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Enhancing coherence of a state by stochastic strictly incoherent operations
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In this paper, we address the issue of enhancing coherence of a state under stochastic strictly incoherent
operations. Based on the /; norm of coherence, we obtain the maximal value of coherence that can be achieved
for a state undergoing a stochastic strictly incoherent operation and the maximal probability of obtaining the
maximal coherence. Our findings indicate that a pure state can be transformed into a maximally coherent state
under a stochastic strictly incoherent operation if and only if all the components of the pure state are nonzero
while a mixed state can never be transformed into a maximally coherent state under a stochastic strictly incoherent

operation.
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I. INTRODUCTION

Quantum coherence is a fundamental aspect of quantum
physics, describing the capability of a quantum state to
exhibit quantum interference phenomena. It is an essential
component in quantum information processing [1], and plays
a central role in emergent fields, such as quantum metrology
[2,3], nanoscale thermodynamics [4—6], and quantum biology
[7-10]. Recently, quantification of coherence has attracted
a growing interest due to the development of quantum
information science [11-45].

By following the approach that has been established for
entanglement resource [46,47], Baumgratz et al. proposed
a seminal framework for quantifying coherence [12]. It
comprises four conditions, the coherence being zero (positive)
for incoherent states (all other states), the monotonicity of
coherence under incoherent operations, the monotonicity of
coherence under selective measurements on average, and the
nonincreasing of coherence under mixing of quantum states.
The four conditions are fulfilled by a number of functionals of
states, such as the /; norm of coherence and the relative entropy
of coherence, which can be taken as coherence measures.
With these coherence measures, various topics of quantum
coherence, such as the relations between quantum coherence
and quantum correlations [18,29], the freezing phenomenon
of coherence [19,34], and the duality of coherence and path
distinguishability [14,26], have been investigated.

Quantum coherence is a useful physical resource in
performing quantum information processing tasks. When a
system is used to perform some task, it is often expected to
have a sufficiently large quantity of coherence. In practical
applications, we may need to enhance the coherence of a
state. This may not be a difficult problem if we do not restrict
the choices of operations, as there are many operations that
can increase the coherence of a state. However, it will be a
challenging topic if the operations are restricted to incoherent
operations.

Investigations on this topic have been started in Ref. [20],
where a coherence distillation procedure for pure states
under collective strictly incoherent operations was introduced.
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Recently, the coherence distillation of mixed states under
collective incoherent operations was addressed in Ref. [24]. It
shows that a state with a smaller quantity of coherence can be
asymptotically transformed into a state with a larger quantity
of coherence under collective incoherent operations. However,
the distillation procedure, as a scheme of enhancing coherence,
requires the copies of states to be sufficiently large, and needs
collective measurements on a large number of states, which
are often very delicate as they involve controlled interaction
among different particles. In the present paper, we consider
an alternative scheme of enhancing coherence of a state
under stochastic incoherent operations acting on a single state.
Similar schemes have been used to enhancing entanglement
of an individual pair of particles [48—50]. We here focus our
discussion on the widely used /; norm of coherence, and restrict
the operations to strictly incoherent operations, which are a
physically well-motivated set of free operations for coherence
and a strong candidate for free operations [38]. We will give the
maximal value of coherence that can be achieved for a state un-
dergoing a stochastic strictly incoherent operation and the
maximal probability of obtaining the maximal coherence.

The paper is organized as follows. In Sec. II, we present
some preliminaries. In Sec. III, we put forward the first
theorem, which gives the maximal value of coherence that
can be achieved by performing a stochastic strictly incoherent
operation on a state. In Sec. IV, we put forward the second
theorem, which gives the maximal probability of obtaining
a coherence-enhanced state with the maximal coherence. In
Sec. V, by applying the theorems to pure state and mixed
states, respectively, we further put forward two corollaries.
Section VI is a summary of our findings.

II. PRELIMINARIES

Let ‘H represent the Hilbert space of a d-dimensional
quantum system. A particular basis of H is denoted as {|i),
i =1,2,...,d}, which is chosen according to the physical
problem under discussion. Coherence of a state is then
measured based on the basis chosen [12]. Specifically, a state
is said to be incoherent if it is diagonal in the basis.

