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We provide an in-depth investigation of parameter estimation in nested Mach-Zehnder interferometers (NMZIs)
using two information measures: the Fisher information and the Shannon mutual information. Protocols for
counterfactual communication have, so far, been based on two different definitions of counterfactuality. In
particular, some schemes have been based on NMZI devices, and have recently been subject to criticism. We
provide a methodology for evaluating the counterfactuality of these protocols, based on an information-theoretical
framework. More specifically, we make the assumption that any realistic quantum channel in MZI structures
will have some weak uncontrolled interaction. We then use the Fisher information of this interaction to measure
counterfactual violations. The measure is used to evaluate the suggested counterfactual communication protocol
of H. Salih et al. [Phys. Rev. Lett. 110, 170502 (2013)]. The protocol of D. R. M. Arvidsson-Shukur and
C. H. W. Barnes [Phys. Rev. A 94, 062303 (2016)], based on a different definition, is evaluated with a probability
measure. Our results show that the definition of Arvidsson-Shukur and Barnes is satisfied by their scheme, while
that of Salih et al. is only satisfied by perfect quantum channels. For realistic devices the latter protocol does not
achieve its objective.
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I. INTRODUCTION

During the past one and a half centuries, the study of
interferometers has resulted in some of the most profound
discoveries in physics. From the Michelson-Morley experi-
ment [1], which established the speed of light as a constant,
to Hardy’s paradox [2], which elegantly demonstrates the
nonlocal behavior of the fundamentals of quantum physics,
interferometers have played a pivotal role. This is perhaps
more evident today than ever before, considering the recent
discoveries of gravitational waves made with two power-
recycled Michelson interferometers [3].

Studies with optical quantum interferometers have shown
great promise, not only for the detection of novel physics
but also for external field detection and external parameter
estimation [4–14]. A common example of this is phase
estimation. By letting optical quantum states interfere with
a medium inside an interferometer it can be easier to establish
the nature of a phase shift caused by the medium than with a
direct interaction [8,15–17].

A framework for studying phase estimation in interferom-
eters has been developed by Bahder et al. [11,16,17]. This
framework uses the Shannon mutual information and the clas-
sical Fisher information as measures of the phase-estimating
capacity of different interferometers and input states. The
Shannon mutual information provides a measure of the
suitability of a specific experiment for the estimation of a phase
given some known or unknown phase probability distribution.
The classical Fisher information, on the other hand, provides a
measure of how well a specific—but unknown—phase shift in
the interferometer can be estimated from the outcome events
of the specific interferometry experiment.

Another area of physics that has been developed entirely
via the study of interferometers is that of counterfactual
phenomena: “Counterfactuals—that is, things that might have

happened, although they did not in fact happen” (Roger
Penrose in Shadows of the Mind [18]).

The counterfactual phenomenon of interaction-free mea-
surements was originally discovered by Elitzur and Vaidman
in their seminal paper on quantum bomb diffusal [19]. They
showed how a Mach-Zehnder interferometer (MZI) could
be used in order to query whether or not an absorbing
object (e.g., a bomb) was or was not present in the lower
interferometer arm. The novelty of their setup was that the
photons propagating through the interferometer sometimes
allowed for the answering of the query without interacting
with the object in question, i.e., counterfactually [18]. Kwiat
et al. then showed how the efficiency of this scheme could be
taken arbitrarily close to unity by utilizing a chain of several
MZIs [20,21].

During the last decade there have been further investigations
of counterfactual schemes. Many of these are based on the use
of so-called “nested” Mach-Zehnder interferometers (NMZIs).
There have been suggestions that quantum computation [22],
direct communication [23,24], or transmission of quantum
states [25] can be conducted without the interrogating particle
ever entering the quantum computer in the former case or
interacting with the information transmitter in the two latter.
However, these schemes have been under intense debate
[23,25–33]. The criticism resulted in the development of
another counterfactual communication (CFC) scheme [34].
The definition of counterfactuality in the former schemes
does not allow any particles to travel between receiver and
transmitter. Alternatively, the definition in the latter allows
particles to travel from receiver to transmitter but not vice
versa (i.e., particles are only allowed to propagate in the
opposite direction to the message). The essence of the criticism
of the former schemes is based on an investigation of the
weak trace [26] that the interrogating particle leaves within
the inner part of a NMZI. Essentially, the inner part of the
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NMZIs have to be inaccessible to the interrogating particle.
However, if a weak interaction is present in those parts, the
effect of that is of the same order or stronger than if the particle
had freely propagated through the interaction [28,29]. The
common rebuttal is that this criticism is invalid as a weak
interaction alters the perfect interference of the interferometer
used in the suggested schemes.

While the weak trace is an interesting concept, we feel
that an argument based on information-theoretical principles
is desirable to bring clarity to the subtleties of the counterfac-
tual protocols. Furthermore, owing to the intense discussion
regarding NMZIs, we also see the need of a thorough
investigation of parameter estimation in these structures.

In this paper we adapt the information measures of phase
estimation such that they can be used for parameter estimations
in Mach-Zehnder interferometer structures. We first give an
outline of the theoretical framework of the paper. Second, we
provide a detailed analysis of the wave function evolution
through the NMZI devices. We observe how the classical
Fisher information and Shannon mutual information changes
between experiments with NMZIs depending on where in the
interferometer an interacting medium is placed. Furthermore,
we evaluate the two different definitions of CFC, with suitable
operational (and interpretation independent) measures of their
respective violations. The underlying argument of our work
is that absolutely lossless and pure spatial transmission of
quantum particles is not attainable. Thus, a theory that relies
on such perfect quantum channels is as valid (read: invalid)
as a thermodynamic proof only valid at 0 K. We provide a
model of realistic devices that contain a weak uncontrolled
polarization rotation. This serves the purpose of mimicking
real quantum evolutions. Based on this, we can evaluate the
counterfactuality of the communication schemes according to
their respective definitions. We see that some “counterfactual”
protocols violate their definition of counterfactuality more than
a free-space propagation from a transmitter to a receiver. We
can thus rule out the counterfactuality of these schemes.

II. INFORMATION MEASURES

The basis of this work is the knowledge of how the
single-particle wave function (and thus the probability den-
sity distribution) evolves through the devices we wish to
investigate. The wave function evolution is provided by the
calculation of unitary operations on some initial quantum
state: |ψin〉 → Û |ψin〉. Throughout the evolution, information
will be encoded in the probability density distribution via
the interactions that act on the wave function. While the
extension to multiphoton states is straightforward, we wish to
keep this study in line with suggested counterfactual schemes
[22,23,25,34], and restrict our work to single-photon inputs.

It is often nonsensical to ask where a quantum particle
has been present between two observations. However, along
the evolution of the quantum state, from input to output,
one can introduce an interaction that results in parts of the
wave function occupying a quantum state that only is made
available via this interaction. The wave function will carry
some information about the nature of that interaction and it
is possible to interpret parts of the probability density—that
occupy states only made available via this interaction—as

having had a presence at the area where the interaction
was located. The probability outputs, at the end of the
quantum evolution, allow for the estimation of the interaction
parameters. The effectiveness of such an estimation, for a given
quantum device, can be evaluated with the two information
measures outlined in the following subsection.

A. Shannon mutual information and Fisher information

Consider an experiment, given an input state, ψin, and a
parameter, θ , that sets some interaction. We can calculate
the Shannon mutual information, H (θ : M), between the
parameter θ and the measurement outcomes M = {Mi}, where
Mi represents an event that occurred in the ith detector location
of the total spatial Hilbert space, H:

H (θ : M) =
∑
i∈H

∫ θmax

θmin

dθP (Mi |θ,ψin)p(θ )

× log2

[
P (Mi |θ,ψin)

P (Mi |ψin)

]
, (1)

where P (Mi |ψin)= ∫ θmax

θmin
dθ ′P (Mi |θ ′,ψin)p(θ ′), P (Mi |θ,ψin)

is the probability of Mi for some specific θ and ψin, and p(θ ) is
the a priori probability distribution of the parameter θ [16,35].
The Shannon mutual information provides a measure of how
much information about θ can be obtained through knowledge
of the measurement outcomes of a specific experiment. A
large value of H (θ : M) indicates a good device for parameter
estimations of an unknown parameter θ .

