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Steady many-body entanglements in dissipative systems
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We propose a dissipative method for the preparation of many-body steady entangled states in spin and fermionic
chains. The scheme is accomplished by means of an engineered set of Lindbladians acting over the eigenmodes of
the system, whose spectrum is assumed to be resolvable. We apply this idea to prepare a particular entangled state
of a spin chain described by the XY model, emphasizing its generality and experimental feasibility. Our results
show that our proposal is capable of achieving high fidelities and purities for a given target state, even when
dephasing and thermal dissipative processes are taken into account. Moreover, the method exhibits a remarkable
robustness against fluctuations in the model parameters.
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I. INTRODUCTION

Deterministic state preparations involving engineered
Hamiltonians have promoted great progress in quantum
information in recent years [1]. Nevertheless, such an endeavor
is unavoidably affected by several sources of quantum noise
or decoherence, for instance, energy losses from the system
of interest to the environment [2,3]. The development of
strategies to prepare nonclassical states [4] and, particularly,
to circumvent their decoherence has long been a challenge in
quantum information studies. Despite this, important efforts
have been proposed to overcome this obstacle, e.g., via
decoherence-free subspaces [5,6], dynamical decoupling [7],
and reservoir engineering [8,9]. From a conceptual viewpoint,
the need for these states stems from their use in the study
of fundamental quantum processes, such as decoherences
[10] and quantum-to-classical transitions [11]. For practical
purposes, on the other hand, the advent of the quantum com-
putation and quantum communication fields—which depend
strongly on the production of long-lived quantum states and
quantum correlations [2,12]—has certainly demanded extra
efforts from researchers to develop efficient techniques for
preparing and protecting nonclassical states from quantum
noise [13].

In this context, the reservoir engineering technique pro-
posed in Poyatos et al. [8] and experimentally demonstrated
in a trapped ion system [14] signals an important step towards
the implementation of quantum information resources [2].
One of the most important aspects of dissipative protocols
is their independence of initial states, i.e., starting from
an arbitrary initial state, the nonunitary time evolution of
the system renders a final steady state that asymptotically
approaches a predefined target state. Such a scheme relies
on the construction of a Liouvillian (L) for which the steady
state (ρS) follows the condition LρS = 0. If the Liouvillian
is engineered in a way that ρS is the target state, ρt =
|ψt 〉〈ψt |, the dissipative protocol is successful. Furthermore,
the reservoir engineering technique can fulfill other purposes,
such as dissipative preparation of many-body quantum states
[15] and universal dissipative quantum computation [16].
Interestingly, this technique is also important for extending
the concept of analog quantum simulation to the domain of

open systems [17], allowing for the study of quantum phase
transitions.

The possibility of preparing maximally entangled states
via engineered dissipative processes has been shown both
theoretically [18] and experimentally [17]. However, most of
the proposed schemes concentrate on the preparation of atomic
maximally entangled states of two [19] and three qubits (W
states) [20] and cluster entangled states [21]. Extensions to
continuous variable cases have been presented to the study
of entanglements of two and three oscillators coupled to a
common reservoir [22]. More recently, a proposal for the
preparation of steady entanglements in bosonic dissipative
networks has also been reported [23]. Of particular interest
for quantum computation and quantum information are the
so-called quantum many-body states [24]. Because of the
intricate nature of the Hamiltonians describing many-body
systems, preparation of many-body quantum states is generally
challenging. Recent proposals for preparing such states are
based, for instance, on a spin system coupled to a damped
harmonic oscillator [25] or a series of optimized coherent
pump pulses followed by feedback operations [26].