The coherence effect of a state is ascribed to the off-diagonal
elements of its density matrix with respect to the chosen basis.
An intuitive measure of coherence is the /; norm of coherence.
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If weuse p = Z;j j=1 Pij |i)(j| to represent a general state, the
/1 norm of coherence is defined straightforwardly by the sum
of absolute values of all the off-diagonal elements,

Cu(p) =Y _ lpijl- )
i#]
The /; norm of coherence is one of the most widely used
measures in the resource theory of coherence. It fulfills
0 < C;,(p) < d — 1. The upper bound is attained only for the
max1mally coherent state, which has the form of |
73 Zi:l €% i) with §; being real numbers.

To introduce the notion of stochastic strictly incoherent
operations, we first recall strictly incoherent operations. A
strictly incoherent operation is a completely positive trace-
preserving map, expressed as A(p) = Zn K, ,oK,L where the
Kraus operators K, satisfy not only ) K} K, = I but also
KnIK,i C 7 and KZIK,, Cc 7 for K, i.e., each K, as well
K; maps an incoherent state to an incoherent state. Here, 7
represents the set of incoherent states. There is at most one
nonzero element in each column (row) of K, and such a K,
is called a strictly incoherent Kraus operator.

With the aid of strictly incoherent operations, we may
introduce the notion of stochastic strictly incoherent opera-
tions. A stochastic strictly incoherent operation is constructed
by a subset of strictly incoherent Kraus operators. Without
loss of generality, we denote the subset as {K{,K>, ...,K}.
Otherwise, we may renumber the subscripts of these Kraus
operators. Then, a stochastic strictly incoherent operation,
denoted as A;(p), is defined by

> e KupK)
Tr( Loy KapKih)

where {K{,K>,...,K;} satisfies Z,f:l K,T,Kn < I. Similar
notions on stochastic operations can be seen in previous works
[25,51]. Clearly, the state As(p) is obtained with probability
P = Tr(Z,’;:l K,pK ,J{ ) under a stochastic strictly incoherent
operation Ay, while state A(p) is fully deterministic under a
strictly incoherent operation A.

It is known that a strictly incoherent operation does
not increase coherence of a state, i.e., C;,(A(p)) < Cr,(p),
and there is always Z PnCi () < Ci(p), where p, =
Tr(K, pKn) on = K,pK, /Tr(KnpKn) However, these rela-
tions do not prevent us from obtaining probabilistically a state
with larger coherence under a stochastic strictly incoherent
operation. Namely, it is possible to have C;, (As(p)) > C;,(p)
for a stochastic strictly incoherent operation Aj, although
Ci,(A(p)) < Ci(p) is always true for a strictly incoherent

max> -

As(p) = 2

operation A. In fact, some of p, = K,,,oKZ/Tr(K,,pK,J[),
obtained under a strictly incoherent operation with selective
measurements, may have a larger value of coherence than p. If
we pick out only those p, satisfying C(p,) > C(p) and discard
other p, with smaller C(p,), we may probabilistically obtain
a mixed state Zn Clon)=Clp) P ,o,,', WhiCh has 2'1 larger va.h.le of
coherence. Then, a desired state is obtained with probability P
under a strictly incoherent operation with selective measure-
ments. Therefore, we may enhance the coherence of a state by
a stochastic strictly incoherent operation.
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We are particularly interested in the maximal value of
coherence that can be achieved when a state undergoes a
stochastic strictly incoherent operation.

III. OPTIMAL COHERENCE ENHANCEMENT

We take the [; norm of coherence as our measure of
coherence. We aim to find the optimal coherence enhancement,
i.e., the maximal value of coherence that can be obtained by
performing a stochastic strictly incoherent operation on a state.

The state under consideration is denoted as p =
Zij 0ijli){jl. Based on it, we can define three matrices |p|, p4,

1
and p,7, where |p| reads [p|=Y; loylli)(jl. pu=
1

> piili)(i], and p, % is a diagonal matrix with elements,

1
-3 i if pi #0;
('odz)ii Pi 1 pii 7 3)
O, if Pii = 0.

Then, our main findings can be expressed as the following
theorems.

Theorem 1. The maximal value of coherence that can
be obtained by performing a stochastic strictly incoherent
operation on p reads

max Ci (A (9)) = A (0 olog ) =1, @)

where kmax(pd | ol ,od ) represents the largest eigenvalue of

the matrix pd |,o|,0d
We now prove the theorem.