The Shannon mutual information takes into account a prior
distribution of θ : p(θ ). However, if the value of θ is fixed but
unknown, one might ask oneself how much information, on
average, a single use of a specific interferometer yields about
θ . This quantity of information is given by the classical Fisher
information [11,35]:

F (θ ) =
∑
i∈H

1

P (Mi |θ,ψin)

[
∂

∂θ
P (Mi |θ,ψin)

]2

. (2)

In the Cramér-Rao inequality F (θ ) sets a lower bound on
the variance of the estimator of θ , θe, obtained in a specific
experiment:

Var(θe) � 1

F (θ )
. (3)

B. Fisher information as a measure of presence
in optical circuits

Many optical quantum interferometers do not involve
polarization operations. However, any “real” experiment
with single photons will naturally include some polarization
operations—owing to, for example, material impurities and
systematic errors in the experimental setup. We mimic the
inevitable imperfect nature of real quantum channels by
introducing single polarization interactions somewhere in the
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FIG. 1. Sketch of an optical circuit of the form of Eq. (4), which
is described in the text.

optical circuits.1 This represents an interaction with Bob’s
laboratory rather than a generic noise model. We call this
interaction the “tagging” of the wave function. By introducing
the polarization degree of freedom, we can use the Fisher
information to estimate the parameters associated with the
interaction. As has been described above, a tagged part of the
wave function can be considered to have previously existed at
the location of the polarization interaction. In this subsection
we show that, given access to all the outcome possibilities, the
classical Fisher information, in the interferometers studied in
this work, is always proportional to the integrated probability
density distribution that has evolved through the interaction in
the Schrödinger picture.

First, we define an optical input vector, a, of length
2n, which evolves into an output vector, b. The 2n levels
correspond to the n different optical paths of the device, each
of which can exist in one of the two polarization states. We
choose the order of the vector elements so that the first n entries
have the polarization of the initial input state, and so that the
following n entries have orthogonal polarization.

We can describe the evolution of the input state, a, through
the interferometer by a scattering matrix, S, in terms of three
operations:

Sa ≡ [V̂ · f̂ (k)(θ ) · Û ]a ≡ b(k), (4)

where Û and V̂ are the unitary operators of the evolution
up to and after the tagging polarization rotation, respectively,
and f̂ (k)(θ ) is the unitary operator that describes the single
polarization rotation at the specific spatial path of k (where
1 � k � n) by an angle θ . A sketch of the optical circuit of S
is given in Fig. 1. Note that Û and V̂ act solely on the spatial

1Weak unwanted polarization interactions can occur in all parts
of a realistic device. However, our setup can be considered as one
where the experimentalist, Alice, is allowed to correct for unwanted
polarization rotations from all parts of the device, except for those
that occur in a location controlled by Bob (central rectangle in Fig. 1).
Hence, we consider one unwanted polarization rotation, due to Bob’s
laboratory.

degree of freedom and do not manipulate the polarization of
the wave function.

We can define the wave function after Û has been applied
as c ≡ Ûa, with

ci =
2n∑

j=1

Ui,j aj . (5)

The rotation matrix is then applied to this state. It rotates
the quantum state between two of the vector levels, k and k′.
It can be represented by the following real matrix:

f̂ (k)(θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · fk,k(θ ) · · · fk,k′(θ ) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · fk′,k(θ ) · · · fk′,k′(θ ) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where fk,k(θ ) = √
1 − [fk,k′(θ )]2, fk′,k(θ ) = −fk,k′(θ ), and

fk′,k′(θ ) = fk,k(θ ).
We further arrange the vector entries such that l and l + n

correspond to the same spatial location for 1 � l � n. This
means that k′ = k + n in Eq. (6) and ci = 0 for i > n in Eq. (5).
We express the quantum state after the polarization interaction
as d(k)(θ ) ≡ f̂ (k)(θ )c, with

d
(k)
i (θ ) =

2n∑
j=1

f
(k)
i,j (θ )cj . (7)

We note that the only components of d(k) that depend on θ are
d

(k)
i=k = fk,k(θ )ck and d

(k)
i=k+n = fk+n,k(θ )ck .

Finally, we can apply the last unitary evolution V̂ . Fol-
lowing the steps above, we express the output vector as
b(k)(θ ) ≡ V̂ d(k)(θ ), with

b
(k)
i (θ ) ≡ β

(k)
i + b

(k)
i,θ (θ ) =

2n∑
j=1

Vi,j d
(k)
j (θ ), (8)

where the θ dependence of b
(k)
i (θ ) is encapsulated in b

(k)
i,θ (θ )

and a corresponding term, independent of θ , is defined as β
(k)
i .

The probability of measuring the single photon in the ith
output port is then given by

P
(k)
i (θ ) = ∣∣β(k)

i + b
(k)
i,θ (θ )

∣∣2. (9)

This can be reexpressed as

P
(k)
i (θ ) ≡ ∣∣β(k)

i + b
′(k)
i f

(k)
j,k (θ )

∣∣2, (10)

where j = k if i � n and j = k + n if i > n. For convenience
we now drop the (k) superscript.
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Using Eq. (2), the individual Fisher information compo-
nents can be expressed as

Fi = 1

|βi + b′
ifj,k(θ )|2

[
∂

∂θ
|βi + b′

ifj,k(θ )|2
]2

= 1

[βi + b′
ifj,k(θ )][β∗

i + b′∗
i fj,k(θ )]

×
{

∂

∂θ
[βi + b′

ifj,k(θ )][β∗
i + b′∗

i fj,k(θ )]

}2

. (11)

This expression can be simplified by expressing the coeffi-
cients as βi ≡ |βi |eiφi and b′

i ≡ |b′
i |eiφi,θ and defining �i ≡

φi − φi,θ :

Fi = [cos (�i)|βi | + |b′
i |fj,k(θ )]2

|βi |2 + |b′
i |2f 2

j,k(θ ) + 2 cos (�i)|βi ||b′
i |fj,k(θ )

× 4|b′
i |2
[

∂

∂θ
fj,k(θ )

]2

. (12)

We notice that if the phase difference �i is a multiple of π ,
the expression simplifies to

Fi = 4|b′
i |2
[

∂

∂θ
fj,k(θ )

]2

. (13)

This phase criterion is satisfied for all i if the phases of all the
spatial components, i � n, of the input state are the same and
S is real (e.g., the optical setup only contains beam splitters
that can be represented by real operators). It is also satisfied
by all the optical setups considered in Refs. [19–21,23,26,34].

For the quantum optical setups of interest in this paper, we
can thus express the classical Fisher information [Eq. (2)] as

F (θ ) =
2n∑
i=1

4

[
∂

∂θ
|bi,θ (θ )|

]2

. (14)

This can be reexpressed as

F (θ ) =
n∑

i=1

4

[
∂

∂θ
|Vi,kdk(θ )|

]2

+
2n∑

i=n+1

4

[
∂

∂θ
|Vi,k+ndk+n(θ )|

]2

=
n∑

i=1

4|Vi,k|2
[

∂

∂θ
|dk(θ )|

]2

+
2n∑

i=n+1

4|Vi,k+n|2
[

∂

∂θ
|dk+n(θ )|

]2

. (15)

As Û and V̂ do not manipulate the polarization of the wave
function, the symmetry of the matrix V̂ is such that Vi,k =
Vi+n,k+n. It also implies that Vi,k = 0 for i > n and Vi,k+n =
0 for i � n. By assuming a real S and defining a suitable
reference point for the global input phase we simplify our
expression further:

F (θ ) =
2n∑
i=1

4|Vi,k|2
[

∂

∂θ
|dk(θ )|

]2

+
2n∑
i=1

4|Vi,k|2
[

∂

∂θ
|dk+n(θ )|

]2

.

