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Enhancing coherence of a state by stochastic strictly incoherent operations
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In this paper, we address the issue of enhancing coherence of a state under stochastic strictly incoherent
operations. Based on the l1 norm of coherence, we obtain the maximal value of coherence that can be achieved
for a state undergoing a stochastic strictly incoherent operation and the maximal probability of obtaining the
maximal coherence. Our findings indicate that a pure state can be transformed into a maximally coherent state
under a stochastic strictly incoherent operation if and only if all the components of the pure state are nonzero
while a mixed state can never be transformed into a maximally coherent state under a stochastic strictly incoherent
operation.
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I. INTRODUCTION

Quantum coherence is a fundamental aspect of quantum
physics, describing the capability of a quantum state to
exhibit quantum interference phenomena. It is an essential
component in quantum information processing [1], and plays
a central role in emergent fields, such as quantum metrology
[2,3], nanoscale thermodynamics [4–6], and quantum biology
[7–10]. Recently, quantification of coherence has attracted
a growing interest due to the development of quantum
information science [11–45].

By following the approach that has been established for
entanglement resource [46,47], Baumgratz et al. proposed
a seminal framework for quantifying coherence [12]. It
comprises four conditions, the coherence being zero (positive)
for incoherent states (all other states), the monotonicity of
coherence under incoherent operations, the monotonicity of
coherence under selective measurements on average, and the
nonincreasing of coherence under mixing of quantum states.
The four conditions are fulfilled by a number of functionals of
states, such as the l1 norm of coherence and the relative entropy
of coherence, which can be taken as coherence measures.
With these coherence measures, various topics of quantum
coherence, such as the relations between quantum coherence
and quantum correlations [18,29], the freezing phenomenon
of coherence [19,34], and the duality of coherence and path
distinguishability [14,26], have been investigated.

Quantum coherence is a useful physical resource in
performing quantum information processing tasks. When a
system is used to perform some task, it is often expected to
have a sufficiently large quantity of coherence. In practical
applications, we may need to enhance the coherence of a
state. This may not be a difficult problem if we do not restrict
the choices of operations, as there are many operations that
can increase the coherence of a state. However, it will be a
challenging topic if the operations are restricted to incoherent
operations.

Investigations on this topic have been started in Ref. [20],
where a coherence distillation procedure for pure states
under collective strictly incoherent operations was introduced.
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Recently, the coherence distillation of mixed states under
collective incoherent operations was addressed in Ref. [24]. It
shows that a state with a smaller quantity of coherence can be
asymptotically transformed into a state with a larger quantity
of coherence under collective incoherent operations. However,
the distillation procedure, as a scheme of enhancing coherence,
requires the copies of states to be sufficiently large, and needs
collective measurements on a large number of states, which
are often very delicate as they involve controlled interaction
among different particles. In the present paper, we consider
an alternative scheme of enhancing coherence of a state
under stochastic incoherent operations acting on a single state.
Similar schemes have been used to enhancing entanglement
of an individual pair of particles [48–50]. We here focus our
discussion on the widely used l1 norm of coherence, and restrict
the operations to strictly incoherent operations, which are a
physically well-motivated set of free operations for coherence
and a strong candidate for free operations [38]. We will give the
maximal value of coherence that can be achieved for a state un-
dergoing a stochastic strictly incoherent operation and the
maximal probability of obtaining the maximal coherence.

The paper is organized as follows. In Sec. II, we present
some preliminaries. In Sec. III, we put forward the first
theorem, which gives the maximal value of coherence that
can be achieved by performing a stochastic strictly incoherent
operation on a state. In Sec. IV, we put forward the second
theorem, which gives the maximal probability of obtaining
a coherence-enhanced state with the maximal coherence. In
Sec. V, by applying the theorems to pure state and mixed
states, respectively, we further put forward two corollaries.
Section VI is a summary of our findings.

II. PRELIMINARIES

Let H represent the Hilbert space of a d-dimensional
quantum system. A particular basis of H is denoted as {|i〉,
i = 1,2, . . . ,d}, which is chosen according to the physical
problem under discussion. Coherence of a state is then
measured based on the basis chosen [12]. Specifically, a state
is said to be incoherent if it is diagonal in the basis.

