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Constructively simulating quantum systems furthers our understanding of qualitative and quantitative features
which may be analytically intractable. In this paper, we directly simulate and explore the entanglement structure
present in the paradigmatic example for exponential quantum speedups: Shor’s algorithm. To perform our
simulation, we construct a dynamic tree tensor network which manifestly captures two salient circuit features
for modular exponentiation. These are the natural two-register bipartition and the invariance of entanglement
with respect to permutations of the top-register qubits. Our construction help identify the entanglement entropy
properties, which we summarize by a scaling relation. Further, the tree network is efficiently projected onto a
matrix product state from which we efficiently execute the quantum Fourier transform. Future simulation of
quantum information states with tensor networks exploiting circuit symmetries is discussed.
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Introduction. Tensor networks (TNs) are graphical data
structures consisting of nodal tensors, with elements related
to basis amplitudes, and indexed edges which represent the
physical and virtual degrees of freedom of a quantum system.
In certain cases, the observables of large systems can efficiently
be calculated by utilizing TN decompositions of a quantum
state [1]. TNs have been especially successful in identifying
the ground states of local Hamiltonians in low-dimensional
condensed matter systems [2,3]. In this work, we turn our
attention to the simulation of quantum information theoretic
systems [4–7] by introducing a tensor network.

Besides calculating observables, tensor networks provide
explicit insight into entanglement structure, which differs
vastly based on dimensionality and criticality [3,8,9]. How-
ever, finding an optimal tensor network representation for a
given system is not a simple task. For example, no generally
efficient method exists for d � 2-dimensional systems [1].

While lattice geometries are natural for condensed matter
systems, dimensionality and local geometry are ill-defined
quantities for states generated by logical quantum circuits
on abstract registers of qubits. However, quantum algorithms
do have important structural and symmetric properties. Thus,
motivated by the algorithmic structure and entanglement
invariance with respect to permutation of qubits in the modular
exponentiation step, we construct a bipartite tree tensor
network (TTN) naturally suited to simulating Shor’s algorithm.
Our numerical analysis verifies the volume law scaling relation
given by Eq. (2).

While it is impossible to efficiently simulate general
quantum algorithms, tensor networks tailored to quantum
algorithms increase the size and complexity of classically
simulable systems; in our case, 39-qubit Shor wave functions
were constructed on a laptop computer. Such simulations are of
practical interest for benchmarking noisy near-term quantum
experiments [10,11] and may have some bearing on long-term
quantum phase estimation or hidden subgroup algorithms (i.e.,
the TN constructed in this work is generalizable to period-
finding algorithms with inter-register entanglement generated
as illustrated in Fig. 1) [12].

Shor’s wave function. We first outline the logical operations
comprising Shor’s algorithm [13] in order to develop an

intuition for the form of an appropriate tensor network.
To factor a natural number N = pq, with p,q large prime
numbers, we draw a random integer x ∈ ZN and use Shor’s
algorithm [13] to find the characteristic modular periodicity
r given by xr mod N = 1. Assuming that gcd(x,N ) = 1 (in
the unlikely case that x = p or q, N is trivially factored) one
initializes a 2l (l) qubit top (bottom) register, for a total of
3l qubits, where l = log2(N ) is the number of bits required
to represent N . The top register is initialized into the product
state |+〉⊗2l = 1/(

√
2)2l

∑22l−1
i=0 |i〉 while the bottom register

is initialized as |1〉 which is the integer basis representation
of the computational basis state |0,0, . . . ,0,1〉. We represent
the bottom register in the integer basis for the remainder
of this paper. The composite initial product state is thus
|�i〉 = |+〉⊗2l

top ⊗ |1〉bot.
The modular exponentiation (ME) unit (see Fig. 1, yellow

box) entangles each top register qubit with the entire bottom
register via controlled modular multiplication operators U ≡
U (x,N ). The operator U is a rank-2 tensor with dimensions
2l × 2l and matrix elements satisfying U |b〉 = |xb mod N〉.
Powers of U 2i

are generated by i iterative matrix multi-
plications. Upon application of the last controlled operator,
the state reads |�〉 = 2−l

∑22l−1
i=0 |i〉 ⊗ |xi modN〉. Because xr

mod N = 1 we may group together like bottom register basis
vectors and write the state as

|�〉 = 1√
r

r−1∑
i=0

⎛
⎝�(22l−1)/r�∑

j=0

|jr + i〉
⎞
⎠ ⊗ |xi modN〉. (1)

The entanglement growth across arbitrary bipartitions is
exponential in the smaller bi-partition qubit volume. The
growth saturates at a critical scale which is proportional to
the modular periodicity. Using the structure and symmetries
present in Shor’s factoring quantum circuit, we construct a
unique tensor network.