(16)

We sum the squared entries in the column of our unitary matrix
to unity, and the expression simplifies to

F (θ ) = 4

[
∂

∂θ
|dk(θ )|

]2

+ 4

[
∂

∂θ
|dk+n(θ )|

]2

. (17)

At this stage we note that the total Fisher information of
the device does not contain any dependence on the unitary
operation V̂ .

We continue by substituting the expressions of dk and dk+n

from above [Eq. (7)] to obtain a final expression of the Fisher
information:

F (k)(θ ) = 4|ck|2
({

∂

∂θ
[fk,k(θ )]

}2

+
{

∂

∂θ
[fk+n,k(θ )]

}2
)

= 4|ck|2
[

∂
∂θ

fk+n,k(θ )
]2

[fk,k(θ )]2
, (18)

where we briefly reintroduce the (k) superscript.
To conclude this section, we make the observation that the

Fisher information, Eq. (18), is proportional to |ck|2. |ck|2 is
the probability of observing the photon in the kth spatial state
if a detector had been placed at the location of the tagging
interaction. Naively the extent to which the wave function
spreads into a spatial location, according to the time-dependent
Schrödinger equation, could be interpreted as a measure of how
much the particle has been present there. However, owing
to the nature of quantum mechanics, it is philosophically
problematic to specify what the physical meaning of the
wave function between measurements is.2 Nevertheless, in
the circuits studied above, the tagging mechanism, which
rotates the initial polarization of the photon into a superposition
state, is the only polarization component of the interferometer.
Hence, it is arguably less naive to consider an output photon in
an altered polarization state to have had a past that has included
the passage through the tagging part of the interferometer. Even
if the introduced tagging polarization rotations are vanishingly
small and do not affect the specific interferometer significantly,
Eq. (18) shows that the information content, which travels from
the polarization rotator to the output ports, is weighted by the
square of the integrated wave function at the location of the
interaction. Hence, the Fisher information is arguably a good
measure of the extent to which a particle can be considered to
previously have had a presence at the tagging location.

We finish this section with a note regarding an extension
of the above theory, to include other degrees of freedom.
If an interferometer contains polarization rotations (such as
the Michelson-based device in Ref. [23]), these rotations can
simply be included in Û and V̂ . The single rotation, that we
calculate the Fisher information with respect to, should then be
changed to an alternative degree of freedom. With the corre-
sponding alterations of the measure, f̂ (k)(θ ) can, for example,
be taken to be a weak rotation of the photon’s internal orbital
angular momentum. The beauty of this analysis is that Eq. (18)
will still be valid. However, as the interferometers considered

2This is discussed at length in Wheeler’s “The ‘Past’ and the
‘Delayed-Choice’ Double-Slit Experiment,” which has been repro-
duced in Ref. [36].
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FIG. 2. The chained nested Mach-Zehnder interferometer sug-
gested for CFC in Ref. [23]. Alice inputs a photon in the upper left
path and Bob has the choice of introducing detectors in his part of the
device. His choice governs the statistics of the final output detections
at D1 and D2.

in this paper are all ideally nonpolarizing, we conduct our
analysis using weak disturbances on the polarization.

III. MEASURES OF COUNTERFACTUAL VIOLATION

In this section we develop measures for the extent to which a
process violates counterfactuality. These measures will be used
in Secs. V and VI to investigate counterfactual violations of the
CFC protocols proposed by Salih et al. [23] and Arvidsson-
Shukur and Barnes [34].

A. Two CFC definitions

There are two main schemes for CFC, based on different
definitions of the concept. One was developed in 2013 by
Salih et al. [23] (see Fig. 2). We refer to the definition of CFC
in that protocol as the type-I definition. Another scheme was
developed by Arvidsson-Shukur and Barnes in 2016 [34] (see
Fig. 3) and we refer to its definition as the type-II definition.

In both schemes Bob transmits a message to Alice. The
schemes’ respective bit transmissions are initiated by Alice
sending a single particle into the upper left input path of the
devices. Bob can then choose to transmit a 0 bit or a 1 bit by
keeping his laboratory free or inserting absorbing detectors,
respectively. In the type-I protocol (Fig. 2), the quantum Zeno
effect [37,38] is used for both bit processes, such that the
particle ends up at Alice’s detectors D1 (0 bit) or D2 (1 bit)
without ever having crossed the transmission line between
Alice and Bob. The type-II protocol (Fig. 3), on the other hand,
only utilizes the quantum Zeno effect for the 1-bit process.
In this process the particle enters the transmission line and
returns to Alice, but it never enters Bob’s laboratory. In the
0-bit process the particle travels from Alice’s laboratory into
the transmission line. It then evolves into Bob’s laboratory. The
protocols are described in further detail in Secs. V and VI of

FIG. 3. The chained Mach-Zehnder interferometer as used in the
CFC scheme of Ref. [34]. As in Fig. 2, Alice inputs a photon in the
upper left path and Bob governs the statistics of the final output
detections at D1 and D2 by inserting or not inserting detectors,
respectively.

this paper. The differences in the counterfactuality definitions
are summarized in Table I.

The counterfactuality of an interaction-free process natu-
rally depends on the boundaries of the spatial extent of the
respective “laboratories” of the participants in the protocol.
Both the type-I and type-II definitions state that for a process
in Bob’s laboratory to be counterfactual with respect to Alice,
it is essential that particles should never propagate from Bob
to Alice (such that parts of a wave function that interact with
Bob’s laboratory will have a vanishing probability to end up
in Alice’s).

As mentioned above, the type-I and type-II schemes utilize
the quantum Zeno effect, triggered by absorbing detectors
in Bob’s laboratory, to produce their respective logical-1-bit
values in a counterfactual manner. We are not aware of any
works disputing the counterfactual nature of these processes.
That leaves us with the task of evaluating the type-I and type-II
logical-0 processes.

B. The measures

The type-I definition should forbid particles from propagat-
ing from Alice to Bob and vice versa. Following the discussion

TABLE I. The counterfactual nature of the type-I [23] and the
type-II [34] communication schemes. In both schemes a message is
transmitted from a transmitter, Bob, to a receiver, Alice.

Logical 0 Logical 1

Type I No particles cross the transmission line
between Alice and Bob.

Type II Particles propagate from Particles propagate from
Alice to Bob via the Alice to the transmission
transmission line. line and back again.
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FIG. 4. A single-photon state is incident on a weak polarization
rotator. The photon is then measured in its number state and
polarization state.

in the section above, a good measure of the violation of such
a process could be based on the Fisher information encoded at
Bob’s laboratory, in a particle originating from Alice.

In order to evaluate the “strength” of a violation of a type-I
logical-0 process (caused by a tagging interaction as discussed
above) we need a Fisher information benchmark. In this work
we benchmark with respect to the Fisher information of a free-
space evolution, Ffree, subject to the same tagging interaction as
the circuits of interest. This can, for example, be the scenario
of Bob directly sending a photon to Alice (see Fig. 4)—a
clearly non-counterfactual scenario. We can now define our
new measure for the violation of type-I counterfactuality. We
call the measure the type-I counterfactual violation strength:

D := F

Ffree
. (19)

This quantity can effectively be thought of as the Fisher
information encoded in a particle originating from Alice,
owing to an interaction at Bob’s laboratory, as a fraction of
the Fisher information of a free-space interaction. A value of
D = 0 corresponds to no wave function interacting with Bob’s
laboratory, and a value of D � 1 corresponds to an interaction
stronger than or equal to that of a free-space interaction. Values
of the order of unity or bigger are convicted of fully violating
type-I counterfactuality.