The coherence effect of a state is ascribed to the off-diagonal
elements of its density matrix with respect to the chosen basis.
An intuitive measure of coherence is the l1 norm of coherence.
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If we use ρ = ∑d
i,j=1 ρij |i〉〈j | to represent a general state, the

l1 norm of coherence is defined straightforwardly by the sum
of absolute values of all the off-diagonal elements,

Cl1 (ρ) =
∑
i �=j

|ρij |. (1)

The l1 norm of coherence is one of the most widely used
measures in the resource theory of coherence. It fulfills
0 � Cl1 (ρ) � d − 1. The upper bound is attained only for the
maximally coherent state, which has the form of |ψd

max〉 =
1√
d

∑d
i=1 eiδi |i〉 with δi being real numbers.

To introduce the notion of stochastic strictly incoherent
operations, we first recall strictly incoherent operations. A
strictly incoherent operation is a completely positive trace-
preserving map, expressed as �(ρ) = ∑

n KnρK
†
n, where the

Kraus operators Kn satisfy not only
∑

n K
†
nKn = I but also

KnIK
†
n ⊂ I and K

†
nIKn ⊂ I for Kn, i.e., each Kn as well

K
†
n maps an incoherent state to an incoherent state. Here, I

represents the set of incoherent states. There is at most one
nonzero element in each column (row) of Kn, and such a Kn

is called a strictly incoherent Kraus operator.
With the aid of strictly incoherent operations, we may

introduce the notion of stochastic strictly incoherent opera-
tions. A stochastic strictly incoherent operation is constructed
by a subset of strictly incoherent Kraus operators. Without
loss of generality, we denote the subset as {K1,K2, . . . ,KL}.
Otherwise, we may renumber the subscripts of these Kraus
operators. Then, a stochastic strictly incoherent operation,
denoted as �s(ρ), is defined by

�s(ρ) =
∑L

n=1 KnρK
†
n

Tr
(∑L

n=1 KnρK
†
n

) , (2)

where {K1,K2, . . . ,KL} satisfies
∑L

n=1 K
†
nKn � I . Similar

notions on stochastic operations can be seen in previous works
[25,51]. Clearly, the state �s(ρ) is obtained with probability
P = Tr(

∑L
n=1 KnρK

†
n) under a stochastic strictly incoherent

operation �s , while state �(ρ) is fully deterministic under a
strictly incoherent operation �.

It is known that a strictly incoherent operation does
not increase coherence of a state, i.e., Cl1 (�(ρ)) � Cl1 (ρ),
and there is always

∑
n pnCl1 (ρn) � Cl1 (ρ), where pn =

Tr(KnρK
†
n), ρn = KnρK

†
n/Tr(KnρK

†
n). However, these rela-

tions do not prevent us from obtaining probabilistically a state
with larger coherence under a stochastic strictly incoherent
operation. Namely, it is possible to have Cl1 (�s(ρ)) > Cl1 (ρ)
for a stochastic strictly incoherent operation �s , although
Cl1 (�(ρ)) � Cl1 (ρ) is always true for a strictly incoherent
operation �. In fact, some of ρn = KnρK

†
n/Tr(KnρK

†
n),

obtained under a strictly incoherent operation with selective
measurements, may have a larger value of coherence than ρ. If
we pick out only those ρn satisfying C(ρn) > C(ρ) and discard
other ρn with smaller C(ρn), we may probabilistically obtain
a mixed state

∑
nC(ρn)>C(ρ)pnρn, which has a larger value of

coherence. Then, a desired state is obtained with probability P

under a strictly incoherent operation with selective measure-
ments. Therefore, we may enhance the coherence of a state by
a stochastic strictly incoherent operation.

We are particularly interested in the maximal value of
coherence that can be achieved when a state undergoes a
stochastic strictly incoherent operation.

III. OPTIMAL COHERENCE ENHANCEMENT

We take the l1 norm of coherence as our measure of
coherence. We aim to find the optimal coherence enhancement,
i.e., the maximal value of coherence that can be obtained by
performing a stochastic strictly incoherent operation on a state.

The state under consideration is denoted as ρ =∑
ij ρij |i〉〈j |. Based on it, we can define three matrices |ρ|, ρd ,

and ρ
− 1

2
d , where |ρ| reads |ρ|= ∑

ij |ρij ||i〉〈j |, ρd=∑
i ρii |i〉〈i|, and ρ

− 1
2

d is a diagonal matrix with elements,

(
ρ

− 1
2

d

)
ii

=
{

ρ
− 1

2
ii , if ρii �= 0;

0, if ρii = 0.
(3)

Then, our main findings can be expressed as the following
theorems.