Bipartite tensor network complexity. Equation (1) is by
definition a bipartite Schmidt decomposition between the
two registers and reveals several interesting features. We
see that |�〉 is r-entangled across the bipartition; that is,
the Schmidt coefficient 1/

√
r appears r times. In the worst

2469-9926/2017/96(6)/062322(5) 062322-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.062322


EUGENE DUMITRESCU PHYSICAL REVIEW A 96, 062322 (2017)

· · ·U20
U21 U22l

|0
|1

|+

|+
|+

|0

···
···

···

· · ·

i1

i2

il

···ME QFT

FIG. 1. Schematic of Shor’s algorithm with the ME (QFT) com-
ponents highlighted in yellow (blue) boxes. Equation (1) describes
the state of the system one time step before the bottom register
measurements preceding the ME subcircuit.

case r ∼ O(N ) so the inter-register entanglement scales
exponentially in the number of qubits l [14]. The equality of
all Schmidt coefficients also foreshadows different correlation
scalings compared to ground states of local Hamiltonians,
which have exponentially (or power-law) decaying correla-
tions. Equation (1) also demonstrates that it is natural to
decompose |�〉 across the inter-register bipartition, and we
shall retain this feature in our tree network.

The quantum Fourier transformation (QFT) is known to be
efficiently simulable [15,16], suggesting that the nontrivial part
of the computation occurs during the modular exponentiation
step. We thus pose the following question: what are the en-

tanglement properties of the basis state
∑�(22l−1)/r�

j=0 |jr + i〉?
The top register qubits are clearly entangled with one another
via their interaction with the bottom register. We therefore
know from Eq. (1) that r sets an upper bound on the amount of
entanglement. Below we elucidate the entanglement properties
of the top register basis states by developing a tensor network
representation whose geometry is consistent with the inter-
register bipartition and, more importantly, by the permutational
invariance of the top register qubits [17,18].

A first attempt at a tensor network was performed in
Ref. [7], which treats the bottom register as a qudit lying at
one end of a matrix product state (MPS). The ME algorithm
was performed by contracting two local controlled modular
multiplication gates along with a series of swap gates. In
doing so, the complexity of storing the state is reduced
from O(23l) → O(2lr) + constant with the constant given by∑

j 2d
(j )
l d

(j )
r , where d

(j )
l(r) are the virtual bond dimensions to the

right and left of the j th top register qubit. While this approach
was successful in simulating Shor’s algorithm, artificially large
virtual bond dimensions were generated by successive swap
operations. This leads to a situation where d

(j )
l(r) = r for many

bonds when, as we shall see, few virtual bonds of that size are
necessary.

Tree-generation algorithm. We now introduce a natural
tensor network which maintains the inter-register bipartition
and distributes entanglement in an unbiased manner. This
network is dynamically constructed by following the ME
subcircuit, as shown in Fig. 1, with intermediate virtual updates
performed, as shown in Fig. 2 and discussed below, in between
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FIG. 2. Intermediate virtual networks for (b)–(d) between the
application of a controlled modular multiplication gate (a) and the
updated tree network (e). Red (black) lines denote physical (virtual)
degrees of freedom. The thick red line at the base of the tree denotes
the 2l-dimensional qudit bottom register state. Top register qubits are
represented by thin red lines at the bottom of the tree. The dashed
black line denotes the bipartition defined by Eq. (1). The scissors
icon and dashed purple lines (purple box) denote the bipartition
chosen for tensor decompositions (contraction) generating the next
tree configuration.

circuit operations. Our construction algorithm goes as follows.
(i) Contract the ith controlled U 2i

operator with the ith
single-qubit |+〉 tensor and the current bottom qudit state as
shown in panel (a). (ii) Perform internal operations updating
and generating virtual indices. This cascades the ith qubit from
the tree root (i.e., directly connected to the bottom register) to a
new bottom tree branch as illustrated in panels (b)–(e). Repeat
the procedure for all qubits indexed by i ∈ Z2l .

The internal updates consist of the following steps: (i) After
applying a controlled U 2i

gate, a singular value decomposition
(SVD) separates the ith qubit from the root qudit [Fig. 2,
panel (b)]. The ith qubit is maximally entangled with the
bottom register via a χ = 2-dimensional auxiliary edge with
singular values ( 1√

2
, 1√

2
). (ii) Generate the new inter-register

entanglement bond by performing an SVD between the bottom
register and its local complement formed by the union of the
new qubit and the previous tree root as indicated by the dashed
purple line in panel (b). Recall that this bond’s dimensionality
eventually saturates at r . (iii) The tensors encircled by the
purple box in panel (c) are contracted in order to “lower”
the qubit through the tree before (iv) another SVD along
a bipartition, which is chosen to direct the qubit through a
specific path, is performed. Step (iv) is identical to step (ii)
but occurs further down the tree. Repeat steps (iii) and (iv)
until each qubit settles into its final location at the bottom of
the tree. An example of a final tree configuration is illustrated
in Fig. 3.