When it comes to evaluating the logical 0 in type-II
protocols, we need a different measure than Eq. (19). This is
because this scheme allows Alice’s particles to be encoded by
Bob, as long as they do not return to Alice [34]. The probability
of detection in Alice’s laboratory in this process is null for
perfect quantum channels (θ = 0). Thus, a reasonable measure
of a counterfactual violation would be the total probability of
a particle returning to Alice as a result of a noncollapsing
interaction (i.e., θ �= 0) in Bob’s laboratory. Let Mj∈HA denote
the measurement outcomes triggered in the Hilbert space of
states within the spatial extent of A. Additionally, let Mj ′ /∈HA

denote the negative measurement that indicates all outcome
states outside the spatial extent of A. Our new type-II measure
can then be expressed as

PA :=
∑
j∈HA

P (Mj |θ,ψin) = 1 − P (Mj ′ /∈HA |θ,ψin). (20)

This measure can be interpreted in a way such that PA = 1
corresponds to a full counterfactual violation of the type-II
logical 0 and PA = 0 corresponds to perfect counterfactuality.

Moreover, even though the probability to trigger a detection
in Alice’s laboratory can be very small (PA ≈ 0), small
probabilities can generate much Fisher information. We thus
introduce the spatially restricted Fisher information, FA. FA

is a measure of the sum of the individual components of the
classical Fisher information [Eq. (2)], as experienced by an
observer A. We define

FA(θ ) :=
∑
j∈HA

1

P (Mj |θ,ψin)

[
∂

∂θ
P (Mj |θ,ψin)

]2

+ 1

1 − PA

[
∂

∂θ
PA

]2

. (21)

The first term corresponds to the summation of the Fisher
information components of particle detections by A, while the
second term corresponds to the Fisher information component
of negative measurements by A, i.e., when no particle is
detected by A. Interestingly, in a type-II scheme, Alice can
still obtain much Fisher information on Bob’s θ , even if
counterfactuality is only violated weakly by θ .

We are now in the position to evaluate type-I and type-II
CFC protocols. However, first we conduct an elaborate study
of parameter estimation in NMZIs. This is done in the next
section, where we utilize the information measures from
Sec. II A and extend the works of Bahder et al. [11,16] to
NMZI structures. In Secs. V and VI, we then expand the
analysis in order to evaluate the counterfactuality of type-I
and type-II CFC protocols.

IV. INFORMATION IN NESTED MZIs

A. Free-space interaction

As a reference scenario for the optical circuits discussed
in following sections of this paper, we provide the simplest
of examples of perturbations caused by a polarization rotator.
We consider a single-photon state. It has a polarization degree
of freedom, and propagates in a straight line. It interacts with
a polarizing medium—the rotator—shortly after which it is
measured (see Fig. 4).

The quantum interaction of the wave packet with the rotator
results in a rotation of the polarization set by the parameter
θ = θw. We can calculate the Fisher information, F (θw), and
the Shannon mutual information, H (θw : M), of the parameter
θw and the measurement outcomes.

We introduce the creation operators â
†
H and â

†
V , which

create a single photon in a horizontal and vertical state,
respectively. Our polarization axes are defined such that the
input state can be written as

â
†
H |0〉 ≡

(
1
0

)
. (22)

For the case of a single polarizing rotator, the scattering matrix
[Eq. (4)] takes the form

S = f̂ (1)(θw) =
(√

1 − θ2
w θw

−θw

√
1 − θ2

w

)
. (23)

The polarization rotations of the different optical circuits
studied in this paper will all be in the form of Eq. (23).

The detector in Fig. 4 measures in the basis |nH ,nV 〉, where
nH and nV are the respective photon numbers of horizontal and
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FIG. 5. A single-photon state is sent as the input to one of the
ports of a NMZI. There are six possible detection outcomes (three
spatial outcomes, each having a polarization degree of freedom).
The green barred lines and blue arrowed lines represent mirrors and
nonpolarizing beam splitters, respectively.

vertical polarization at the output. The output probabilities are
given by

P (nH = 1|θw) = 1 − θ2
w, (24)

P (nV = 1|θw) = θ2
w, (25)

where we have adopted a notation such that the statement
ns = 1 implicitly assumes that all other possible measurement
outcomes, t �= s, satisfy

∑
t �=s nt = 0. As we continue to

work with single-photon input states, we keep this notation
throughout the paper.

If θw is fixed, the classical Fisher information of the free-
space rotation is given by Eq. (2) or Eq. (18):

Ffree = 4

1 − θ2
w

. (26)

Equation (26) will be used as the free-space benchmarking
Fisher information in Eq. (19) when calculating counterfactual
violation strengths further on in this paper.

If we instead assume no prior knowledge of θw such that
θmin = −1, θmax = 1, and p(θ ) = 1/2 in Eq. (1), the mutual
information is given by

H (θw : M) = ln(108) − 4

3 ln(2)
≈ 0.328. (27)

B. Nested MZI interaction

We now investigate how the position of a polarization
rotator in the nested Mach-Zehnder interferometer (see Fig. 5)
changes the output probabilities, the Fisher information, and
the Shannon mutual information.

FIG. 6. A polarization rotation is added to one, but only one, of
the positions 1–5 in the nested Mach-Zehnder interferometer from
Fig. 5.

In general one can describe the normalized input and output
vectors, a and b, of the NMZIs by

a = 1√
La

⎛
⎜⎜⎜⎜⎜⎜⎝

na
1,H

na
2,H

na
3,H

na
1,V

na
2,V

na
3,V

⎞
⎟⎟⎟⎟⎟⎟⎠

, b = 1√
Lb

⎛
⎜⎜⎜⎜⎜⎜⎝

nb
1,H

nb
2,H

nb
3,H

nb
1,V

nb
2,V

nb
3,V

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

where La and Lb are some normalization constants. The
corresponding input creation operators are given by â

†
i . These

are transformed into the output operators via the scattering
matrix [see Eq. (4)] b̂

†
j = Si,j â

†
i . In the following sections

we restrict our input states to horizontal single-photon states,
initially occupying the first spatial input port, such that |ψin〉 =
â
†
1,H |0〉. We drop the superscripts of the vector elements.

The beam splitters, BSi , have reflection and transmission
coefficients ri and ti , respectively. In the NMZI device
r2 = t2 = r3 = t3 = 1√

2
, such that the scattering matrix of the

NMZI device, without polarization rotators [i.e., f̂ (k)(θ ) = 1̂
in Eq. (4)], is given by

S =

⎛
⎜⎜⎜⎜⎜⎝

r1r4 t1r4 t4 0 0 0
−r1t4 −t1t4 r4 0 0 0

t1 −r1 0 0 0 0
0 0 0 r1r4 t1r4 t4
0 0 0 −r1t4 −t1t4 r4

0 0 0 t1 −r1 0

⎞
⎟⎟⎟⎟⎟⎠. (29)

We proceed by evaluating the NMZI device for parameter
estimation by considering five different scenarios with a
polarization rotator placed in one out of five locations in the
NMZI device (see Fig. 6).

1. One

In our first scenario, we introduce a rotator in the lower arm
of the nested MZI. See position (1) in Fig. 6. The scattering
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matrix of this device is given by

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

r1r42θw t1r42θw t4 r1r4θw t1r4θw 0
−r1t42θw −t1t42θw r4 −r1t4θw −t1t4θw 0

t1 −r1 0 0 0 0
−r1r4θw −t1r4θw 0 r1r42θw t1r42θw t4
r1t4θw t1t4θw 0 −r1t42θw −t1t42θw r4

0 0 0 t1 −r1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(30)

where θw ≡ √
1 − θ2

w/2.
Assuming the single-photon input state from above, |ψin〉,

we get the following conditional probabilities for the possible
output detections:

P (n1,H = 1|θw) = r2
1 r2

4

(
1 − θ2

w

)
, (31)

P (n1,V = 1|θw) = r2
1 r2

4 θ2
w, (32)

P (n2,H = 1|θw) = r2
1 t2

4

(
1 − θ2

w

)
, (33)

P (n2,V = 1|θw) = r2
1 t2

4 θ2
w, (34)

P (n3,H = 1|θw) = t2
1 , (35)

P (n3,V = 1|θw) = 0. (36)

The Fisher information of this device is given by

F = 4

1 − θ2
w

r2
1 . (37)

Furthermore, the Shannon mutual information is given by

H (θw : M) = ln(108) − 4

3 ln(2)
r2

1 . (38)

We see that the information content obtained from the mea-
surement outcomes, as compared to the free-space scenario,
is scaled by the square of the reflection coefficient of the first
beam splitter (BS1). The information is reduced exactly by
the square of the norm of the wave function that is scattered
through parts of the interferometer not passing through the
polarization rotator in the Schrödinger picture.