First, we show that
t
K,pK
max C;, (—“0 L >, (5)

Ci,(As(p)) <
" Tr(K,pKn)

for any stochastic strictly incoherent operation defined as
Eq. (2), where K,, € {K|,K>, ...,K}. To this end, we rewrite
Eq. (2) as

L

=Y Pubn, 6)

n=1

Zi:l KmOKT
Tr( YL, KapK)

where p,=Tr(K,pK\)/Tr(>5,_, KnpKh) and p,=K, 0K}/
Tr(K,l,oK,;(). Note that K,l,oK,i is positive semidefinite and
therefore Tr(K, pKi) # 0 unless K, pK,i = 0. Since coher-
ence is nonincreasing under mixing of quantum states, we
have

L

L
Ci(As(p)) =G, (Z pnpn> <Y puCii(pn)
n=1

n=1

KnpK)
<maxC | —— |- 7
K Tr(K,pKp)

Equation (7) immediately leads to Eq. (5).
Second, we show that

T
K,.pK 1 _
max Cj, n—n}t <)\max(pd2|p|pd
K Tr(K,pKy)

(SIE

)—1. (8)
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To this end, we only need to show that for any strictly
incoherent Kraus operator K with KpK ' # 0, there is always

KpK'
Tr(KpKT)

Since there is at most one nonzero element in each column
(row) of a strictly incoherent Kraus operator, any K can
always be transformed into a diagonal form via an inco-
herent unitary matrix, which does not change the value of
Cll(KpKT/Tr(K,oKT)). Hence, without loss of generality, we
may let

) <dmax(0g 71010 7) =1 9

K = diag(ay,ay, ... ,aq), (10)
where a; are complex numbers. We then have
. ( KpK' ) Yo lailla;ll o]
Tr(KpKT) > lailpii
> laillajllpijl
- > lail?pii

We further introduce a vector, i.e., a column matrix, |¢) =

~1. 11

1
>(lar],lazl, ... ,la,])", which satisfies {(p|@) = 1.

1
2 lail?pii Pa
Hereafter, we use M’ to denote the transpose of matrix M. It
is easy to verify that

) = > laillalpijl

YoilailPpi
_1
where |p| = Zi’j loijlli)(jl, and p, * is defined by Eq. (3).
Indeed, by directly substituting the expressions of |¢), | p|, and
_1 _1 _1
p, > into {(plp, *1plp, *le), Eq. (12) can be obtained. Then,
Eq. (11) is written as

KpK't
Tr(KpK1)

_1 _1
{olog*[rlog* o (12)

) = tolos oloy o) 1. a3

_1 _1
Note that (¢|p, *|plp, *|¢) can be regarded as the av-

-1 -1
erage value of the matrix operator p, |p|pd With re-

spect to the Vector lp). There is ((p|pd |p|pd | ) <

max(pd |/0|;0d 2) where )\max(pd |,0|,0d 2) represents  the
largest eigenvalue of pd |,o|,od . Thus,
_1 _1
expression, C,(KpK'/Tr(KpK ") < Amax(py *1plog ) — 1,
i.e., Eq. (9), which naturally implies Eq. (8).
Third, we show that for any state p, there always exists a
strictly incoherent Kraus operator K’, which satisfies

K'pK" 1 1
€ (m) = hmac(og ' lolog ) — 1 (14)

we obtain the

To this end, we use |@max) = (©1,92,...,04)" to denote
the normalized elgenvector correspondmg to the largest
1

That is, Pd |P|Pd |‘PmaX>=

m.dx(pd 21 pl pd ~)|<,0,mx). Noting that every component of the
eigenvector corresponding to the largest eigenvalue of a
nonnegative matrix can be chosen to be nonnegative [52,53],
we can take all ¢; to be nonnegative numbers. With the help

elgenvalue of pd2|p|pd
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of |@max), it is easy to find a strictly incoherent Kraus operator
satisfying Eq. (14). For instance, such a strictly incoherent
Kraus operator can be taken as

K' = kU;,diag(a),aj, . .. .a)), (15)
where
a{ — m’ lf loll # 0’
' 0, if p;; =0,

U,y is an arbitrary incoherent unitary matrix, and k is a complex
number for guaranteeing K'' K’ < 1. In this case, we have