In this work we propose a simple yet efficient dissipa-
tive protocol to generate many-body entangled states. Our
approach follows the prescription described in [27], where the
weak-coupling regime between system-reservoir is assumed.
The scheme is built up by tunable quantum two-level systems
(TLS) with a switchable coupling to a spin system that has
one nondegenerate eigenstate as the target state. A suitable
initial pump of the TLS to the excited state provides an
engineered Liouvillian superoperator that drives the system
of interest to the desired steady state (the target state). In
order to counterbalance the inevitable effects of the natural
(nonengineered) environment and the need of polarized initial
spin states, we employ other TLSs to cool down the remaining
(undesired) eigenstates. Moreover, similarly to the proposals
found in Refs. [25] and [26], we need the spectral resolution in
the vicinity of the target state (to avoid spurious population
transfer). As a concrete example, we apply our protocol
to prepare a many-body state of a spin chain model [28].
Since this model can also be understood as a quadratic
fermionic model, the results may also be interesting for
fermionic atoms in optical lattices [29]. Experimentally,
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“TLS reservoirs” can be implemented under current tech-
nology in quantum cavity electrodynamics [27], in trapped
ions [30], and QED superconducting circuits [31], where a
beam of atoms simulating the reservoir can be achieved by a
pulsed classical field. In the former, the classical field is used
to couple the vibrational field intermittently with the internal
ionic states, while in the latter, it is used to bring a Cooper-pair
box into resonance with the mode of a superconducting strip.
Moreover, spin chains similar to the ones treated here have
already been experimentally implemented in optical lattices
[29], trapped ions [32], and circuit QED [33]. Our results reveal
that our protocol not only works in the presence of dephasing
(which is especially critical for many-body quantum states),
thermal effects, and parameter fluctuations, but it also has the
potential to be scalable. Remarkably, our results are shown to
be very robust against fluctuations in the model parameters
as well, which is of paramount importance for experimental
realizations.

II. MODEL

Our state protection protocol relies on a resonant coupling
between a fermionic eigenstate (mode of a spin chain with
N elements) and a set of TLSs, this one being the required
engineered reservoir. The setup is schematically depicted in
Fig. 1. The dissipation in those modes is engineered in such a
way that the steady state (target state) is an eigenstate of the
spin chain Hamiltonian. Thus, the target state is selectively
pumped to the relevant spectral gap relative to the ground
state of the Hamiltonian, with remaining couplings strongly
off resonant. The steady state of the system of interest is
driven by a sum of N engineered Lindbladians, one of
which drives the system to the desired target state while the
other N − 1 Lindbladians are necessary to counterbalance
the inevitable effects of amplitude and phase damping, both
emerging naturally from the (nonengineered) environment.
We demonstrate that once the system Hamiltonian has been
diagonalized (either analytically or numerically) and both
provided that the spectrum is resolvable and the fermionic
modes can be directly coupled to the spin reservoir, our
method can be used to address various entangled states.
Let us start by defining the total Hamiltonian H = Hc +
Hr + HI , where Hc and Hr correspond to the Hamiltonians
of the system and the reservoirs, respectively. Specifically,
Hc corresponds to a spin chain Hamiltonian and can be
expressed by

Hc =
N∑

i,j=1

O
†
i HijOj , (1)

with Hij = ωiδij + ζij (1 − δij ),O†
i (Oi) being the creation

(annihilation) fermionic operators, ωi denoting the ith fermion
frequency, ζij representing the coupling strength between the
pair of fermions, and δij the Kronecker delta. The reservoir
is composed by a set of TLSs with frequencies �j whose
Hamiltonian can be written as

Hr =
N∑

j=1

�j

2
σ z

j , (2)

in which σ z
j is the usual Pauli operator. Finally, the interaction

between the system and the reservoir is described by

HI =
N∑

j=1

λj (O†
j σ

−
j + Ojσ

+
j ), (3)

where λj is the strength of the fermion-reservoir coupling
when the rotating wave approximation (RWA) approximation
has already been taken into account. In general, the expression
above would contain several time-dependent terms; thus in
order to overcome this difficulty, we chose detunings in such
a way to avoid (small or null) irrelevant couplings and, in
this manner, be able to generate the desired target states. The
frequencies of the modes and TLSs are already resonant with
a relevant transition of interest.