2. Two

In our next scenario, we consider the rotator to be placed in
the upper interferometer path, before the second beam splitter.
The scattering matrix then takes the form of

S2 =

⎛
⎜⎜⎜⎜⎜⎝

r1r4 t1r4 t4 0 0 0
−r1t4 −t1t4 r4 0 0 0
t12θw −r12θw 0 t1θw −r1θw 0

0 0 0 r1r4 t1r4 t4
0 0 0 −r1t4 −t1t4 r4

−t1θw r1θw 0 t12θw −r12θw 0

⎞
⎟⎟⎟⎟⎟⎠.

(39)

The conditional probabilities of this example are similar
to those in scenario 1. However, the dependence on θw is
transferred to the third output port, from the first and second

in the example above. The conditional probabilities are now
given by

P
(
nH

1 = 1|θw

) = r2
1 r2

4 , (40)

P
(
nV

1 = 1|θw

) = 0, (41)

P
(
nH

2 = 1|θw

) = r2
1 t2

4 , (42)

P
(
nV

2 = 1|θw

) = 0, (43)

P
(
nH

3 = 1|θw

) = t2
1

(
1 − θ2

w

)
, (44)

P
(
nV

3 = 1|θw

) = t2
1 θ2

w. (45)

The Fisher information is given by the expression

F = 4

1 − θ2
w

t2
1 . (46)

Additionally, the Shannon mutual information is scaled simi-
larly, such that it is given by

H (θw : M) = ln(108) − 4

3 ln(2)
t2
1 . (47)

The r1 dependency of the previous scenario has, naturally,
been transformed into a t1 dependency. Owing to the design
of the NMZI device, the beam splitters of the inner MZI have
no effect on the information of θw if the rotator is placed just
after the first beam splitter.

3. Three

In this scenario we investigate how the above studied
properties change if the polarizing rotator is instead placed
after the third—but before the fourth—beam splitter. The
scattering matrix is then given by

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1r4 t1r4 t42θw 0 0 t4θw

−r1t4 −t1t4 r42θw 0 0 r4θw

t1 −r1 0 0 0 0

0 0 −t4θw r1r4 t1r4 t42θw

0 0 −r4θw −r1t4 −t1t4 r42θw

0 0 0 t1 −r1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

The conditional probabilities are given by

P
(
nH

1 = 1|θw

) = r2
1 r2

4 , (49)

P
(
nV

1 = 1|θw

) = 0, (50)

P
(
nH

2 = 1|θw

) = r2
1 t2

4 , (51)

P
(
nV

2 = 1|θw

) = 0, (52)

P
(
nH

3 = 1|θw

) = t2
1 , (53)

P
(
nV

3 = 1|θw

) = 0. (54)

The lack of dependence on θw can simply be explained by the
fact that the interference effects of the device prohibits any part
of the wave packet to evolve into the spatial location where
the rotator is placed in this scenario.
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The Fisher information is given by

F = 0. (55)

The absence of θw in the conditional probabilities leads to
vanishing Fisher information. The same applies to the Shannon
mutual information:

H (θw : M) = 0. (56)

In the investigation of this scenario, we make the observa-
tion of how the introduction of a polarizing rotator, (3) in Fig. 6,

does not alter the output probabilities from the original device
in Fig. 5. There is never any part of the wave function moving
from the third to the fourth beam splitter. Hence, an interaction
in this region should not yield any information encoded in the
particle.

4. Four and five

In scenarios 4 and 5 we place the polarizing rotator in
the upper and lower path of the inner MZI, respectively. The
scattering matrices of these cases are given by

S4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1r4 − t1t4ϑ
−
w t1r4 + r1t4ϑ

−
w t4ϑ

+
w t1t4ϑw −r1t4ϑw t4ϑ

2
w

−r1t4 − t1r4ϑ
−
w −t1t4 + r1r4ϑ

−
w r4ϑ

+
w t1r4ϑw −r1r4ϑw r4ϑw

t1ϑ
+
w −r1ϑ

+
w −ϑ−

w t1ϑw −r1ϑw ϑw

−t1t4ϑw r1t4ϑw −t4ϑw r1r4 − t1t4ϑ
−
w t1r4 + r1t4ϑ

−
w t4ϑ

+
w

−t1r4ϑw r1r4ϑw −r4ϑw −r1t4 − t1r4ϑ
−
w −t1t4 + r1r4ϑ

−
w r4ϑ

+
w

−t1ϑw r1ϑw −ϑw t1ϑ
+
w −r1ϑ

+
w −ϑ−

w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

S5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1r4 − t1t4ϑ
−
w t1r4 + r1t4ϑ

−
w −t4ϑ

+
w −t1t4ϑw r1t4ϑw t4ϑw

−r1t4 − t1r4ϑ
−
w −t1t4 + r1r4ϑ

−
w −r4ϑ

+
w −t1r4ϑw r1r4ϑw r4ϑw

t1ϑ
+
w −r1ϑ

+
w ϑ−

w −t1ϑw r1ϑw ϑw

−t1t4ϑw r1t4ϑw t4ϑw r1r4 − t1t4ϑ
+
w t1r4 + r1t4ϑ

+
w −t4ϑ

−
w

−t1r4ϑw r1r4ϑw r4ϑw −r1t4 − t1r4ϑ
+
w −t1t4 + r1r4ϑ

+
w −r4ϑ

−
w

−t1ϑw r1ϑw ϑw t1ϑ
−
w −r1ϑ

−
w ϑ+

w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

where ϑ±
w ≡ (1 ± ϑw)/2 and where we temporarily make a

superficial change of variables such that ϑw ≡ √
1 − θ2

w.
For the two scenarios of introducing the polarization rotator

inside the nested part of the interferometer, the conditional
probabilities take more complicated forms:

P
(
nH

1 = 1|ϑw

) = 1
4 [2r1r4 − t1t4(1 − ϑw)]2, (59)

P
(
nV

1 = 1|ϑw

) = 1
4 t2

1 t2
4

(
1 − ϑ2

w

)
, (60)

P
(
nH

2 = 1|ϑw

) = 1
4 [2r1t4 + t1r4(1 − ϑw)]2, (61)

P
(
nV

2 = 1|ϑw

) = 1
4 t2

1 r2
4

(
1 − ϑ2

w

)
, (62)

P
(
nH

3 = 1|ϑw

) = 1
4 t2

1 (1 + ϑw)2, (63)

P
(
nV

3 = 1|ϑw

) = 1
4 t2

1

(
1 − ϑ2

w

)
. (64)

The corresponding Fisher information of the device in Fig. 6,
with a polarization rotator in the nested part [(4) or (5)], is
given by

F (θw) = 2

1 − θ2
w

t2
1 . (65)

In accordance with Eq. (18), we see that the Fisher
information is proportional to how much of the wave packet—
in the Schrödinger picture—has passed through the rotator in
the device. In the scenarios of this subsection, the part of the
wave function that traveled through the rotator in scenario 2
is halved by the second beam splitter before it is allowed to
interact with the rotator. Hence, F [in Eq. (65)] is halved as
compared to its value in scenario 2 [Eq. (46)].

