation,
which is colloquially referred to as tomography. Assuming
an approximation of a Gibbs state for the Hamiltonian in
question can be prepared efficiently, we show that training
quantum analogs of Boltzmann machines can be used to
estimate quantum states efficiently.

The Boltzmann machine is a physically motivated neural
network capable of generating new examples similar to the
training data [10]. The close connection to physical systems
has made Boltzmann machines a natural fit for quantum
annealing [11–13] and quantum computing [3], the latter
showing polynomial speed-ups relative to classical training
[14]. While these methods showed that quantum technologies
can train Boltzmann machines more accurately and at a
lower cost than classical methods, the question of whether
transitioning from an Ising model to a quantum model for the
data would provide substantial improvements remained open.

This question is addressed in Ref. [15], wherein a method
for training Boltzmann machines is provided that utilizes
transverse Ising models in thermal equilibrium to model data.
While such models are trainable and can outperform classical
Boltzmann machines, the training procedure proposed therein

suffers two drawbacks. First, the transverse field cannot be
learned from the classical data. These terms must be found
through brute force techniques, which makes finding the full
Hamiltonian much more difficult. Second, the transverse Ising
models considered are widely believed to be efficiently sim-
ulatable using quantum Monte Carlo methods and therefore
does not provide a clear quantum advantage.

Here we look at quantum Boltzmann machines (QBMs)
in a much broader context and investigate their performance
for models that are manifestly quantum. We introduce the
ability to learn the quantum terms of the model as well as
the classical ones and generalize the training set to include
quantum data sets. We show that these freedoms now allow
quantum Boltzmann machines to act as approximate cloners
for quantum states. That is, given exposure to enough copies of
a density operator, a QBM can be trained to produce copies of
an input state. This is a quantum analog of generative training
that cannot be replicated by classical Boltzmann machines. We
also provide numerical evidence that quantum Boltzmann ma-
chines are also more powerful than equivalently sized classical
Boltzmann machines for classical machine learning problems.

II. BOLTZMANN MACHINE

A Boltzmann machine represents data as a thermal state
of an Ising model Hamiltonian. The Hamiltonian is defined
on a graph where the vertices represent spins and edges
interactions between them. The vertices can be either visible
units, used as input and output, or hidden units, which provide
extra degrees of freedom for the model. The faithfulness of
this representation is measured by KL divergence. Formally,
the KL divergence quantifies the information loss occurred
if the distribution generated from the model Q replaces the
underlying distribution of data P :

DKL(P ‖Q) =
∑

i

Pi ln
Pi

Qi

. (1)
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The goal in training is to minimize DKL(P ‖Q), which is
equivalent to maximizing the log-likelihood

∑
i Pi ln Qi .

The generalization of Boltzmann machine training into
quantum setting is not unique. We propose two methods
that we refer to as POVM-based Golden-Thompson training
and state-based relative entropy training. The two approaches
present different quantum analogs of training set and objective
function. In the classical setting, the training set is a set of
vectors representing the data. The training set for QBM is
expected to include quantum data as well. This can be achieved
with a set of POVM or a density matrix. Another source of
ambiguity is the quantum objective function. Amin et al. in
Ref. [15] introduced a quantum version of log-likelihood and
an approximation to its gradient. We also propose training
using the relative entropy, which is a quantum equivalent of
KL divergence.

III. RELATIVE ENTROPY TRAINING

The relative entropy is the quantum equivalent of KL
divergence and as such represents a natural extension for
learning of quantum states. It is defined as

S(ρ‖σ ) = Tr(ρ ln ρ − ρ ln σ ), (2)

where ρ is the data distribution and σ = e−βH /Z is the thermal
state generated by QBM. This gives a generalization of the
training set for quantum data. We do not impose rules on the
structure of the Hamiltonian as far as it is a smooth function
of the parameters used to describe the Boltzmann model.

The objective function that we wish to maximize is

Oρ(H ; λ) = Tr

[
ρ ln

(
e−H

Tr[e−H ]

)]
, (3)

which is equivalent to minimizing S(ρ‖e−H /Tr[e−H ]). The
quantum terms can also be regularized by including a term
proportional to the sum of the squares of their coefficients to
Oρ . This penalizes quantum terms in Hamiltonians unless they
are needed to explain the data.

The derivatives of Oρ are

−Tr[ρ∂θH ] + Tr[e−H∂θH ]/Tr[e−H ]. (4)

Thus, we can systematically make the state generated by a
simulator of e−H /Z harder to distinguish from the state ρ by
following a gradient given by the difference between expecta-
tions of the Hamiltonian terms in the data distribution ρ and
the corresponding expectation values for e−H /Z. Oρ is moti-
vated by the fact that S(ρ||e−H /Z) � ‖ρ − e−H /Z‖2/2 ln(2)
if ρ is positive definite. Thus if ρ has maximum rank,
S(ρ||e−H /Z) → 0 implies e−H /Z → ρ.

There are two major advantages to this method. First, no
approximations are needed to compute the gradient. Second,
it directly enables a form of partial tomography wherein a
model for the state ρ is provided by the Hamiltonian learned
through the gradient ascent process. Note that this differs
from traditional quantum state tomography in that it does
not output an explicit representation of the state operator,
but instead it gives a prescription for a quantum process
that yields approximate copies of the state. This is further
interesting because our procedure is efficient, given that an

accurate and efficient approximation to the thermal state can
be prepared for H , and thus it can be used to describe states in
high dimensions such as ground states for complex molecules
that would be beyond the reach of standard tomography. The
procedure also provides an explicit procedure for generating
copies of this inferred state, unlike conventional tomographic
methods, which allows it to be used as a surrogate for QRAM
in quantum machine learning algorithms.