Note that the choice of a binary tree is arbitrary and that the
entanglement features discussed in the next section hold for
an arbitrary tree data structure. Also note that the number of
virtual updates cascading the ith qubit is clearly upper bounded
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FIG. 3. Tree tensor network decomposition of |�〉 from Eq. (1)
for an l = 12 size system with N = 3403 = 41×83, x = 346, and
cyclic order r = 410. Edge widths are log2(di) + 1 where di is
the ith bond dimension which has been labeled. Top qubit (qudit)
physical degrees of freedom appear as red edges along the bottom
(top). Highlighted regions are entangled with their complement by a
common parent branch whose dimension follows Eq. (2).

by final tree depth. Since the final tree depth is logarithmic
in the number of qubits, that is with depth �log2(2l)�, the
tree construction procedure is efficient. This trade-off can be
compared to that in an MPS-based simulation for which at
least 2l swaps are performed. Thus, a logarithmic number of
updates to generate an unbiased and natural representation of
the state is well justified and we now discuss the emergent
entanglement properties.

Entanglement features. After cascading all qubits, the tree
tensor network exactly encodes the wave function appearing
in Eq. (1). The entanglement structure for the top register,
not apparent in Eq. (1), is now revealed by the holographic
dimension [19] constructed by our virtual updates. In our
analysis we use the Schmidt number, given by the bond
dimension of the virtual index connecting bipartitions, as the
metric for shared entanglement. This is an appropriate metric
because, unlike ground states of local Hamiltonians which
have exponential or power-law decaying Schmidt coefficients,
the Schmidt coefficients are equal in magnitude. Thus the
Schmidt number completely describes the entanglement which
can therefore be visualized as done in Fig. 3, where the drawn
bonds are weighted as log2 (di) + 1, where di is the local bond
dimension which is also labeled.

At the bottom tree level where qubits first connect to their
parent branches all qubits are maximally entangled to the rest
of the network, with equal Schmidt coefficients λ0 = λ1 = 1√

2
.

At the next level, all pairs of qubits (e.g., Fig. 3 blue highlighted
qubits) are still maximally entangled with their comple-
ment, i.e., with degenerate Schmidt coefficients λi = 0.5
for i = (0,1,2,3). This trend, with clusters of 2n qubits
maximally entangled to the rest of the state by 2n identical
Schmidt coefficients (e.g., Fig. 3 cluster of 4 green highlighted
qubits, and so on) continues up to a critical size, at which point
the entanglement rapidly saturates.

The qubit cluster size at which the entanglement scaling
saturates depends on which qubits are selected and is either
lr = �log2(r)� or lr̃ = �log2(r̃)�, where r̃ = r/2m and m is
the largest integer such that 2m divides r . The critical length
scale, specific to the choice of N and x determining r , can

be understood by the following arguments. The r-dimensional
tree root bond mediates the r-fold entanglement across the
register bipartition as per Eq. (1). Further, r constrains the
intra-register entanglement because all entanglement between
qubits, stored in the bulk, was generated by controlled modular
multiplication gates acting solely on the qudit. Descending
from the tree root, bond dimensions decrease from r to either
r̃ , or powers of 2 less than r,r̃ . An example is provided by
Fig. 3(a) where we have illustrated the final tree generated for
N = 3403. Thus the entanglement scales as

S =
{

2n, if n < lr(r̃),

r(r̃), otherwise,
(2)

where n refers to the number of qubits and the saturation
dimension, r vs r̃ , depends on whether qubits belong to the first
lr qubits (as seen from left to right in Fig. 3) or to the remainder
of the register. Equation (2) defines a class of states whose
entanglement is reminiscent of quantum error correcting codes
with entanglement set by a distance d for [[n,k,d]] codes [20].

We now address the seemingly strange feature of why the
first lr qubits are more entangled than the others. Note that
modular exponentiation with at least lr qubits is needed to
generate the r-fold basis vectors on either side of the register
bipartition. Modular exponentiation with the remaining qubits
extends the orthonormal basis vectors |jr + i〉 as the Hilbert
space grows, leaving the bipartite entanglement at order r .
To understand why the latter qubits are less entangled than
the former, consider a single orthonormal Schmidt vector∑�(22l−1)/r�

j=0 |jr + i〉. The qubits are projected into such a state
upon the measurement of the bottom register qudit. Since
r = 2mr̃ (if r is odd the algorithm restarts with a different x)
and i < r , the last m bits for each |jr + i〉 are identical. Qubits
1 through m are therefore disentangled from the remaining
state, and the remaining entanglement now follows the scaling
law in Eq. (2) saturating at r̃ . Figure 3(b) illustrates this point by
replotting the tree after a qudit measurement and bond updates
are performed. Note the changes in the bond dimensions along
the left side of the tree.