While the Fisher information preserves the simple form of
Eq. (18), the corresponding Shannon mutual information for
these devices is complicated and not very informative. How-
ever, by making the assumption that t4 = r1 and r4 = t1, we
can simplify the expression of the mutual information such that

H (ϑw : M) = 1

3 ln (2)t2
1

(−2r3
1 ln

(
r2

1

)
+ t2

1

{
3 ln (3) + t2

1 [ln (2) − 1]

−2 − (
3r2

1 + t4
1

)
ln
(
3r2

1 + t4
1

)})
. (66)

Furthermore, we can approximate this expression. For
scenarios where t1 ≈ 0, the Shannon mutual information is
successfully modeled by a second-order term:

H (ϑw : M) ≈ −3 + ln (2) + 3 ln (3)

3 ln (2)
t2
1 . (67)

To obtain an even better model (for 0 � t1 � 1) we can use a
Padé approximant [39] of order [6/4]:

H (ϑw : M) ≈ a2t
2
1 + a4t

4
1 + a6t

6
1

1 + b2t
2
1 + b4t

4
1

, (68)

with constants ai and bj for i ∈ {2,4,6} and j ∈ {2,4} given
in Table II. Figure 7 shows the mutual information from
Eq. (66) and the two approximations as functions of t1. The
second-order Taylor expansion (for t1 � 0.4) and the full Padé
approximation model the true curve within mean squared
errors of 3.1×10−8 and 2.8×10−9, respectively.
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TABLE II. Numerical constants in [6/4] Padé approximation of
Eq. (66).

i ai bi

2 −3+ln (2)+3 ln (3)
3 ln (2) −1

4 25−6 ln (2)+25 ln (3)
18 ln (2)

−1
10[−7+3 ln (3)]

6 254−3 ln (2)−429 ln (3)+180 ln (3)2

90[−7+3 ln (3)] ln (3)

After having established the bounds on parameter esti-
mation with NMZI structures, we proceed to evaluate the
counterfactuality of the type-I protocols, which are based on
such devices.

V. EVALUATION OF TYPE-I
COUNTERFACTUAL COMMUNICATION

Figure 2 shows a chained nested Mach-Zehnder interfer-
ometer. The first proposal of direct CFC [23] is based on such
a device. The chained NMZI is divided such that the top right
part of the individual NMZIs are in Bob’s laboratory. The
communication scheme allows Alice to input a photon in the
top left path (solid black line). If Bob wishes to transmit a
logical 0, he leaves all paths open. If he, instead, wishes to
transmit a logical 1, he blocks all paths with his detectors, DB .
Bob’s action, together with the number of inner and outer beam
splitters (M and N , respectively), sets the output statistics in
Alice’s laboratory (detections at D1 or D2). The outer and
inner beam splitters have their transmission coefficients set
such that tn=1,...,N = sin (π/2N ) and tm=1,...,M = sin (π/2M),
respectively. In theory, for an infinitely large number of beam
splitters, the photon can be made to end up at D2 with PD2 = 1
(logical 1) or D1 with PD1 = 1 (logical 0) if Bob inserts or does
not insert DB in his laboratory, respectively [23].

FIG. 7. The mutual information between the polarization rota-
tion, ϑw , and the measurement outcomes, {Mi}, as a function of
beam-splitter transmission, t1, as described in the text. The solid black
line shows the true curve of Eq. (66), the thick gray line shows the
Padé approximation (virtually indistinguishable from the true curve),
and the red dashed line shows the second-order Taylor expansion.

FIG. 8. Probability of detection at D1 (a) and D2 (b) if Bob
unblocks and blocks his path in Fig. 2, respectively. The success
probabilities are expressed as functions of the beam-splitter numbers
N and M .

Reference [23] assumes that the evolution of the interrogat-
ing particle in the above described scheme can be modeled
by perfectly unitary rotation matrices. For reference, we
numerically calculate the detection probabilities of D1 and D2

detections in the scenarios of Bob keeping his laboratory open
and blocked, respectively. These probabilities are shown in
Fig. 8 and are in accordance with those calculated in Ref. [23].

Figure 8 suggests that for a communication scheme with
low logical bit errors we need M � N . We see that success
rates of 95% for the logical 0 [Fig. 8(a)] requires large N ≈ 50.
For such values of N we need M ≈ 1200 to keep the same
success rates for the logical 1 [Fig. 8(b)]. Hence, as discussed
in Ref. [34], a success rate of about 95% requires a total of
approximately 60 000 beam splitters to be used.

A. Single NMZI

References [29,30,40] suggest that the conceptual problem
of the chained NMZI in Ref. [23] can be reduced to a study of
a single NMZI device by considering pre- and postselected
events. Following this reduction, the mentioned references
analytically analyze type-I “counterfactual” schemes based
on single NMZI structures. However, to our knowledge there
exists no rigorous proof that this reduction is an adequate
representation of Salih’s scheme. Crucially, the single eval-
uation of the protocol that they consider does not allow for
the transmission of logical bits. In this section we take an
alternative approach.

1. Analytical analysis

Instead of treating the single NMZI device as a represen-
tation of Salih’s scheme, we evaluate a postselected type-I
protocol that actually allows for communication. Consider
Fig. 9. We preselect our states such that the input is the usual
|ψin〉 = a

†
1,H |0〉 from before. Bob has the option of introducing

some absorbing object in his laboratory. Furthermore, we
include a weak polarization rotation in Bob’s laboratory to
mimic some disturbance in the device. We also postselect our
states such that we exclude the events of absorption in Bob’s
laboratory, by DB or D3.

If Bob wishes to transmit a logical 1 to Alice, he introduces
the absorbing object in his laboratory. The renormalized output
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FIG. 9. The nested Mach-Zehnder interferometer as used in the
communication scheme presented in the text.

probabilities are then given by

P1
(
nH

1 = 1|nH,V
3,B = 0

) = N1(r1r4 − r2t1t2t4)2, (69)

P1
(
nV

1 = 1|nH,V
3,B = 0

) = 0, (70)

P1
(
nH

2 = 1|nH,V
3,B = 0

) = N1(r1t4 + r2r4t1t2)2, (71)

P1
(
nV

2 = 1|nH,V
3,B = 0

) = 0, (72)

with N1 ≡ [1 − t2
1 (r4

2 + t2
2 )]−1.

We set the beam-splitter parameters according to Fig. 9,
with r2 = t2 = 1/

√
2. This simplifies our expression such that

P1
(
nH

1 = 1|nH,V
3,B = 0

) = r2
1 t2

1

3r2
1 + 1

, (73)

P1
(
nV

1 = 1|nH,V
3,B = 0

) = 0, (74)

P1
(
nH

2 = 1|nH,V
3,B = 0

) =
(
r2

1 + 1
)2

3r2
1 + 1

, (75)

P1
(
nV

2 = 1|nH,V
3,B = 0

) = 0. (76)

The corresponding value for the conditioned Fisher informa-
tion of this 1-bit protocol is

F 1 = 0. (77)

This is expected, as any part of the wave function that interacts
with the rotator is then absorbed by DB and can thus not reach
Alice.