IV. GOLDEN-THOMPSON TRAINING

Generalization of classical Boltzmann training inspired by
Amin et al. seeks to find a quantum analog of average
log-likelihood L = ∑

v Pv ln Qv as in (1). The probability
Qi of observing |v〉 corresponding to a classical state on the
visible units can be translated to quantum setting as Qv =
Tr[e−H �v]/Tr[e−H ] where H is the Hamiltonian defining
the Gibbs state. The projector �v = |v〉〈v| ⊗ 1 corresponds
to visible units clamped to a training binary state v and the
training set is a set of such projectors.

The goal of this approach is to maximize the objective
function

O�(H ; λ) =
∑

v

Pv ln

(
Tr[e−Hv ]

Tr[e−H ]

)
, (5)

where Hv = H − ln �v . This approximation is a lower bound
on L and is tight when [H,�v] = 0.

While this objective function is unlikely to be generically
computable because the calculation of Tr[e−H ] is a #P-hard
problem, the gradients of the objective function are in practice
not hard to estimate. The components of the gradient ofO� are:∑

v

Pv

(
−Tr[e−Hv∂θH ]

Tr[e−Hv ]
+ Tr[e−H ∂θH ]

Tr[e−H ]

)
. (6)

Note that this training method does not allow gradients
to be computed for terms where Tr[e−Hv∂θH ] = 0. As a
consequence, Amin et al. in Ref. [15] were not able to use this
form of training to learn nondiagonal terms of the Hamiltonian.

Our contribution is the realization that POVMs provide the
natural way to express the training set for this type of training.
Our formalism avoids the problem of Tr[e−Hv∂θH ] = 0 by ex-
plicitly including POVM elements that are nondiagonal. This is
always possible for classical distribution because any classical
probability distribution over training vectors can be viewed
as the distribution of measurements over pure states. This
freedom grants us the ability to always pick nondiagonal terms.

As a clarifying example, consider the following training
set. Let us imagine that we wish to train a model that generates
even numbers between 1 and 16. Then a sensible training set
would be

�n = |2n〉〈2n| for 1 � n � 8

�0 = 1 −
8∑

n=1

�n, Pv = (1 − δv,0)/8. (7)

The following equivalent training set can also be used

�1 = 1
8 (|2〉 + · · · + |16〉)(〈2| + · · · + 〈16|),

�0 = 1 − �1, Pv = δv,1. (8)
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This ambiguity about the form of the training set reveals that
POVM for quantum Boltzmann training can be nontrivial even
when a single training vector is used. This allows us to choose a
POVM that circumvents problems faced when Tr[∂θHe−Hv ] =
0. The example of the transverse-Ising model considered in
Ref. [15] implicitly uses (7). The model expectation term in
the gradient of the transverse terms in this example satisfies
Tr[Xe−[H−ln(|n〉〈n|)]] = 0 with that choice, whereas if (8) were
used then Tr[Xe−[H−ln(�1)]] �= 0. Thus choosing the training
set (8) avoids the problems seen in Ref. [15].

Formally, we define the training set to be the following.
Let H := V ⊗ L be a finite-dimensional Hilbert space let V
and L be subsystems corresponding to the visible and latent
units of the QBM. The probability distribution Pv and POVM
� = {�v}, comprise a training set for QBM training if (i)
there exists a bijection between the domain of Pv and � and
(ii) the domain of each �v is H and it acts nontrivially only
on subsystem V .

V. COMPLEXITY ANALYSIS

With the expressions for the gradients of the training
objective functions in hand, we can now proceed to bound
the complexity of training the Boltzmann machine by gradient
ascent.

Let us start by explaining the cost model. We assume
that we have an oracle, FH (εH ), that is capable of taking
the weights and biases of the quantum Boltzmann machine
(or equivalently a parametrization of H ) and outputs the
state σ such that ‖σ − e−H /Z‖tr � εH for εH � 0. We
manifestly assume that the state preparation is not exact
because any computational model that grants the ability
to prepare exact Gibbs states for arbitrary Hamiltonians is
likely to be more powerful than quantum computing under
reasonable complexity theoretic assumptions. For relative
entropy training, we also assume that the training data ρ is
provided by a query to an auxiliary oracle Fρ . We cost both
oracles equivalently. Finally, we assume for POVM training
that the POVM elements can be prepared with a constant
sized circuit and do not assign a cost to implementing such
a term. We do this for two reasons. First, for most elementary
examples the POVM elements are very simple projectors and
are not of substantially greater complexity than implementing
a Hamiltonian term. The second is that incorporating a cost
for them would necessitate opening the black-box FH , which
would substantially complicate our discussion and force us to
specialize to particular state preparation methods.

The first result that we show is a lower bound based
on tomographic bounds that shows that quantum Boltzmann
training cannot be efficient in general if we wish to provide a
highly accurate generative model for the training data.

Lemma 1. The number of queries to Fρ , which yields
copies of rank r state operator ρ ∈ CD×D required to train an
arbitrary quantum Boltzmann machine using relative entropy
such that the quantum state generated by the Boltzmann
machine are within trace distance ε ∈ (0,1) of ρ, and with
failure probability �(1), is in �(Dr/[ε2 ln(D/rε)]).