Theorem 1. The maximal value of coherence that can
be obtained by performing a stochastic strictly incoherent
operation on ρ reads

max
�s

Cl1 (�s(ρ)) = λmax
(
ρ

− 1
2

d |ρ|ρ− 1
2

d

) − 1, (4)

where λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) represents the largest eigenvalue of

the matrix ρ
− 1

2
d |ρ|ρ− 1

2
d .

We now prove the theorem.
First, we show that

Cl1 (�s(ρ)) � max
Kn

Cl1

(
KnρK

†
n

Tr(KnρK
†
n)

)
, (5)

for any stochastic strictly incoherent operation defined as
Eq. (2), where Kn ∈ {K1,K2, . . . ,KL}. To this end, we rewrite
Eq. (2) as

�s(ρ) =
∑L

n=1 KnρK
†
n

Tr
( ∑L

n=1 KnρK
†
n

) =
L∑

n=1

pnρn, (6)

where pn=Tr(KnρK
†
n)/Tr(

∑L
m=1 KmρK

†
m) and ρn=KnρK

†
n/

Tr(KnρK
†
n). Note that KnρK

†
n is positive semidefinite and

therefore Tr(KnρK
†
n) �= 0 unless KnρK

†
n = 0. Since coher-

ence is nonincreasing under mixing of quantum states, we
have

Cl1 (�s(ρ)) = Cl1

(
L∑

n=1

pnρn

)
�

L∑
n=1

pnCl1 (ρn)

� max
Kn

Cl1

(
KnρK

†
n

Tr(KnρK
†
n)

)
. (7)

Equation (7) immediately leads to Eq. (5).
Second, we show that

max
Kn

Cl1

(
KnρK

†
n

Tr(KnρK
†
n)

)
� λmax

(
ρ

− 1
2

d |ρ|ρ− 1
2

d

) − 1. (8)
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To this end, we only need to show that for any strictly
incoherent Kraus operator K with KρK† �= 0, there is always

Cl1

(
KρK†

Tr(KρK†)

)
� λmax

(
ρ

− 1
2

d |ρ|ρ− 1
2

d

) − 1. (9)

Since there is at most one nonzero element in each column
(row) of a strictly incoherent Kraus operator, any K can
always be transformed into a diagonal form via an inco-
herent unitary matrix, which does not change the value of
Cl1 (KρK†/Tr(KρK†)). Hence, without loss of generality, we
may let

K = diag(a1,a2, . . . ,ad ), (10)

where ai are complex numbers. We then have

Cl1

(
KρK†

Tr(KρK†)

)
=

∑
i �=j |ai ||aj ||ρij |∑

i |ai |2ρii

=
∑

i,j |ai ||aj ||ρij |∑
i |ai |2ρii

− 1. (11)

We further introduce a vector, i.e., a column matrix, |ϕ〉 =
1√∑

i |ai |2ρii

ρ
1
2
d (|a1|,|a2|, . . . ,|an|)t , which satisfies 〈ϕ|ϕ〉 = 1.

Hereafter, we use Mt to denote the transpose of matrix M . It
is easy to verify that

〈
ϕ
∣∣ρ− 1

2
d

∣∣ρ∣∣ρ− 1
2

d

∣∣ϕ〉 =
∑

i,j |ai ||aj ||ρij |∑
i |ai |2ρii

, (12)

where |ρ| = ∑
i,j |ρij ||i〉〈j |, and ρ

− 1
2

d is defined by Eq. (3).
Indeed, by directly substituting the expressions of |ϕ〉, |ρ|, and

ρ
− 1

2
d into 〈ϕ|ρ− 1

2
d |ρ|ρ− 1

2
d |ϕ〉, Eq. (12) can be obtained. Then,

Eq. (11) is written as

Cl1

(
KρK†

Tr(KρK†)

)
= 〈

ϕ
∣∣ρ− 1

2
d

∣∣ρ∣∣ρ− 1
2

d

∣∣ϕ〉 − 1. (13)

Note that 〈ϕ|ρ− 1
2

d |ρ|ρ− 1
2

d |ϕ〉 can be regarded as the av-

erage value of the matrix operator ρ
− 1

2
d |ρ|ρ− 1

2
d with re-

spect to the vector |ϕ〉. There is 〈ϕ|ρ− 1
2

d |ρ|ρ− 1
2

d |ϕ〉 �
λmax(ρ

− 1
2

d |ρ|ρ− 1
2

d ), where λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) represents the

largest eigenvalue of ρ
− 1

2
d |ρ|ρ− 1

2
d . Thus, we obtain the

expression, Cl1 (KρK†/Tr(KρK†)) � λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) − 1,

i.e., Eq. (9), which naturally implies Eq. (8).
Third, we show that for any state ρ, there always exists a

strictly incoherent Kraus operator K ′, which satisfies

Cl1

(
K ′ρK ′†

Tr(K ′ρK ′† )