Now, consider the process in which Bob instead wishes to
transmit a logical 0 to Alice. He then leaves his laboratory free,
without any absorbing objects. The renormalized probabilities
of detecting the particle in the following states are given by

P0
(
nH

1 = 1|θw,n
H,V
3,B = 0

)
= N0(r1r4 + r2t1t2t4[2θw − 1])2, (78)

P0
(
nV

1 = 1|θw,n
H,V
3,B = 0

) = N0
(
r2

2 t2
1 t2

2 t2
4 θ2

w

)
, (79)

P0
(
nH

2 = 1|θw,n
H,V
3,B = 0

)
= N0(r1t4 − r2r4t1t2[2θw − 1])2, (80)

P0
(
nV

2 = 1|θw,n
H,V
3,B = 0

) = N0
(
r2

2 r2
4 t2

1 t2
2 θ2

w

)
, (81)

with N0 ≡ [1 − t2
1 (r4

2 + t4
2 + 4r2

2 t2
2 θw)]−1. Again, we set the

beam-splitter parameters according to Fig. 9, with r2 = t2 =
1/

√
2. The probabilities then simplify to

P0
(
nH

1 = 1|θw,n
H,V
3,B = 0

) = N ′
0r

2
1 t2

1 (1 + 2θw)2, (82)

P0
(
nV

1 = 1|θw,n
H,V
3,B = 0

) = N ′
0r

2
1 t2

1 θ2
w, (83)

P0
(
nH

2 = 1|θw,n
H,V
3,B = 0

) = N ′
0

(
1 + r2

1 − 2t2
1 θw

)2
, (84)

P0
(
nV

2 = 1|θw,n
H,V
3,B = 0

) = N ′
0t

4
1 θ2

w, (85)

where N ′
0 ≡ [4 − 2t2

1 (1 + 2θw)]−1.
For the 0-bit scheme considered above, we then obtain

F 0 = t2
1

1 − θ2
w

. (86)

This can be compared to the 1-bit scheme, where the value is
F 1 = 0, such that there is no information about the angle θw

given to Alice.
The two processes described in this section can be used in

order to transmit information from Bob to Alice in a scenario
where Bob only has access to the inner part of the NMZI (see
Fig. 9). However, in order for our setup to be representative of
the behavior of the chained NMZI structure from the section
above, we set θw � t1 � r1. Hence, the polarization rotation
will have a minute impact on the probability outputs. For
t1 � r1, the probability distributions for the 0- and 1-bit
processes are very similar. We see that in both processes of
the scheme, Alice will detect the state |nH

2 = 1〉 with high
probability. Thus, in order for Alice to obtain Bob’s choice
of bit value, with high probability, each logical bit has to be
decoded from a larger bit string.

The communication scheme is as follows: Alice sends a
number, nγ , of single photons (excluding the particles that
do not fulfill the postselection criterion and are absorbed by
either DB or D3) into the device of Fig. 9, one after another.
Depending on what logical bit Bob wishes to transmit, he
either inserts detector DB or leaves his laboratory open, for all
the nγ particles. Alice makes subsequent particle detections of
the nγ events: |nH

1 = 1〉, |nH
2 = 1〉, |nV

1 = 1〉, or |nV
2 = 1〉. If

she measures any event in |nV
1 = 1〉 or |nV

2 = 1〉, she knows
with certainty that a logical 0 was sent. However, owing to the
fact that θw is very small, the accumulative probability of these
events is also small. Hence, Alice will, with high probability,
have to use the statistics of |nH

1 = 1〉 and |nH
2 = 1〉 detections

to infer the logical bit. From the number of particles, q, that
Alice measures in the |nH

1 = 1〉 state, she decides whether Bob
sent a logical 0 or a logical 1.

The question of interest is, what number, nγ , of single-
photon evaluations of the device allows for an effective
communication scheme with a limited number of errors?

We redefine P1 ≡ P1(nH
1 = 1|nH,V

3,B = 0) and P0 ≡
P0(nH

1 = 1|θw,n
H,V
3,B = 0). For small t1 and θw � t1, we see

that P1 < P0. Alice will thus note down a 1 every time q < q ′.
In the limit of long message strings, Bob will produce logical
0s and 1s at the same rates, and the exact value of q ′ is

062316-11



ARVIDSSON-SHUKUR, GOTTFRIES, AND BARNES PHYSICAL REVIEW A 96, 062316 (2017)

given by

q ′ =
⎢⎢⎢⎣ nγ ln

(
1−P1
1−P0

)
ln
(

P0
P1

)
− ln

(
1−P0
1−P1

)
⎥⎥⎥⎦. (87)

The probability for a nonfaulty logical bit transmission is thus

Psucc = 1

2

q ′∑
q=0

nγ !P q

1 (1 − P1)nγ −q

q!(nγ − q)!

+ 1

2

nγ∑
q=q ′+1

nγ !P q

0 (1 − P0)nγ −q

q!(nγ − q)!
. (88)

Equation (88) can be used to numerically find an acceptable
value of nγ , given the parameters of the setup. However,
in order to evaluate the setup discussed in Refs. [23,26,28–
31], we need the transmission coefficient to be small [t1 =
sin (π/2N ) � 1, with N � 1]. As t1 is small, we can, by
the central limit theorem, assume that nγ has to be large and
that the two bit-processes will generate normally distributed
events. The two processes will each have a mean situated at
P1 and P0, respectively. Their respective standard deviations
will be given by

σi =
√

Pi(1 − Pi)

nγ

, (89)

where i = 0,1, which decreases reciprocally with the square
root of nγ . For Alice to be able to distinguish between the
logical 0 and 1 bits correctly with probability 1 − ε, we require
that

nγ �
[
�−1(ε)

√
P0(1 − P0) + √

P1(1 − P1)

P0 − P1

]2

, (90)

where �−1(ε) is the inverse of the standard normal cumulative
distribution function.

We can Taylor-expand nγ for small values of t1 such that

nγ � [�−1(ε)]2 4

t2
1

+ O
(
t−1
1

)
. (91)

As the Fisher information scales linearly with the number of
evaluations of the channel, nγ , our counterfactual violation
strength for a type-I logical 0 bit is given by

D = nγ

F 0

Ffree
� [�−1(ε)]2. (92)

For a success rate of roughly 95%, we thus obtain a value
of D ≈ 2.7, and we conclude that the CFC scheme described
in this subsection is no more counterfactual than a free-space
evolution of particles between Alice and Bob.

2. Simulation of quantum evolution

In order to illustrate the origin of a counterfactual violation
inside a NMZI device, we provide a numerical simulation
of the time-dependent Schrödinger equation. We simulate a
massive Gaussian spin- 1

2 particle that propagates through a
NMZI, which we have mapped onto a linear 1D structure. The
Hamiltonian to implement such an evolution can be tailored as

in Ref. [34]. This allows us to design a toy model for the wave
function evolution in a NMZI. The solution is calculated by
a GPU-boosted version of the staggered leapfrog algorithm
as in Refs. [41,42]. Figure 10 shows the evolution of the
wave function. The Hamiltonian has been tailored such that the
beam-splitter parameters are given by t2 = r2 = t3 = r3 = 1√

2
,

t1 = t4 = 1
2 , and r1 = r4 =

√
3

2 .
As can be seen from Fig. 10, the effect of the weak

interaction in Bob’s laboratory [right frame in Fig. 10(d)] is to
distort the interaction on the beam splitter [between Figs. 10(d)
and 10(f)]. In the scenario of no interaction, the second passage
through the right beam splitter causes the middle and right parts
of the wave packet to interfere constructively and propagate
to Bob’s laboratory, never to return to Alice. However, a weak
interaction in Bob’s laboratory allows for a fraction of the wave
packet [right frame in Fig. 10(e)] to propagate back towards
Alice’s laboratory and interfere on the left beam splitter.
Hence, the probability density distributions around x = 0.5
and x = 2.5 in Alice’s laboratory are different depending on
whether or not a weak interaction took place. This is why
the type-I counterfactuality is satisfied, only if absolutely pure
quantum channels are present in the NMZI device.

B. Chained NMZIs

In the previous subsection, we analyzed a reduced NMZI
CFC scheme. However, an extension of the analysis to the
originally proposed chained NMZI protocol of Ref. [23] is
not straightforward. (Previous attempts have been heavily
criticized [23,25–33,40].) In general, complications arise from
the multiple paths [(N − 1)×(M − 1) in Fig. 2] in and out of
Bob’s laboratory. In terms of our approach, this complicates the
concept of “presence.” Nevertheless, the Fisher information
with respect to the weak disturbance in Bob’s laboratory
can still be calculated—and generally has significantly larger
values than those calculated with Eq. (18). An analytical
analysis of the Fisher information in the chained NMZI
devices yields a complicated noninformative expression, even
for small numbers of M and N . Instead, a numerical finite-
difference method allows for a comprehensive approximation
of the Fisher information. This allows us to calculate the
counterfactual violation strength [Eq. (19)].