Proof. The proof follows by contradiction. Since we have
assumed an arbitrary quantum Boltzmann machine we will
consider a Boltzmann machine that has a complete set of

Hamiltonian terms. If we do not make this assumption then
there will be certain density operators that cannot be prepared
within error ε for all ε > 0. Let us assume that ρ is rank D

if this is true then there exists H ∈ CD×D such that ρ ∝ e−H

because the matrix logarithm is well defined for such systems.
Now let us assume that ρ has rank less than D. If that

is the case then there does not exist H ∈ CD×D such that
ρ ∝ e−H , but ρ can be closely approximated by it. Let P0

be a projector onto the null space of ρ, which we assume is
D − r dimensional. Then let ρ̃ ∈ Cr×r be the projection of ρ

onto the orthogonal compliment of its null space. Since ρ is
maximum rank within this subspace, there exists H̃ ∈ Cr×r

such that ρ̃ ∝ e−H̃ . After a trivial isometric extension of H̃

to CD×D , we can then write ρ ∝ (1 − P0)e−H̃ (1 − P0). By
construction [H̃ ,(1 − P0)] = 0, and thus ρ ∝ (1 − P0)e−H̃ =
(1 − P0)e−(1−P0)H̃ (1−P0).

The definition of the trace norm implies that for any
γ > 0, ‖(1 − P0) − e−γP0‖1 ∈ O([D − r]e−γ ). Thus because
e−(1−P0)H̃ (1−P0)/Z has trace norm 1

ρ = e−γP0e−(1−P0)H̃ (1−P0)/Z + O([D − r]e−γ )

= e−(1−P0)H̃ (1−P0)−γP0/Z + O([D − r]e−γ ). (9)

Thus ρ can be approximated within error less than ε, regardless
of its rank, by a Hermitian matrix whose norm scales at
most as O(‖H̃‖ + ln(D/ε)). Thus for every ε > 0 there
exists a quantum Boltzmann machine with a complete set
of Hamiltonian terms that can approximate ρ within trace
distance less than ε using a bounded Hamiltonian.

Haah, Harrow et al. show in Theorem 1 of Ref. [16] that
�(Dr/[ε2 ln(D/rε)]) samples are needed to tomographically
reconstruct a rank r density operator ρ ∈ CD×D within error
ε in the trace distance. Since training a Boltzmann machine
can provide a specification of an arbitrary density matrix,
to within trace distance ε, if this training process required
o(Dr/[ε2 ln(D/rε)]) samples we would violate their lower
bound on tomography. The result therefore follows. �

Lemma 2. There does not exist a general purpose POVM-
based training algorithm for quantum Boltzmann machines
on a training set such that |{Pv : Pv > 0}| = N can prepare a
thermal state such that Tr([

∑
v Pv�v]e−H /Z) � 1/�, which

requires M queries to Pv where � ∈ o(
√

N ) and M ∈ o(
√

N ).
Proof. The proof is a reduction of Grover’s search to

Boltzmann training. We aim to use queries to the black-box
oracle to learn a white-box oracle that we can query to learn
the marked state without actually querying the original box.
To be clear, let us pick �0 = |0〉〈0| and P1 = 1 and for v > 1,
�v = |v〉〈v| with Pv = 0. These elements form a POVM
because they are positive and sum to the identity.

In the above construction the oracle that gives the Pv is
equivalent to the Grover oracle. This implies that a query to
this oracle is the same as a query to Grover’s oracle.

Now let us assume that we can train a Boltzmann machine
such that Tr(�0e

−H /Z) ∈ ω(1/
√

N ) using o(
√

N ) queries to
the black box. This implies that o(

√
N ) queries are needed

on average to prepare |0〉 by drawing samples from the BM
and verifying them using the oracle. Since the cost of learning
the BM is also o(

√
N ), this implies that the number of queries

needed in total is o(
√

N ). Thus we can perform quantum search
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under these assumptions using o(
√

N ) queries and hence
from lower bounds this implies o(

√
N ) ⊆ �(

√
N ), which is a

contradiction. �
The above lemmas preclude general efficient Boltzmann

training without further assumptions about the training data,
or without making less onerous requirements on the precision
of the BM model output by the training algorithm. This means
that we cannot expect even quantum Boltzmann machines to
have important limitations that need to be considered when
we examine the complexity of quantum machine learning
algorithms.

Theorem 1. Let H = ∑M
j=1 θjHj with ‖Hj‖2 = 1∀j be the

Hamiltonian for a quantum Boltzmann machine where for
notational simplicity the �v present in POVM-based training
are included into the Hamiltonian and that the thermal states of
all such models are accessed only through querying a quantum
subroutine FH (εH ) such that ‖e−H /Z − FH (εH )‖tr � εH . Fur-
ther let G be an approximation to ∇O where O is the training
objective function for either POVM based or relative entropy
training. If ε >

√
MεH then there exist training algorithms

that yield a gradient E(‖G − Gtrue‖2
2) � ε2 and query FH (εH )

and the training set

O

(
M

ε2 − Mε2
H

)

times per epoch.
Proof. We show the proof by considering the approximate

gradients given by the methods in the main body. The algorithm
estimates the gradient by sampling the expectation values of
local Hamiltonians in the approximate thermal states yielded
by FH (εH ). The true gradient is the vector of expectation value
of local Hamiltonians measured in the thermal state Gtrue =∑M

j=1 Tr(Hje
−H )/Z. Thus

E
(‖G − Gtrue‖2

2

)
=

M∑
j=1

E
((

Gj − G
j
true

)2)