)
= λmax

(
ρ

− 1
2

d |ρ|ρ− 1
2

d

) − 1. (14)

To this end, we use |ϕmax〉 = (ϕ1,ϕ2, . . . ,ϕd )t to denote
the normalized eigenvector corresponding to the largest

eigenvalue of ρ
− 1

2
d |ρ|ρ− 1

2
d . That is, ρ

− 1
2

d |ρ|ρ− 1
2

d |ϕmax〉 =
λmax(ρ

− 1
2

d |ρ|ρ− 1
2

d )|ϕmax〉. Noting that every component of the
eigenvector corresponding to the largest eigenvalue of a
nonnegative matrix can be chosen to be nonnegative [52,53],
we can take all ϕi to be nonnegative numbers. With the help

of |ϕmax〉, it is easy to find a strictly incoherent Kraus operator
satisfying Eq. (14). For instance, such a strictly incoherent
Kraus operator can be taken as

K ′ = kUindiag(a′
1,a

′
2, . . . ,a

′
d ), (15)

where

a′
i =

{
ϕi√
ρii

, if ρii �= 0,

0, if ρii = 0,

Uin is an arbitrary incoherent unitary matrix, and k is a complex
number for guaranteeing K ′†K ′ � I . In this case, we have

Cl1

(
K ′ρK ′†

Tr(K ′ρK ′† )

)
=

∑
i,j

ex
ϕiρ

− 1
2

ii |ρij |ρ− 1
2

jj ϕj − 1. (16)

Here, the superscript “ex” in
∑ex

i,j means that the sum excludes

the terms with ρii = 0. Since
∑ex

i,j ϕiρ
− 1

2
ii |ρij |ρ− 1

2
jj ϕj can be

written as 〈ϕmax|ρ− 1
2

d |ρ|ρ− 1
2

d |ϕmax〉, we have, from Eq. (16),

Cl1

(
K ′ρK ′†

Tr(K ′ρK ′† )

)
= 〈

ϕmax

∣∣ρ− 1
2

d

∣∣ρ∣∣ρ− 1
2

d

∣∣ϕmax
〉 − 1

= λmax
(
ρ

− 1
2

d

∣∣ρ∣∣ρ− 1
2

d

) − 1, (17)

i.e., Eq. (14).
From Eqs. (5), (8), and (14), we immediately obtain Eq. (4).

This completes the proof of Theorem 1.

IV. MAXIMAL PROBABILITY OF OPTIMAL
COHERENCE ENHANCEMENT

In this section, we investigate the probability of optimal
coherence enhancement. For a given state ρ undergoing a
stochastic strictly incoherent operation �s , the probability of
obtaining the state �s(ρ) reads P = Tr(

∑L
n=1 KnρK

†
n). In the

case of optimal coherence enhancement, �s is defined only by
one Kraus operator K ′, and the probability is reduced to

P = Tr(K ′ρK ′†). (18)

We aim to calculate the probability of obtaining the maximal
enhanced state �s(ρ).

First, we consider the case of ρ being irreducible. That is,
ρ cannot be transformed into a block diagonal matrix only
by using a permutation matrix. Since ρ is irreducible, the

matrix ρ
− 1

2
d |ρ|ρ− 1

2
d is irreducible, too. Then, according to the

Perron-Frobenius’s theorem [52], there exists a unique eigen-

vector of ρ
− 1

2
d |ρ|ρ− 1

2
d corresponding to the maximal eigen-

value λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) such that all the components of the

eigenvector are positive. We still use |ϕmax〉 = (ϕ1,ϕ2, . . . ,ϕd )t

to denote the normalized eigenvector corresponding to the
largest eigenvalue, where ϕi > 0 for all i = 1, . . . ,d. For the
irreducible density matrix ρ, the general form of the optimal
strictly incoherent Kraus operator can be written as

K ′ = kUindiag

(
ϕ1√
ρ11

,
ϕ2√
ρ22

, . . . ,
ϕd√
ρdd

)
, (19)
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where Uin is an arbitrary incoherent unitary matrix, and k

satisfies

|k| � min
i

√
ρii

ϕi

, (20)

due to the requirement K ′†K ′ � I .
Substituting Eq. (19) into P = Tr(K ′ρK ′†), we immedi-

ately have

P = |k|2. (21)

From Eqs. (20) and (21), we can obtain the maximal
probability,

Pmax = min
i

ρii

ϕ2
i

. (22)

The corresponding optimal Kraus operator is given by Eq. (19)
with |k| = mini

√
ρii

ϕi
.