K'pK’ 1
C(W) e oo =1 a6

. 3 EEIE ex
Here, the superscript “ex”in ) ; means that the sum excludes
_1 _1
the terms with p;; = 0. Since Y% ¢ip,; *|pijlp;;* ¢; can be
_1 _1
written as (Pmax| 0, *1010y * |¢max), we have, from Eq. (16),

K'pK" N o oh by
Cll(TI'(K’,OK,i)> —<§0max|pd |p|pd |§0max) 1

_1 _1
= tmax(0g 7|0l 7) =1 (D)

i.e., Eq. (14).
From Egs. (5), (8), and (14), we immediately obtain Eq. (4).
This completes the proof of Theorem 1.

IV. MAXIMAL PROBABILITY OF OPTIMAL
COHERENCE ENHANCEMENT

In this section, we investigate the probability of optimal
coherence enhancement. For a given state p undergoing a
stochastic strictly incoherent operation A, the probability of

obtaining the state A (p) reads P = Tr(Z” | K, pK,i). In the
case of optimal coherence enhancement, A is defined only by
one Kraus operator K’, and the probability is reduced to

P =Tr(K'pK'™. (18)

We aim to calculate the probability of obtaining the maximal
enhanced state A (p).

First, we consider the case of p being irreducible. That is,

p cannot be transformed into a block diagonal matrix only

by using a permutation matrix. Since p is irreducible, the

1 1

matrix p, *|p|p, * is irreducible, too. Then, according to the

Perron- Frobemus S theorem [52], there exists a unique eigen-

vector of p, =1 | ol ,od ’ correspondmg to the maximal eigen-

value Amdx(pd |,0|,od 2) such that all the components of the
eigenvector are positive. We still use |@max) = (91,92, . . . ,@a)"
to denote the normalized eigenvector corresponding to the
largest eigenvalue, where ¢; > O for alli =1, ... ,d. For the
irreducible density matrix p, the general form of the optimal
strictly incoherent Kraus operator can be written as

Y2 Pa
= kU,;,dia , 19
g(«/ﬂl «//02 «/Pdd) (1
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where U;, is an arbitrary incoherent unitary matrix, and k
satisfies
| < min Y2 (20)
i
due to the requirement K"K’ < 1.
Substituting Eq. (19) into P = Tr(K'pK'"), we immedi-
ately have

= |k|*. (1)

From Egs. (20) and (21), we can obtain the maximal
probability,

Prax = min '0—’2’ 22)
i ¥;
The corresponding optimal Kraus operator is given by Eq. (19)

with |k| = min; ‘{57.

Second, we consider the case of p being reducible. p is
said to be reducible if it can be transformed into a block
diagonal matrix only by using a permutation matrix M. Since
any permutation matrix is an incoherent unitary and the
coherence of a state is invariant under an incoherent unitary,
the states p and MpM' have the same coherence. Furthermore,
there is maxu, C;,(As(p)) = maxy, Cp, (A;(MpM?")), which

implies that P (0) = Prax(MpM?"). Therefore, we only need
to consider the case of p = pi1p1 ® P22 ® -+ D pPnpon @
0, where each p, = Zi,j ,ol.“j|i)(j| (¢ =1,2,...,n) is an

irreducible density operator defined on the d,-dimensional

subspace Hy, p, > O satisfies Y »_, pe = 1, and 0 represents

a square matrix of dimension dy =d — (dy +d» + ...+ d,)

with all its elements being zero. In this case, we have |p| =
1 1

Pilo | @ palpa|l @ -+ @ palpa|l @0 and p,° = (p1pa), > @
_1 _1 _1 _1
(P2pd)y* ® -+ ® (pupa)n > ®0. Then, p, *|plp,* can be
expressed as
_1 _1
,odzlpl,odz=A169A269-~-69An690, (23)

where each A, = (,od)a | 0 |(,0d)a is an irreducible nonneg-

ative matrix.
We use A%, to denote the maximal eigenvalue of A, and

|Pmax) = (@1.93, ... ¢q ) to denote the normalized eigen-

vector of A, corresponding to the eigenvalue Amdx Without

loss of generality, we assume that AL > A2 > ... >2an .
Otherwise, we may rearrange the matrices A;,A,, ...,A, bya