=
M∑

j=1

E((Gj )2) − 2E
(
GjG

j
true

) + E
((

G
j
true

)2)

=
M∑

j=1

V(Gj ) + E(Gj )2 − G
j
true2E(Gj ) + (

G
j
true

)2

=
M∑

j=1

V(Gj ) + (
E(Gj ) − G

j
true

)2
. (10)

The expectation value of the gradient component E(Gj ) =
Tr(Hjσ ) where σ is approximation of the thermal state e−H /Z

such that ‖σ − e−H /Z‖tr � εH can be bounded using standard
properties of the trace norm as

‖Hje
−H /Z − σHj‖tr � ‖e−H /Z − σ‖tr‖Hj‖2 � εH . (11)

Thus |Gj
true − E(Gj )| � εH under the assumption that

‖Hj‖2 � 1 for all j .
For relative entropy training the variance can be estimated

V(Gj ) ∈ O( max{Tr(ρHj ),Tr(Hjσ )}) ∈ O(1/n), (12)

where ρ is the density matrix corresponding to the ensemble
of training vectors.

Similarly for POVM training

V(Gj ) ∈ O

(
max

{
Tr

(
Hj

∑
v

Pvσ

)
,Tr(Hjσ )

}/
n

)

∈ O(1/n). (13)

Note that in this context we have implicitly allowed the
POVM elements to be considered as Hamiltonian terms in
the Boltzmann machine. Thus we can prepare the clamped
Gibbs states e−Hv/Zv within trace distance εH using one query
to FH (εH ). Thus in both cases the sample variance of each
coordinate of the gradient vector has the same upper bound.

We can plug these results back into (10) and bound the error

E
(‖G − Gtrue‖2

2

)
� M

(
1

n
+ ε2

H

)
. (14)

Thus if we wish to take the overall variance to be ε2 it suffices
to take n = M/(ε2 − Mε2

H ). This also places a bound on the
precision of gradient estimation in terms of precision of the
density matrix preparation as ε >

√
MεH . �

While the above analysis provides an asymptotic upper
bound on the scaling of the number of state preparations
needed to estimate the components of the gradient within
constant error with respect to the max-norm. This gives the
complexity of performing one epoch of the training process.
However, we do not provide an estimate of the number of
epochs required for the algorithm to converge. This number
is unknown and depends sensitively on the training data, as
we show in previous Appendixes, as well as the learning
rate. Further work will be needed to provide good empirical,
and theoretical bounds, on the number of training epochs that
are needed in practice to train the Boltzmann machine within
constant error.

While the above result gives an estimate of the query
complexity of the algorithm, in order to assess the practicality
of the algorithm the cost of the Gibbs state oracle FH (εH )
needs to be discussed. Since the exact preparation is NP-hard,
one needs to rely on approximations such as contrastive
divergence [10] in the classical case. There are several pro-
posals for approximating a Gibbs state of a local Hamiltonian
notably in Refs. [17,18]. However, neither of these methods
can a priori be guaranteed to be efficient without making
promises about either the fidelity of the thermal state with an
efficiently preparable ansatz or without making assumptions
about the spectral gap of a Markov process that operates on
the qubits. We discuss properties of these methods in the
Appendix.

Alternatively, one can achieve an approximation of the
thermal state with a quantum annealer [11,15]. While it is
difficult to argue about how close the Gibbs state output by
such an annealer is to the true thermal state, such approaches
are significant because they allow our training algorithms to
be executed on present-day hardware.

Even if the gradient is efficiently computable the number
of training epochs required to learn H may be large. It is
difficult to bound the number of epochs, however, we provide
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FIG. 1. Absolute values of tomographic reconstructions of two-qubit Haar-random pure states and two-qubit mixed states formed out of a
uniform mixture of four Haar-random pure state operators using relative entropy training with η = 1.

below two lemmas that state the limitations of both relative
entropy training and POVM training by respectively reducing
tomography and Grover’s search to them.

These results show that in general we cannot expect
the number of training epochs to be polynomially large in
generality. However, we have no reason to suspect that either
problem is characteristic of the complexity of typical machine
learning tasks on a quantum computer. We provide numerical
evidence for this conjecture below.

VI. NUMERICAL RESULTS

We demonstrate the ability of quantum Boltzmann train-
ing to learn ensembles of two-qubit states that are either
Haar-random pure states or mixed states that are convex
combinations of columns vectors of Haar-random unitary
matrices with uniformly distributed weights. For simplicity,
we choose our Hamiltonian to consist of every two-qubit Pauli
operator. Since this set is complete, every possible state can be
generated using an appropriate Hamiltonian. We provide data
to this effect in Fig. 1, wherein as few as five training epochs

suffice to learn these states within graphical accuracy. We
provide further details of the error versus epoch tradeoff in the
Appendix. We next examine the performance of our algorithm
for generative training using a small number of visible and
hidden units and compare the result to classical training. Since
we can only simulate small quantum computers classically, we
choose a simple training set composed of step functions where
the step occurs at each possible value with 5% noise added to
each component of the vectors. For Golden-Thompson training
we use a fermionic Hamiltonian from [19] plus a particle
nonconservative term (see Appendix). This introduction of
Fermionic operators makes the Hamiltonian nonstoquastic and
thus hard to simulate using classical methods. Its detailed
form can be found in the Appendix. Taking �1 = |ψ〉〈ψ |,
�0 = 1 − |ψ〉〈ψ | for POVM training where |ψ〉 is a pure
state constructed in the above fashion.