Second, we consider the case of ρ being reducible. ρ is
said to be reducible if it can be transformed into a block
diagonal matrix only by using a permutation matrix M . Since
any permutation matrix is an incoherent unitary and the
coherence of a state is invariant under an incoherent unitary,
the states ρ and MρMt have the same coherence. Furthermore,
there is max�s

Cl1 (�s(ρ)) = max�s
Cl1 (�s(MρMt )), which

implies that Pmax(ρ) = Pmax(MρMt ). Therefore, we only need
to consider the case of ρ = p1ρ1 ⊕ p2ρ2 ⊕ · · · ⊕ pnρn ⊕
0, where each ρα = ∑

i,j ρα
ij |i〉〈j | (α = 1,2, . . . ,n) is an

irreducible density operator defined on the dα-dimensional
subspace Hα , pα > 0 satisfies

∑n
α=1 pα = 1, and 0 represents

a square matrix of dimension d0 = d − (d1 + d2 + . . . + dn)
with all its elements being zero. In this case, we have |ρ| =
p1|ρ1| ⊕ p2|ρ2| ⊕ · · · ⊕ pn|ρn| ⊕ 0 and ρ

− 1
2

d = (p1ρd )
− 1

2
1 ⊕

(p2ρd )
− 1

2
2 ⊕ · · · ⊕ (pnρd )

− 1
2

n ⊕ 0. Then, ρ
− 1

2
d |ρ|ρ− 1

2
d can be

expressed as

ρ
− 1

2
d |ρ|ρ− 1

2
d = A1 ⊕ A2 ⊕ · · · ⊕ An ⊕ 0, (23)

where each Aα = (ρd )
− 1

2
α |ρα|(ρd )

− 1
2

α is an irreducible nonneg-
ative matrix.

We use λα
max to denote the maximal eigenvalue of Aα and

|ϕα
max〉 = (ϕα

1 ,ϕα
2 , . . . ,ϕα

dα
)t to denote the normalized eigen-

vector of Aα corresponding to the eigenvalue λα
max. Without

loss of generality, we assume that λ1
max � λ2

max � · · · � λn
max.

Otherwise, we may rearrange the matrices A1,A2, . . . ,An by a
permutation transformation such that λi

max � λi+1
max. Since each

Aα is an irreducible nonnegative matrix, |ϕα
max〉 is unique if all

its components are positive. Clearly, λ1
max,λ

2
max, . . . ,λ

n
max are

also eigenvalues of ρ
− 1

2
d |ρ|ρ− 1

2
d , and the maximal eigenvalue

of ρ
− 1

2
d |ρ|ρ− 1

2
d is given by λmax = max{λ1

max,λ
2
max, . . . ,λ

n
max}.

Further, we suppose the degenerate degree of λmax is nd ,
i.e., λ1

max = λ2
max = · · · = λnd

max = λmax. Then, the normalized

eigenvectors of ρ
− 1

2
d |ρ|ρ− 1

2
d can be generally written as

|ϕmax〉 = c1|ϕ1
max〉 ⊕ c2|ϕ2

max〉 ⊕ · · · ⊕ cnd
|ϕnd

max〉 ⊕ |0〉, (24)

where |0〉 = (0,0, . . . ,0)t is zero vector and ci are the coeffi-
cients satisfying

∑nd

i |ci |2 = 1. Here, cα|ϕα
max〉 ⊕ cβ |ϕβ

max〉 is

defined as (cαϕα
1 ,cαϕα

2 , . . . ,cαϕα
dα

,cβϕ
β

1 ,cβϕ
β

2 , . . . ,cβϕ
β

dβ
)
t
.