permutation transformation such that Al > )\ﬁrm Slnce each
A, is an irreducible nonnegative matrix, |¢5,, ) is unique 1f all

its components are positive. Clearly, AL A2 AL
1 1

max’ ** max
also eigenvalues of p, *|p|p, *, and the maximal eigenvalue

1
2

_1 _
of p; 2|plp, ? is given by Amax = max{Al, A2 .. Aﬁlax}
Further, we suppose the degenerate degree of Amdx is ny,
e, Al =2 =...= )J” = Amax. Then, the normalized

max max . max

eigenvectors of p, Clplp, y % can be generally written as

|Pmax) = C1l@max) ® C21020) ® -+ B Cuylele ) ® [0),  (24)

where |0) = (0,0, ...,0)" is zero vector and ¢; are the coeffi-
cients satisfying Y /¢ |c;|* = 1. Here, ¢y |¢%,,) @ Cﬁ|(p£]ax> is

t
defined as (¢, @} ,ca®s, . .. ,cawf,‘a,cﬁgof,c,wf, . ,c,ggagﬂ) .
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With these knowledge, it is easy to understand that the
optimal strictly incoherent Kraus operator for reducible p can
be generally written as

K =UnK &K, ® - -®K,®0), (25)
where Uj;, is an arbitrary unitary incoherent operator, and
o ¥ ¥,

: e ), (26)
VPT NV P3 vpda,du)

K, = kadiag<

with k, satisfying

lka | in Y20 27

< min —-—,
due to the requirement of K/ K/, < I.
Substituting Eqs. (25) and (26) into P = Tr(K'pK'"), we
have

P =Y " paTrK,puK, =) palkel®. (28)

From Egs. (27) and (28), we obtain the maximal probability,

P = Z pamin a)z (29)

The corresponding optimal Kraus operator is given by

Egs. (25) and (26) with |k, | = min; ‘éﬁ:,

Clearly, the result for p being irreducible can be taken as a
special case of that for p being reducible. Let Py, (p) represent
the maximal probability at which the coherence of state p
can be enhanced to the maximal value by using stochastic
strictly incoherent operations. We then can summarize the
above results as Theorem 2.

Theorem 2. If p is irreducible, then P, (p) = min; Z”

where ¢; is the ith component of the positive eigenvector |@max )
1 1

corresponding to the maximal eigenvalue of ,od_i |p|pd_7. If p
isreducible, i.e., it can be transformed by a permutation matrix
into p101 @ p202 @ - - - B pupn ® 0with p, being irreducible,
then Ppax = Za()hmax_)hmx)pa Prax(00)-

Note that the sum is only for those indexes « satisfying
A% ax = Amax. The optimal strictly incoherent Kraus operator
achieving the maximal probability can be generally expressed

as Eq. (25),ie, K' = Uy (K1 ® K, D --- ® K, ® 0), with

NN of ¢S 2
K/, = min = . (30)
! < ) (\/ Jus \/ :02 \/ Py dy )
Before going further, we give a simple example to illustrate

the above theorems. Let us consider a system of single qubit.
In the basis {|0),|1)}, a state of the qubit system can be

147 cos @ —ip 0
generally expressed as p = %( - e roin ) where the
e'rsinf 1—rc
parameters satisfy 0 <r <1, 0<6 < m, and 0 <27

)

for coherent states. For this state, we have ,od |,o|,od =
1 r|sin@|

( lsind) "’f“"*zg), of which the largest eigenvalue

1-r2 cos2 6

_1 _1
and the corresponding eigenvector are Amax(0, *lplp, *) =
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1+ \/% and  |@max) = %(1,1)’, respectively. By
Theorem 1, we immediately obtain the optimal coher-
ence enhancement, max,, C, (As(p)) = J%’ which is
obviously greater than or equal to Cj,(p) =r|sinf|. B

Theorem 2, we can obtain the maximal probability of obtaining
the optimal coherence enhancement, Pyx(p) = 1 — r|cos0)|.
The optimal strictly incoherent Kraus operator achieving

the maximal probability can be generally expressed as K =

V1 —r|cosf|U;,diag( = cosO’ = C089) with U;, being an
arbitrary 2x 2 incoherent unitary matrix.