The data in Fig. 2 shows that the quantum model consis-
tently outperforms the classical model in terms of accuracy. We
observe that increasing the number of hidden units gives the
classical methods a substantial advantage, but we do not notice
that adding hidden units substantially improves O� here. This
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(a) (b)

FIG. 2. Simulation of QBM with POVM training. We compare the difference between the optimal objective function and the computed
one. We are able to compute the objective function because of the small size of the QBM. (a) and (b) show �O� := O�, max − O� for (a) five
visible units and varying numbers of hidden units and (b) for all relative entropy training with all visible Boltzmann machines. We take λ = 0
for all data considered and maxO�, max is the maximum value of the training objective function attainable for the training data. In (a) we clearly
see an improvement for the QBM (q) compared to its classical counterpart (c). (b) depicts the performance of QBMs with no hidden units and
varied number of visible units.

is likely because the training data is sufficiently simple that the
fermionic Hamiltonian gives enough freedoms to fit the data
without the need for hidden units.

This data, along with further data in the Appendix, suggests
that fermionic QBMs may be superior models for data;
however, further study is needed to ensure that these models
do not overfit the data.

VII. BQP-HARDNESS

It is straightforward to show that if our Boltzmann machine
training algorithm were efficiently simulatable then classical
computers could solve a BQP-hard decision problem, meaning
that if a classical computer could simulate the protocol
efficiently then classical computers would have to be at least
as powerful as quantum computers. This strongly suggests
classical intractability of our algorithm. To see this let
{Hj } consist only of the Pauli-Z operator acting on the
zeroth qubit. Let U be an efficient quantum circuit that
solves a decision problem with probability at least 2/3 and
encodes the answer in the zeroth qubit. Finally, let ρ =
e−β(1−2U |0〉〈0|U †)/Tr(e−β(1−U |0〉〈0|U †)). We then have

F (ρ,U |0〉〈0|U †) = Tr(
√

ρ[U |0〉〈0|U †]
√

ρ)

= Tr(e−β(1−|0〉〈0|)|0〉〈0|)/Tr(e−β(1−|0〉〈0|)).

= 1

(2n − 1)e−β + 1
, (15)

which is at least
√

1 − ε2
H if

β � n ln(2) + ln

⎛
⎝ 1 − ε2

H(√
1 − ε2

H − 1
)2

⎞
⎠.

Since U is by construction an efficient circuit, it is clear
that U |0〉 provides an efficient εH approximation to ρ. The
computation of Tr(ρHj ) in this case corresponds to preparation

of the state U |0〉 and then measuring the zeroth qubit in
the computational basis within a prescribed error. Thus, if
we could perform Boltzmann training efficiently for every
{Hj } and ρ we could also approximate any efficient quantum
computation within bounded error probability. We thereby
conclude that quantum Boltzmann machine training cannot
be simulated classically, for arbitrary Hj , unless BPP = BQP.
Thus quantum Boltzmann training offers the potential for
exponential speedups relative to classical machine learning
methods.

VIII. CONCLUSION

We proposed an approach to training QBM and eliminate
the drawbacks presented by previous schemes. In particular,
we see that we can learn a full Hamiltonian through either
our POVM-based Golden-Thompson training approach or by
training according to the relative entropy. The latter approach
enables a form of partial tomography, which allows learning of
Hamiltonian models for complex quantum states that cannot
be probed using conventional tomographic approaches.

While our work demonstrates the viability of quantum
Boltzmann training for broad classes of nonstoquastic Hamil-
tonians, subsequent work will be needed to establish whether it
provides more generalized classical data than classical Boltz-
mann machines do. This will be necessary to understand the
extent to which quantum models are prone to overfit the data.

Since we require only approximations of Gibbs states and
computation of expectation values, these algorithms are near
ideally suited for near future experiments. Furthermore, unlike
many other proposals for machine learning that rely on QRAM,
this approach can potentially offer exponential advantages and
can be run on important problems using neural networks that
are composed of fewer than 1000 qubits [20].

Perhaps the most exciting avenue of future work is the
strong link between quantum state estimation and quantum
neural network training. We hope that combining ideas from
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quantum machine learning, quantum Hamiltonian learning,
and state estimation will lead to even more powerful and
efficient methods.
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APPENDIX A: PREPARING THERMAL STATES

An essential part of Boltzmann machine training is sam-
pling from the thermal distribution. Sadly, preparing the
thermal state is NP-hard. Classical algorithms circumvent
this problem by approximating it using contrastive divergence
[10]. Analogous quantum solutions have been proposed in
Refs. [14,18,21]. A high-precision approximation can be
obtained using the methods from Ref. [17].