With these knowledge, it is easy to understand that the
optimal strictly incoherent Kraus operator for reducible ρ can
be generally written as

K ′ = Uin(K ′
1 ⊕ K ′

2 ⊕ · · · ⊕ K ′
d ⊕ 0), (25)

where Uin is an arbitrary unitary incoherent operator, and

K ′
α = kαdiag

(
ϕα

1√
ρα

11

,
ϕα

2√
ρα

22

, . . . ,
ϕα

dα√
ρα

dα,dα

)
, (26)

with kα satisfying

|kα| � min
i

√
ρα

ii

ϕα
i

, (27)

due to the requirement of K ′†
α K ′

α � I .
Substituting Eqs. (25) and (26) into P = Tr(K ′ρK ′†), we

have

P =
∑

α

pαTrK ′
αραK ′

α =
∑

α

pα|kα|2. (28)

From Eqs. (27) and (28), we obtain the maximal probability,

Pmax =
∑

α

pα min
i

ρα
ii

(ϕα
i )2

. (29)

The corresponding optimal Kraus operator is given by

Eqs. (25) and (26) with |kα| = mini

√
ρα

ii

ϕα
i

,
Clearly, the result for ρ being irreducible can be taken as a

special case of that for ρ being reducible. Let Pmax(ρ) represent
the maximal probability at which the coherence of state ρ

can be enhanced to the maximal value by using stochastic
strictly incoherent operations. We then can summarize the
above results as Theorem 2.

Theorem 2. If ρ is irreducible, then Pmax(ρ) = mini
ρii

ϕ2
i

,

where ϕi is the ith component of the positive eigenvector |ϕmax〉
corresponding to the maximal eigenvalue of ρ

− 1
2

d |ρ|ρ− 1
2

d . If ρ

is reducible, i.e., it can be transformed by a permutation matrix
into p1ρ1 ⊕ p2ρ2 ⊕ · · · ⊕ pnρn ⊕ 0 with ρα being irreducible,
then Pmax = ∑

α (λα
max=λmax)pαPmax(ρα).

Note that the sum is only for those indexes α satisfying
λα

max = λmax. The optimal strictly incoherent Kraus operator
achieving the maximal probability can be generally expressed
as Eq. (25), i.e., K ′ = Uin(K ′

1 ⊕ K ′
2 ⊕ · · · ⊕ K ′

d ⊕ 0), with

K ′
α = min

i

(√
ρα

ii

ϕα
1

)
diag

(
ϕα

1√
ρα

11

,
ϕα

2√
ρα

22

, . . . ,
ϕα

dα√
ρα

dα,dα

)
. (30)

Before going further, we give a simple example to illustrate
the above theorems. Let us consider a system of single qubit.
In the basis {|0〉,|1〉}, a state of the qubit system can be

generally expressed as ρ = 1
2 (

1+r cos θ e−iϕ r sin θ

eiϕr sin θ 1−r cos θ
), where the

parameters satisfy 0 < r � 1, 0 < θ < π , and 0 � ϕ � 2π

for coherent states. For this state, we have ρ
− 1

2
d |ρ|ρ− 1

2
d =( 1 r| sin θ |√

1−r2 cos2 θ
r| sin θ |√

1−r2 cos2 θ
1

)
, of which the largest eigenvalue

and the corresponding eigenvector are λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) =
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1 + r| sin θ |√
1−r2 cos2 θ

and |ϕmax〉 = 1√
2
(1,1)t , respectively. By

Theorem 1, we immediately obtain the optimal coher-
ence enhancement, max�s

Cl1 (�s(ρ)) = r| sin θ |√
1−r2 cos2 θ

, which is
obviously greater than or equal to Cl1 (ρ) = r| sin θ |. By
Theorem 2, we can obtain the maximal probability of obtaining
the optimal coherence enhancement, Pmax(ρ) = 1 − r| cos θ |.
The optimal strictly incoherent Kraus operator achieving
the maximal probability can be generally expressed as K

′ =√
1 − r| cos θ |Uindiag( 1√

1+r cos θ
, 1√

1−r cos θ
) with Uin being an

arbitrary 2×2 incoherent unitary matrix.

V. DISCUSSIONS

In the previous sections, we have proved two theorems, of
which one gives the maximal coherence that can be achieved
by performing a stochastic strictly incoherent operation �s

on a state ρ and the other gives the maximal probability of
obtaining the state �s(ρ) with the maximal coherence. We
now make some further discussions by applying the theorems
to pure states and mixed states, respectively. From them, we
can infer the following two corollaries.

Corollary 3. A pure state |φ〉 = (φ1,φ2, . . . ,φd )t can be
transformed into a maximally coherent state by a stochastic
strictly incoherent operations if and only if all the components
φi are nonzero. The maximal probability of obtaining the
maximally coherent state is Pmax(ρ) = d mini |φi |2.