V. DISCUSSIONS

In the previous sections, we have proved two theorems, of
which one gives the maximal coherence that can be achieved
by performing a stochastic strictly incoherent operation Ay
on a state p and the other gives the maximal probability of
obtaining the state A (p) with the maximal coherence. We
now make some further discussions by applying the theorems
to pure states and mixed states, respectively. From them, we
can infer the following two corollaries.

Corollary 3. A pure state |¢) = (¢1,¢2, ...,¢4)" can be
transformed into a maximally coherent state by a stochastic
strictly incoherent operations if and only if all the components
¢; are nonzero. The maximal probability of obtaining the
maximally coherent state is Ppax(0) = d min; |¢;|>.

To derive Corollary 3 from Theorem 1 and Theorem 2, we

_1 _1
first calculate the largest eigenvalue of matrix p, *|p|p, *> with

o = |p) (@] and |@) = (P1,¢2, . ..,P4)" . For an arbitrary pure
state |¢), there are p;; = ¢; ¢>}‘f. ‘We then have

e N A )
(oa *1ol0a ™) =10 i $:9" = 0.
1
That is, all the elements of matrix p, *|p|p, > are 1 except
for some rows and columns with zero elements. The maximal
eigenvalue of such a matrix is equal to the number of the rows
with elements 1, i.e., the number of nonzero ¢;, denoted as r.

1
2

1 1

Therefore, we have Amax (0, *|plp, >) = r. From Theorem 1,
we immediately have maxa, Cj, (As(p)) =r — 1.

If all the components of |¢) are nonzero, there will be
r = d and therefore max,, C;,(As(p)) = d — 1, which means
that A;(p) is a maximally coherent state. In this case, each

1

2

element of p, *|plp, > is equal to 1, and the elgenvector

corresponding to the largest eigenvalue of p, |plp,? is
|Pmax) = ﬂ(l,l, ...,1)". Hence, by using Theorem 2, we

have Prax(|¢)(¢]) = d min; |¢;|*.
Corollary 4. A mixed state p can never be transformed into
a maximally coherent state by a stochastic strictly incoherent
operation.
To prove Corollary 4, we only need to demonstrate that
1 1
Amax(py *1plpy ) < d for any mixed state p = Zij 0ij 1) (jl
1

2

_1 _1 _
By substituting the definitions of |p| and p, * into p, *|plp, *,

we can obtain

=

1pij e .
). = T 1 Pupii £0: 31)
ij

_1 —
Pa’lplp .
( d d 0, lfp,‘ipjj =0.
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According to the GerSgorin disk theorem [52], which implies
that the largest eigenvalue of a square matrix A with elements
Ajj is not larger than max; Zj |A;;|, we have

M7 2012y ?) < max ) !pﬁlplpf!,-j
J

= max

: ZSXM. (32)
N N

Here, the superscript “ex” in Zix means that the sum excludes

the terms with p, j = 0. Since p is a positive semidefinite
. . ex _|pijl
matrix, there s | o;; | /PiiP);- We then havez p,—,lp,, d

and therefore

N\—

hax(04 * 1010y ) < d. (33)

_1 _1
We now demonstrate that Anax (0, %1010, *) cannot be equal
to d for amixed state p. Otherw1se o mustbe a pure state From

Eq. (31), we see that (:0,1 |;0|,0d )1] < LIf )\max()od |:0|:0,1 )
is assumed to be d, there must exist at least one row of matrix
1 1

pglplog

_1 _1
the requirement that all the elements in one row of p, *|p|p, *
1 1

in which all the elements are equal to 1. However,

are equal to 1 will necessarily resultin (p, *|plp, *);; = 1 for
all i and j (see the appendix for details). In this case, |p| must
be a pure state, which further leads to the fact that p is a pure

_1 _1
state, too. Hence, Amax (0, * |0, *) cannot be equal to d for a
mixed state. This completes the proof of Corollary 4.