The method of Chowdhury and Somma is strongly related
to the methods in Refs. [3,18,21]. The main difference
between these methods is that their approach uses an integral
transformation to allow the exponential to be approximated
as a linear combination of unitaries. These operators are
then simulated using Hamiltonian simulation ideas as well
as ideas from simulating fractional queries. The complexity of
preparing a Gibbs state ρ ∈ CN×N within error ε, as measured
by the 2-norm, is from [17]

O

[√
N

Z
polylog

(
1

ε

√
N

Z

)]
, (A1)

for inverse temperature β = 1 and cases where H is explicitly
represented as a linear combination of Pauli operators. This
is roughly quadratically better than existing approaches for
preparing general Gibbs states if constant ε is required, but
constitutes an exponential improvement if 1/ε is large. This
approach is further efficient if Z ∈ �(N/polylog(N )). This
is expected if roughly a constant fraction of all eigenstates
have a meaningful impact on the partition function. While
this may hold in some cases, particularly in cases with strong
regularization [3,14], it is not expected to hold generically.

An alternative method for preparing thermal states is
proposed by Yung and Aspuru-Guzik. The approach works
by using a Szegedy walk operator whose transition amplitudes
are given by the Metropolis rule based on the energy eigenvalue
difference between the two states. These eigenvalues are
computed using phase estimation. A coherent analog of the
Gibbs state is found by using phase estimation on the walk
operator, W , which follows these transition rules. The number
of applications of controlled W required in the outer phase
estimation loop is

O

[‖H‖2

ε
√

δ
ln

(‖H‖2

ε2

)]
, (A2)

where δ is the gap of the transition matrix that defines the
quantum walk, ε is the error in the preparation of the thermal
state. Since each application of the walk operator requires
estimation of the eigenvalues of H , this complexity is further
multiplied by the complexity of the quantum simulation.
Provided that the Hamiltonian is a sum of at most m one-sparse

Hamiltonians with efficiently computable coefficients then the
cost is multiplied by a factor of m ln(m)/ ln ln(m) to m2+o(1)

depending on the quantum simulation algorithm used within
the phase estimation procedure.

These features imply that it is not clear a priori which
algorithm is preferable to use for preparing thermal states.
For cases where the partition function is expected to be large
or highly accurate thermal states are required, Eq. (A1) is
preferable. If the spectral gap of the transition matrix is small,
quantum simulation is inexpensive for H and low precision is
required then Eq. (A2) will be preferable.

APPENDIX B: RELATIVE ENTROPY TRAINING

In this Appendix, we provide further numerical experiments
that probe the performance of quantum relative entropy
training. The first that we consider is in Fig. 3, which shows
the performance of this form of training for learning randomly
chosen two-qubit pure and mixed states. In particular, we
choose the pure states uniformly with respect to the Haar
measure and pick the mixed states by generating the eigenvec-
tors of Haar-random unitaries and choosing our mixed states
to be convex combinations of such states with weights that are
uniformly distributed.

We see from these experiments that the median performance
of relative entropy training on mixed states is quite good. The
quantum relative entropy is observed to shrink exponentially
with the number of training epochs. After as few as 35 training
epochs with η = 1, the error is limited by numerical precision.
However, a glance at the 95% confidence interval in this figure
reveals that many of the examples yield much larger errors than
these. Specifically after 60 epochs with the same learning rate
the 97.5th percentile of the data in Fig. 3 only has a relative
entropy of 10−5 and is decaying much slower than the median.

The origin of this problem can be seen from the plot of
the relative entropy for pure states in Fig. 3. Pure states are
observed to require many more training epochs to achieve the
same accuracy as highly mixed states. This is expected because
pure states are only possible in the limit as ‖H‖ → ∞. The
need to have large weights in the Hamiltonian not only means
that more epochs will be needed to allow the weights to reach
the magnitudes needed to approximate a pure state, but it also
means that the training landscape is expected to be much more
rough as we approach this limit. This is what makes learning
such pure states difficult. Similarly, the fat tails of the error
distribution for the mixed state case makes sense given that
some of the data will come from nearly pure states.

The narrowing of error bars in these plots can be understood,
approximately, from Levy’s lemma. Levy’s lemma states that
for any Lipschitz continuous function mapping the unit sphere
in 2N − 1 dimensions (on which the pure states in CN can
be embedded) the probability that f (x) deviates from its
Haar expectation value by ε is in e−O(Nε2). Thus if we take
f (x) = 〈x|σ |x〉, as we increase N we expect almost all initial
states x chosen uniformly at random according to the Haar
measure to have the widths of their confidence intervals in
O(1/

√
N ) ⊆ O(2−n/2), where n is the number of qubits. This

means that the we expect the width of the confidence intervals
to shrink exponentially with the number of qubits for cases
where the target state is pure. We do not necessarily expect
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FIG. 3. Distribution of quantum relative entropies between randomly chosen mixed (left) and pure (right) states as a function of the number
of training epochs for two- (top), - (middle), and -qubit (bottom) tomography with η = 0.025. Dashed lines represent a 90% confidence interval
and the solid line denotes the median.

similar concentrations to hold for mixed states because Levy’s
lemma does not directly apply in such cases.

When we consider relative entropy training, we note that the
value of the objective function seems to systematically grow

with the size of the Boltzmann machine. This is expected
because the complexity of the training data grows as we
increase the number of visible units. We see that qualitatively
that training continues to improve the value of the objective
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FIG. 4. Relative entropies and Hamiltonian errors for learning transverse Ising models. The left figure shows data for a TI Hamiltonian with
Gaussian random terms that is rescaled to unit norm. The right figure shows the analogous situation but without normalizing the Hamiltonian.
Here �H = ‖Htrue − Hest‖2.

function here and given the computational resources at our
disposal, we were unable to see the learning stop despite
training with the relative entropy objective rather than the
reported objective function O�.