We now calculate the quantum evolution of the type-I
logical-0 process (no DB), with a polarization rotation of
θw in every inner MZI in Bob’s laboratory (see Fig. 11). In
accordance with the previous sections of this paper, the weak
rotations mimic disturbances of realistic quantum channels.
Figure 12 shows the spatially conditioned [i.e., F → FA in
Eq. (19)] type-I counterfactual violation strength, DA, as a
function of N and M , assuming that Bob leaves his path
open and that the polarization rotations are carried out with
a weak polarization parameter: θw = 10−6 � M−1. A simple
calculation shows that D � DA, such that Fig. 12 can be used
as a lower bound on the type-I counterfactual violation strength
in the device of Fig. 11.

As stated before, large values of M and N are needed to
carry out the direct communication scheme with high success
probability. For such values, the counterfactual violation
strength of the chained NMZI communication scheme is
many orders of magnitude larger than unity. For realistic
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FIG. 10. This figure shows the quantum evolution [time steps (a)
to (f)] of the probability density distribution of a spin- 1

2 particle in a
nested Mach-Zehnder interferometer with and without a weak spin-
rotation interaction (exaggerated for visibility) in Bob’s laboratory.
The dotted red and solid blue curves indicate spin-up and spin-down
components of the wave function, respectively. The dashed green
curves show the potentials. Beam splitters are denoted with vertical
yellow lines. The spatial components are indicated with the vertical
dashed gray lines.

FIG. 11. The logical-0 process for the chained nested Mach-
Zehnder interferometer suggested for CFC in Ref. [23]. The weak
polarization interactions mimic realistic systematic errors in the
quantum channels of Bob’s laboratory.

quantum channels, we can thus, based on our counterfactuality
measure, conclude that the suggested communication scheme
of Ref. [23] is, de facto, not counterfactual.

VI. EVALUATION OF TYPE-II
COUNTERFACTUAL COMMUNICATION

We now consider the type-II protocol suggested by
Arvidsson-Shukur and Barnes [34], which relies on a chained
MZI (CMZI) device. Such a device is shown in Fig. 3.

FIG. 12. The spatially conditioned type-I counterfactual violation
strength as a function of the beam-splitter numbers N and M for the
scenario of Bob not introducing his detectors in Fig. 2 or 11.
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FIG. 13. The logical-0 process of the chained Mach-Zehnder
interferometer CFC scheme of Ref. [34]. Again, the weak polarization
interactions mimic realistic systematic errors in the quantum channels
of Bob’s laboratory.

In this protocol, Alice sends a single-photon state into the
upper left input path of the device (solid black line). The photon
then enters the transmission line, which shares a CMZI device
with Bob’s laboratory. Bob has the possibility of inputting
detectors in his path or leaving it open. If Bob leaves his path
open, the quantum evolution of the photon in the device will
lead it to emerge onto detector D2 in Bob’s laboratory, without
the wave packet ever spreading into Alice’s laboratory after it
first left it. However, if Bob instead inputs detectors, DB , after
each beam splitter, the wave packet will either be absorbed by
one of them or collapse onto a state in the lower part of the
CMZI device that can reenter Alice’s laboratory to be detected
by detector D1. In the limit of large N and inserted detectors,
the quantum Zeno effect can make the probability of reentering
in Alice’s laboratory arbitrarily close to unity. Hence, Bob’s
action of either leaving his path free or inserting detectors
affects the detection probabilities in Alice’s laboratory and—in
the limit of large N—allows her to deduce Bob’s action with
a high probability of success.3

This protocol is conceptually different from the one
presented in Ref. [23]. That protocol suggests a scenario where
the photon would never travel from Bob to Alice or vice
versa. The protocol described in Ref. [34] indeed never sees
the photon wave function travel from Bob to Alice. It does,
however, allow for the wave function to propagate from Alice
to Bob. The protocol is, nevertheless, counterfactual according
to the type-II definition, which allows particles to travel in the
opposite direction to the message.

We simulate the type-II counterfactual violation strength
[PA from Eq. (20)] per photon transport through the CMZI with
Bob’s path open, as a function of N . The weak polarization

3The protocol presented in Ref. [34] shows how a clever logical
bit-encoding scheme can take the probability of success close to
unity, even for imperfect beam splitters and N � 7.

FIG. 14. The type-II logical-0 (see Ref. [34]) counterfactual
violation strength, PA (dashed lines read on the left y axis), and
the spatially conditioned Fisher information, FA (solid line read on
the right y axis), as functions of the beam-splitter number, N .

rotators are again inserted in each separate MZI of Bob’s
laboratory (see Fig. 13). PA is dependent of θw and we present
results for various values of θw in Fig. 14.

The CMZI CFC protocol can be carried out with a high suc-
cess rate with less than 100 beam splitters (the success rate of
the 1-bit process when Bob inserts his detectors is above 95%
if N � 50). Hence, Fig. 14 validates the counterfactuality of
the CMZI scheme for the values of θw that we have considered.
We see that for small values of θw the value of PA is kept well
below the free-space interaction value of 1. Regardless of the
small values of PA, Fig. 14 shows that Alice obtains a large
amount of Fisher information FA(θw) about Bob’s parameter
θw. The value of FA(θ ) is independent of changes in the value
of θ for small θ = θw ≈ 0. The value of PA is not.

VII. CONCLUDING REMARKS

In this paper we have carried out a thorough study of
the classical Fisher information and the Shannon mutual
information in nested Mach-Zehnder interferometers. We have
calculated these information measures with respect to the
measurement outcomes caused by polarization rotations in
different parts of the structure. We find that in an otherwise
nonpolarizing optical circuit with real beam-splitter matri-
ces, the Fisher information caused by a single polarization
rotation is always proportional to the integrated probability
density distribution at the location of the interaction in
the Schrödinger picture. The Fisher information—in such
a scenario—can thus be thought of as a measure of inter-
measurement “presence” at the rotator. Furthermore, we
have developed interpretation-independent measures for the
strength of counterfactual violations in two different types
of CFC schemes. Type-I schemes do not allow particles to
cross the transmission line between transmitter and receiver,
while the type-II schemes allow particles to travel in opposite
direction to the message. The rudimentary assumption made
in this paper is that any real quantum channel will naturally
have unwanted components associated with it. We introduce a
small polarization rotation as a simple model of an unwanted
quantum evolution in the devices. We find that a suitable
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measure of type-I counterfactual violations is based on the
classical Fisher information of the parameter θw that set the
polarization rotation. It is scaled by the reciprocal Fisher
information from a free-space interaction of the same strength
as the one used in the device of interest. Hence, a value of
D = 1 corresponds to the counterfactual violation strength of
a free-space interaction inside the laboratory of study, and any
value between 0 and 1 corresponds to a weaker-than-free-space
counterfactual violation. For example, we can show that
the suggested scheme of Salih et al. [23] strongly violates
counterfactuality. Moreover, we provide an analytical study as
well as a numerical simulation of the quantum evolution of a
Gaussian particle in a single NMZI. The numerics show how
the evolution of the quantum wave function leads to Fisher
information of the interaction parameter (and ultimately the
counterfactual violations) in NMZI communication schemes.
The analytical study supports the claim of the invalidity of
counterfactual schemes based on NMZIs. The type-II scheme
developed by Arvidsson-Shukur and Barnes [34] should be

measured with another counterfactual violation measure. This
measure, PA, is based on how much probability density that
weak noncollapsing interactions in Bob’s laboratory generate
in Alice’s. We find that the type-II scheme of Ref. [34] keeps
the value of PA to a fraction of a percent for weak interactions,
and thus satisfies its counterfactuality definition.
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