VI. SUMMARY

Quantum coherence is a useful physical resource, describ-
ing the abilities of a quantum system to perform quantum
information processing tasks. While any incoherent operation
cannot increase the coherence of a state, it does not prevent
us from enhancing the coherence of a state by a stochastic
incoherent operation. This paper addressed the topic of en-
hancing the coherence of a state by using a stochastic coherent
operation. Considering that strictly incoherent operations are
a physically well-motivated set of incoherent operations and
therefore a strong candidate for incoherent operations, we have
restricted our operations to the strictly incoherent operations.
Based on the /; norm of coherence, we have investigated the
possibility of enhancing the /; norm of coherence of a state by
using a stochastic strictly incoherent operation.

Our main findings are presented as two theorems.
Theorem 1 gives the maximal coherence that can be achieved
by performing a stochastic strictly incoherent operation A on
a state p, while Theorem 2 gives the maximal probability of
obtaining the state A,(p) with the maximal coherence. It is
shown that the maximal value of coherence is determined
by the largest eigenvalue of the matrix p, *|p|p, > while
the maximal probability is determined by the eigenvectors
corresponding to the largest eigenvalue.

As an application of the theorems, we further specify our
discussions on pure states and mixed states, respectively, and
we find that a pure state can be transformed into a maximally
coherent state by a stochastic strictly incoherent operation if
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and only if all the components of the pure state are nonzero
while a mixed state can never be transformed into a maximally
coherent state by a stochastic strictly incoherent operation.

In passing, we would like to point out that strictly incoherent
Kraus operators can always be constructed by the system
interacting with an ancilla and a general experimental setting
has been suggested based on an interferometer in Ref. [38].
Thus, our scheme of enhancing coherence of a state may be
experimentally demonstrated.
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APPENDIX

We now show that the requirement that all the elements in

2

_1 _
one row of p,; *|p|p, * are equal to 1 will necessarily result in
1 1

(g *1plpy 2)ij = 1foralli and j. For simplicity, we use A4 to
1

1
2

denote p, *|p|p, *. Aqis ad-dimensional positive semidefinite

_1 _1
matrix, of which the elements a;; = (o, *|plp, *)i; satisfy
0<a; <1 and a;; =aj; < /a;a;;. We aim to show the

proposition that all the elements a;;, i,j =1,2,...,d, are
equalto lifa;; = a;p = --- = a;4 = 1 for somei. Without lost
of generality, weleti = 1,i.e.,a;1 =anp=---=a;g = 1.

It is obvious that the proposition is true for d = 2. We
assume that the proposition is valid ford = n — 1, i.e., for the
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(n — 1)-dimensional matrix A, all the elements q;;, i,j =
1,2,...,n—l,areequalto lifa;; =ap=---=a;,-1 = 1.
Then we prove that it is also valid for d = n.

First, since a;; < Jauaj; and a;; = a;; = 1, there must
beaj; =1forall j =1,2,...,n. A, can be written as

(A C
An = ( ol 1)’
where (An-l)ij = (An),‘j = aij, i,j = 1,2, AN (e 1, and C
is a column matrix defined as C = (1,a2,4,a3. - - - ,ay—1.0)"-

Specially, (Ay.1);; = 1fori =1,2,....n — 1.
Second, we let T = (lg‘ _]C). As A, is a positive

(AL)

semidefinite matrix, the matrix TA,7! must be a positive
semidefinite matrix, too. Its explicit expression reads

TATH— (An_1 —cct 0)
n - .

0 | (A2)

Equation (A2) implies that TA,TT as well as A, is positive
semidefinite if and only if A,.; — CC" is positive semidefinite.
The fact that A, is a positive semidefinite matrix necessarily
leads to A,.; — CC' being positive semidefinite, too.

Third, since (An)11 = AnDi2 =" =AnD1a1 =1,
all the elements of A, are equal to 1 according to the
assumption, and therefore it can be written as A, = cer,
where C = (1,1,...,1)" is a (n — 1)-dimensional column
vector with all its components being 1. Then, A, — CC!
can be written as CC' — CC'. Since CCT — CCT is positive
semidefinite, the average value of matrix operator CCT — CC
with respect to any vector |X) = (xi,X2,...,X,_1)" must

be nonnegative. It requires that C = C=q@,l1,...,1), ie.,
ar, = -+ =ay_1, = 1. Otherwise, if some a; , is not equal
to 1, we can always find a vector |x) withx; = 1,x; = —1, and

xi»j = 0, such that (x|(A,.; — CCh|x) < 0. This completes
the proof of the above proposition.
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