APPENDIX C: APPLICATIONS TO HAMILTONIAN
LEARNING

In all of the above applications our aim is to learn a
Hamiltonian that parameterizes a thermal state model for the
training data. However, in some cases our aim may not be to
learn a particular input state but to learn a system Hamiltonian
for a thermalizing system. Relative entropy training then
allows such a Hamiltonian to be learned from the thermal
expectation values of the Hamiltonian terms via gradient
ascent and a simulator. Here we illustrate this by moving away
from a Hamiltonian model that is composed of a complete
set of Pauli operators, to a local Hamiltonian model that lacks

many of these terms. Specifically, we choose a transverse Ising
model on the complete graph:

H =
∑

j

αjZ
j +

∑
j

βjX
j +

∑
<i,j>

γi,jZ
iZj . (C1)

We then test the ability of our training algorithm to reconstruct
the true Hamiltonian given access to the requisite expectation
values.

Apart from the simplicity of the transverse Ising model, it is
also a useful example because in many cases these models can
be simulated efficiently using quantum Monte Carlo methods.
This means that quantum computers are not necessary for
estimating gradients of models for large quantum systems.

Figure 4 shows that the ability to learn such models depends
strongly on the norm of the Hamiltonian, or equivalently the
inverse temperature of the thermal state. It is much easier for
us to learn a model using this method for a high-temperature

(a) Thermal state for transverse Ising Model (b) Mean-field approximation

FIG. 5. Absolute value of mean-field approximations to the thermal state of a five-qubit random TI Hamiltonian where each Hamiltonian
term was chosen by sampling from a Gaussian with zero mean and unit variance at β = 1. The learning rate was taken to be η = 1 and 100
training epochs were used. (a) Thermal state for transverse Ising model. (b) Mean-field approximation.
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state than a low-temperature thermal state. The reason for this
is similar to what we observed previously. Gradient ascent
takes many steps before it can get within the vicinity of the
correct thermal state. This is especially clear when we note
that the error changes only modestly as we vary the number
of qubits, however, it changes dramatically when we vary the
norm of the Hamiltonian. This means that it takes many more
training epochs to reach the region where the errors shrink
exponentially from the initially chosen random Hamiltonian.
In cases where a good ansatz for the Hamiltonian is known,
this process could be sped up.

Mean-field approximations

Mean-field approximations are ubiquitous in condensed
matter physics. They are relatively simple to compute for some
quantum systems such as Ising models, but can be challenging
for fully quantum models. Here we provide a method to find
a mean-field Hamiltonian for a system given the ability to
compute moments of the density operator ρ. The approach
exactly follows the previous discussion, except rather than

taking Eq. (C1) we use

H =
∑

j

Hj ,

Hj := αjZ
j + βjX

j + γjY
j . (C2)

Our aim is then to find vectors, α, β and γ such that the
correlated state ρ is approximated by the uncorrelated mean-
field state:

ρ ≈ e−H /Z =
⎡
⎣∏

j

e−Hj

⎤
⎦/Z. (C3)

We see from the data in Fig. 5 that relative entropy training
on a thermal state that arises from a five-qubit transverse-Ising
Hamiltonian on a complete graph for 100 training epochs
yields a mean-field approximation that graphically is very
close to the original state. In fact if ρ is the TI thermal state and
σ is the mean-field approximation to it then Tr(ρσ ) ≈ 0.71.
This shows that our method is a practical way to compute a
mean-field approximation.
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FIG. 6. Median relative entropies for mean-field and true distributions for thermal states generated by transverse Ising models on the
complete graph with Gaussian random coefficients chosen with zero mean and unit variance for two (top left), three (top right), four (bottom
left), and five (bottom right) qubits and η = 1 was taken for each datum. Dashed lines give a 95% confidence interval.
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In order to assess how many epochs it takes in order to
converge to a good mean-field approximation, we see in Fig. 6
that after only a single training epoch, the median relative
entropy, over 1000 randomly chosen instances, approximately
reaches its optimal value. Furthermore, we note that the relative
entropy at which the system saturates tends to rise with the
number of qubits. This is in part due to the fact that the
Hamiltonian is on the complete graph and the weights are
chosen according to a Gaussian distribution. We therefore
expect more correlated Hamiltonians as the number of qubits
grows and in turn expect the mean-field approximation to be
worse, which matches our observations.

If we turn our attention to learning mean-field approxima-
tions to n-local Hamiltonians for n = 2, . . . ,5 we note that the
mean-field approximation fails both qualitatively and quan-
titatively to capture the correlations in the true distribution.
This is not surprising because such states are expected to
be highly correlated and mean-field approximations should
fail to describe them well. These discrepancies continue even
when we reduce the norm of the Hamiltonian. This illustrates
that the ability to find high-fidelity mean-field approximations
depends less on the number of qubits than the properties of the
underlying Hamiltonian.