MPS conversion and interpretation. We now briefly com-
ment on the conversion of a tree network to an MPS network,
which is useful in simulating Shor’s algorithm in its entirety,
due to an efficient representation of the QFT component
for MPS systems [7,15,16]. A computational basis state
measurement Mi [illustrated by the nodes indexed (i1, . . . ,il)
in Fig. 1] projects the qudit register onto a basis state |i〉 from
Eq. (1). We can probabilistically simulate this measurement by
contracting the bottom register tensor with basis states |i ′〉 to
find nonzero matrix elements and then choose one randomly,
with each measurement outcome being equally probable.

A series of virtual updates now reduce the tree network into
the MPS form. The first (leftmost) qubit in Fig. 3 is already
in the MPS form because a single tensor connects a physical
and virtual degree of freedom. We proceed by selecting the
next qubit and contracting its parent bonds until it connects
to the virtual degree of freedom to the right of qubit 1. After
contracting the parent bonds of qubit 3, a decomposition is
performed to its right in order to generate a virtual MPS bond
not connected to qubit 4. This procedure is iteratively repeated
for all remaining qubits, at which point the resulting network
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FIG. 4. Entanglement as quantified by MPS auxiliary bond
dimensions for an N = 1763,l = 12 system. The virtual bond
dimensions and entanglement grow exponentially between adjacent
bipartitions for the first few sites from both the left and right end
points and are saturated in the bulk of the system by the characteristic
modular periodicity r̃ .

is an MPS. Again, the number of updates is bounded by the
number of qubits and the logarithmic tree depth.

Inspecting the MPS virtual Schmidt coefficients provides
a complementary perspective to that provided by Fig. 3. In
Fig. 4 we plot the virtual bond dimensions across the MPS
network for 24 simulations involving the same N = 1763 with
x randomly chosen. Many distinct x values share the same
order rx , so their entanglement spectrums are superimposed.
The MPS spectrum in Fig. 4 verifies the entanglement scaling
described by Eq. (2); namely, (i) the first m qubits are
disentangled, (ii) entanglement grows exponentially up to a
critical length scale, and (ii) the entanglement saturates at the
scale r̃ ≡ r/2m.

Discussion and conclusion. Previous works applying TNs
to quantum algorithms have either abstractly studied the
complexity of TNs as they relate to quantum algorithms [5,6]
or have directly simulated circuits using conventional TNs
[7]. Going beyond this work, we have explicitly generated a
tree tensor network using properties of Shor’s algorithm. Our
construction proceeded by contracting the ME controlled-U
gates into the TN and performing a logarithmic number of
virtual updates. A prevalent visible entanglement feature was
the fully broadened spectrum of the Schmidt coefficients at
all virtual cuts [14]. We also saw that the Schmidt rank
across (global) system bipartitions scaled exponentially in the
minimum number of qubits enclosed until saturation at critical
threshold log2(r̃), where r̃ ∝ r . The volume entanglement scal-
ing violates the entanglement area law and is like that recently
observed in restricted Boltzmann neural networks [21].

Our construction is useful because it provides a simple and
intuitive inspection of the quantum features for wave functions

which are involved in the famous exponential quantum
speedup. In doing so, our calculation reaffirms the difficulty
in classically simulating Shor’s algorithm. Further, due to the
broad Schmidt spectrum, typical TN truncation techniques do
not apply to our system. It is therefore interesting to consider
alternative approximations. For example, a first approximation
could be performed by simply eliminating a random set ratio of
the bottom register basis vectors to enforce polynomial scaling.
This would deform the modular multiplication operators and
generate a state similar to Eq. (1) except for coefficients having
support on the remaining basis vectors. However, we anticipate
that the coherence of the modular periodicity r states would
be destroyed by such methods.

Recently, quantum computing devices have been success-
fully scaled to intermediate system sizes in an attempt to tackle
problems at the edge of classically intractability [10,11]. In
order to validate the progress of quantum hardware, it is
important to extend the reach of classical algorithms (as long as
possible), especially when validation cannot be performed by
conventional methodologies, e.g., with exponentially scaling
state tomography. Our TN construction thus provides a pow-
erful methodology for the verification of constantly growing
quantum computations. For example, unitary noise can be
directly simulated by biasing the unitary gates involved in the
circuit away from their ideal description or by stochastically
sampling additionally noisy unitary operations to model
dephasing channels [22].
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