To derive Corollary 3 from Theorem 1 and Theorem 2, we

first calculate the largest eigenvalue of matrix ρ
− 1

2
d |ρ|ρ− 1

2
d with

ρ = |φ〉〈φ| and |φ〉 = (φ1,φ2, . . . ,φd )t . For an arbitrary pure
state |φ〉, there are ρij = φiφ

∗
j . We then have

(
ρ

− 1
2

d |ρ|ρ− 1
2

d

)
ij

=
{

1, if φiφ
∗
j �= 0,

0, if φiφ
∗
j = 0.

That is, all the elements of matrix ρ
− 1

2
d |ρ|ρ− 1

2
d are 1 except

for some rows and columns with zero elements. The maximal
eigenvalue of such a matrix is equal to the number of the rows
with elements 1, i.e., the number of nonzero φi , denoted as r .

Therefore, we have λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) = r . From Theorem 1,

we immediately have max�s
Cl1 (�s(ρ)) = r − 1.

If all the components of |φ〉 are nonzero, there will be
r = d and therefore max�s

Cl1 (�s(ρ)) = d − 1, which means
that �s(ρ) is a maximally coherent state. In this case, each

element of ρ
− 1

2
d |ρ|ρ− 1

2
d is equal to 1, and the eigenvector

corresponding to the largest eigenvalue of ρ
− 1

2
d |ρ|ρ− 1

2
d is

|ϕmax〉 = 1√
d

(1,1, . . . ,1)t . Hence, by using Theorem 2, we

have Pmax(|φ〉〈φ|) = d mini |φi |2.
Corollary 4. A mixed state ρ can never be transformed into

a maximally coherent state by a stochastic strictly incoherent
operation.

To prove Corollary 4, we only need to demonstrate that

λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) < d for any mixed state ρ = ∑

ij ρij |i〉〈j |.
By substituting the definitions of |ρ| and ρ

− 1
2

d into ρ
− 1

2
d |ρ|ρ− 1

2
d ,

we can obtain

(
ρ

− 1
2

d |ρ|ρ− 1
2

d

)
ij

=
{ |ρij |√

ρiiρjj
, if ρiiρjj �= 0;

0, if ρiiρjj = 0.
(31)

According to the Geršgorin disk theorem [52], which implies
that the largest eigenvalue of a square matrix A with elements
Aij is not larger than maxi

∑
j |Aij |, we have

λmax
(
ρ

− 1
2

d

∣∣ρ∣∣ρ− 1
2

d

)
� max

i

∑
j

∣∣ρ− 1
2

d

∣∣ρ∣∣ρ− 1
2

d

∣∣
ij

= max
i (ρii �=0)

∑
j

ex |ρij |√
ρiiρjj

. (32)

Here, the superscript “ex” in
∑ex

j means that the sum excludes
the terms with ρjj = 0. Since ρ is a positive semidefinite
matrix, there is |ρij | � √

ρiiρjj . We then have
∑ex

j

|ρij |√
ρiiρjj

� d

and therefore

λmax
(
ρ

− 1
2

d |ρ|ρ− 1
2

d

)
� d. (33)

We now demonstrate that λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) cannot be equal

to d for a mixed state ρ. Otherwise, ρ must be a pure state. From

Eq. (31), we see that (ρ
− 1

2
d |ρ|ρ− 1

2
d )ij � 1. If λmax(ρ

− 1
2

d |ρ|ρ− 1
2

d )
is assumed to be d, there must exist at least one row of matrix

ρ
− 1

2
d |ρ|ρ− 1

2
d , in which all the elements are equal to 1. However,

the requirement that all the elements in one row of ρ
− 1

2
d |ρ|ρ− 1

2
d

are equal to 1 will necessarily result in (ρ
− 1

2
d |ρ|ρ− 1

2
d )ij = 1 for

all i and j (see the appendix for details). In this case, |ρ| must
be a pure state, which further leads to the fact that ρ is a pure

state, too. Hence, λmax(ρ
− 1

2
d |ρ|ρ− 1

2
d ) cannot be equal to d for a

mixed state. This completes the proof of Corollary 4.

VI. SUMMARY

Quantum coherence is a useful physical resource, describ-
ing the abilities of a quantum system to perform quantum
information processing tasks. While any incoherent operation
cannot increase the coherence of a state, it does not prevent
us from enhancing the coherence of a state by a stochastic
incoherent operation. This paper addressed the topic of en-
hancing the coherence of a state by using a stochastic coherent
operation. Considering that strictly incoherent operations are
a physically well-motivated set of incoherent operations and
therefore a strong candidate for incoherent operations, we have
restricted our operations to the strictly incoherent operations.
Based on the l1 norm of coherence, we have investigated the
possibility of enhancing the l1 norm of coherence of a state by
using a stochastic strictly incoherent operation.