APPENDIX D: COMMUTATOR TRAINING

Commutator training. A second approach to POVM train-
ing avoids the use of the Golden-Thompson inequality. The
idea behind this approach is to approximate the series in the
derivative of (5) as a commutator series using Hadamard’s
lemma. The derivative of exponential can be expressed using
the Duhamel’s formula

Tr[�v∂θe
−H ] = Tr

[∫ 1

0
�ve

sH [∂θH ]e(1−s)H ds

]
. (D1)

If �v commuted with H , then we would recover an expression
for the gradient that strongly resembles the classical case. In
general, the expectation value can be written as a commutator
series. In particular, if the Hamiltonian is a sum of bounded
Hamiltonian terms then we have Tr[Ce−H ] for

C := �v

(
∂θH + [H,∂θH ]

2!
+ [H,[H,∂θH ]]

3!
+ · · ·

)
. (D2)

Thus the gradient of the average log-likelihood becomes

∑
v

Pv

(
−Tr[e−H C]

Tr[e−H ]
+ Tr[e−H ∂θH ]

Tr[e−H ]

)
− λhθδHθ ∈HQ

.

(D3)

This commutator series can be made tractable by truncating
it at low order, which will not incur substantial error if
‖[H,∂θH ]‖ � 1. Commutator training is therefore expected
to outperform Golden-Thompson training in the presence of
L2 regularization on the quantum terms, but is not as broadly
applicable.

We see in Fig. 7 that for a fixed learning rate that the
gradients returned from a Golden-Thompson expansion are
inferior to those returned from a high-order commutator
expansion. This in turn illustrates the gap between the exact
gradients and Golden-Thompson gradients. We examine this

FIG. 7. Plot showing the efficacy of commutator training for all-
visible Boltzmann machines with four visible units. The top lines
depict training with Golden-Thompson at first and then switching to
commutator training where we see a sudden increase in accuracy. We
picked the parameters such that the commutator training is stable. The
bottom line (dotted) shows the performance of Golden-Thompson
training with optimized learning rate and momentum.

by performing Golden-Thompson trainings for an all-visible
Boltzmann machine with four visible units. We train for a
fixed number of epochs using the Golden-Thompson gradients
and then switch to a fifth-order commutator expansion. We
see a dramatic improvement in the objective function as a
result. This shows that in some circumstances much better
gradients can be found with the commutator method than with
Golden-Thompson; albeit at a higher price due to the fact that
more expectation values need to be measured.

A drawback of the commutator method is that we find
in numerical experiments that it is much less stable than
Golden-Thompson. In particular, commutator training does
not fail gracefully when the expansion does not converge
or when the learning rate is too large. This means that the
optimal learning rate for this form of training can substantially
differ from the optimal learning rate for Golden-Thompson
training. When we optimize the learning rate for Golden-
Thompson training we find that the training objective function
increases by a factor of roughly 1.5, falling in line with the
results seen using commutator training. This shows that while
commutator training can give more accurate gradients, it does
not necessarily require fewer gradient steps. In practice, the
method is likely to be used in the last few training epochs after
Golden-Thompson training, or other forms of approximate
training to reach a local optima.

APPENDIX E: ADDITIONAL EXPERIMENTS FOR
GENERATIVE TRAINING

While the numerics in the main body provided a glimpse of
the ability of Golden-Thompson and relative entropy training
to learn general Hamiltonian models, we provide a few
additional experiments here to look at the performance of the
training algorithm for different sizes of fermionic Boltzmann
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(a) (b) (c)

FIG. 8. (a) shows the value of the Golden-Thompson objective function in terms of Oρ for all-visible quantum Boltzmann machines with
Golden-Thompson POVM training and other parameters optimized for performance. In (b), we compare Boltzmann machines with four visible
units and different number of hidden units using POVM based training. (c) compares the convergence of training for relative entropy and
Golden-Thompson approaches.

machines. The Hamiltonian we consider is of the form

H = Hp + 1
2Hpq + 1

2Hpqrs, (E1)

where

Hp =
∑

p

hp(ap + a†
p), (E2)

Hpq =
∑
pq

hpq(a†
paq + a†

qap), (E3)

Hpqrs =
∑
pqrs

hpqrs(a
†
pa†

qaras + H.c.). (E4)

Here ap and a
†
p are Fermionic creation and annihilation

operators, which create and destroy Fermions at unit p.
They have the properties that a†|0〉 = |1〉, a†|1〉 = 0 and
a
†
paq + aqa

†
p = 1δpq. The Hamiltonian here corresponds to

the standard Hamiltonian used in quantum chemistry modulo
the presence of the nonparticle conserving Hp term.

We first examine the performance of the algorithm as a
function of the number of hidden units for a six visible unit
example in Fig. 8. We note here that while we can increase the

number of hidden units in the classical model to help improve
the objective function,

We see from Fig. 8 that the inclusion of hidden units
can have a dramatic improvement on the classical model’s
ability to learn. In the quantum case we see that even the
all-visible model outperforms each of the classical cases
considered. Adding a single hidden unit does substantially
help for a four visible unit model in the quantum case, but
additional hidden units do not provide the quantum Boltzmann
machine with much greater power for this training set. This
vindicates that the idea of deep learning still has a role for
these quantum models despite the fact that the POVM is a
projector onto a pure state and its compliment. However, the
lack of systematic improvements observed for larger instances
suggest that the correlations present in the training data can
be easily represented using the Hpqrs terms present in the
fermionic Hamiltonian, since the impact of such terms is
greatly diminished in the four visible unit case. More work
will be needed in order to systematically study the role that
hidden units play in deep learning for fermionic Boltzmann
machines and related models.

Lastly, we train the fermionic Boltzmann machine with
relative entropy training. Figure 8 shows that relative entropy
and Golden-Thompson perform similarly.
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