Our main findings are presented as two theorems.
Theorem 1 gives the maximal coherence that can be achieved
by performing a stochastic strictly incoherent operation �s on
a state ρ, while Theorem 2 gives the maximal probability of
obtaining the state �s(ρ) with the maximal coherence. It is
shown that the maximal value of coherence is determined
by the largest eigenvalue of the matrix ρ

− 1
2

d |ρ|ρ− 1
2

d while
the maximal probability is determined by the eigenvectors
corresponding to the largest eigenvalue.

As an application of the theorems, we further specify our
discussions on pure states and mixed states, respectively, and
we find that a pure state can be transformed into a maximally
coherent state by a stochastic strictly incoherent operation if
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and only if all the components of the pure state are nonzero
while a mixed state can never be transformed into a maximally
coherent state by a stochastic strictly incoherent operation.

In passing, we would like to point out that strictly incoherent
Kraus operators can always be constructed by the system
interacting with an ancilla and a general experimental setting
has been suggested based on an interferometer in Ref. [38].
Thus, our scheme of enhancing coherence of a state may be
experimentally demonstrated.
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APPENDIX

We now show that the requirement that all the elements in

one row of ρ
− 1

2
d |ρ|ρ− 1

2
d are equal to 1 will necessarily result in

(ρ
− 1

2
d |ρ|ρ− 1

2
d )ij = 1 for all i and j . For simplicity, we use Ad to

denote ρ
− 1

2
d |ρ|ρ− 1

2
d . Ad is a d-dimensional positive semidefinite

matrix, of which the elements aij = (ρ
− 1

2
d |ρ|ρ− 1

2
d )ij satisfy

0 � aij � 1 and aij = aji � √
aiiajj . We aim to show the

proposition that all the elements aij , i,j = 1,2, . . . ,d, are
equal to 1 if ai1 = ai2 = · · · = aid = 1 for some i. Without lost
of generality, we let i = 1, i.e., a11 = a12 = · · · = a1d = 1.

It is obvious that the proposition is true for d = 2. We
assume that the proposition is valid for d = n − 1, i.e., for the

(n − 1)-dimensional matrix An-1, all the elements aij , i,j =
1,2, . . . ,n − 1, are equal to 1 if a11 = a12 = · · · = a1,n−1 = 1.
Then we prove that it is also valid for d = n.

First, since a1j � √
a11ajj and a11 = a1j = 1, there must

be ajj = 1 for all j = 1,2, . . . ,n. An can be written as

An =
(

An-1 C

C† 1

)
, (A1)

where (An-1)ij = (An)ij = aij , i,j = 1,2, . . . ,n − 1, and C

is a column matrix defined as C = (1,a2,n,a3,n . . . ,an−1,n)t .
Specially, (An-1)1i = 1 for i = 1,2, . . . ,n − 1.

Second, we let T =
(

In-1 −C

0 1

)
. As An is a positive

semidefinite matrix, the matrix T AnT
† must be a positive

semidefinite matrix, too. Its explicit expression reads

T AnT
† =

(
An-1 − CC† 0

0 1

)
. (A2)

Equation (A2) implies that T AnT
† as well as An is positive

semidefinite if and only if An-1 − CC† is positive semidefinite.
The fact that An is a positive semidefinite matrix necessarily
leads to An-1 − CC† being positive semidefinite, too.

Third, since (An-1)11 = (An-1)12 = · · · = (An-1)1,n−1 = 1,
all the elements of An-1 are equal to 1 according to the
assumption, and therefore it can be written as An-1 = C̃C̃†,
where C̃ = (1,1, . . . ,1)t is a (n − 1)-dimensional column
vector with all its components being 1. Then, An-1 − CC†

can be written as C̃C̃† − CC†. Since C̃C̃† − CC† is positive
semidefinite, the average value of matrix operator C̃C̃† − CC†

with respect to any vector |x〉 = (x1,x2, . . . ,xn−1)t must
be nonnegative. It requires that C = C̃ = (1,1, . . . ,1)t , i.e.,
a2,n = · · · = an−1,n = 1. Otherwise, if some aj,n is not equal
to 1, we can always find a vector |x〉 with x1 = 1, xj = −1, and
xi �=j = 0, such that 〈x|(An-1 − CC†)|x〉 < 0. This completes
the proof of the above proposition.
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