We now diagonalize the Hamiltonian HI using the trans-
formation Rm = ∑

n T −1
mn On, where the coefficients of the nth

column of the orthonormal matrix T (T −1 = T t ) give the
eigenvectors associated with the eigenvalues ω̃i . This allows
us to express the Liouvillian in terms of the operator that
will protect the target state after tracing out the reservoir
degrees of freedom. To engineer quantum states we use the
atomic reservoir technique [27,34], in which, traditionally,
an atom beam passing through a cavity mode (one atom at
a time) is used to generate an artificial Liouvillian. Within
such a technique, the weak-coupling regime for the interaction
parameter of the Hamiltonian is assumed, i.e., λiτ � 1,
where τ is the mean interaction time, yielding the Markovian
Liouvillian,

Lengρ = �−
2

(2OρO† − ρO†O − O†Oρ)

+ �+
2

(2O†ρO − ρOO† − OO†ρ).

In the above, the effective rate �+ (�−) accounts for the
pumping (cooling) of the target state ρ

T
. They are given by [27]

�± = r±(λiτ )2, in which r+(r−) is the rate of the switching
on (off) of the interaction that drives the TLS to the excited
(ground) state. The total Liouvillian also includes dissipative
terms associated with thermal and phase losses, which are
taken into account in our model as well. In the next section
we illustrate this protocol and clarify the principles mentioned
above in the XY spin chain Hamiltonian.

For concreteness, let us consider a finite spin chain
composed of N spins coupled by the isotropic XY Hamiltonian
with each spin coupled to a TLS. The total Hamiltonian
H = Hc + Hr + HI of this system is given by (h̄ = 1)

Hc = J

N−1∑
j=1

(S+
j S−

j+1 + S−
j S+

j+1), (4)

Hr =
N∑

j=1

�j

2
σ z

j , (5)

HI =
N∑

j=1

λj (S+
j σ−

j + S−
j σ+

j ), (6)

where Sl
j (σ l

j ) (with l = +,−) denotes the Pauli raising
(lowering) operator of the j th spin (TLS), J is the strength
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FIG. 1. Schematic representation of the system composed of a spin chain (our system of interest) described by an XY Hamiltonian. The
reservoir consists of a set of two-level systems that mediates the dissipation and pumping of the spin chain normal modes. By controlling
the system-reservoir couplings one can, in principle, find a Hamiltonian whose spectrum is resolved enough thus through its pump that we
can access the target state (|sj 〉) individually. |si〉 is the ith eigenstate of the Hamiltonian of the system of interest with ωi its corresponding
eigenenergy. γ+i (γ−i) is the pump (cooling) rates of the ith level of the Hamiltonian, Ji,i+1 = J is the system coupling between spins, while
λi,k is the coupling between the ith system spin and the kth reservoir spin. In the scheme above i = k; the emerging off-resonant couplings can
be eliminated by performing the rotating wave approximation (RWA).

of the nearest-neighbor spin-spin coupling within the system
of interest, λj is the strength of the chain-reservoir coupling
between the j th spin of the chain and the j th reservoir TLS,
and �j is the frequency of the j th TLS. Performing a Jordan-
Wigner transformation, it is possible to fermionize (and diag-
onalize) the Hamiltonian of the system of interest, leading to
H̄chain = ∑N

k=1 ωkf
†
k fk, where ωk = 2J cos ( kπ

N+1 ) [35], with

k = 1, . . . ,N , and f
†
k ,fk are, respectively, the creation and

annihilation fermionic operators and H̄chain is the diagonalized
chain Hamiltonian. With this diagonalized chain term it is pos-
sible to define an interaction picture by performing the unitary
transformation U = exp {−i[

∑N
k=1 ωkf

†
k fk + ∑N

j=1
�j

2 σ z
j ]t};

then HI takes the form

H̃I =
N∑

j=1

N∑
k=1

λjk{f †
k σ−

j exp[i(ωk − �j )t]

+ fkσ
+
j exp[−i(ωk − �j )t]}, (7)

with λjk =
√

2
N+1 sin ( jkπ

N+1 ). We now tune each TLS reso-
nantly with one eigenmode ωk = �j (with k and j chosen in
order that irrelevant couplings are avoided) with a detuning
ωk±1 − �j ≈ J/N . Assuming J/N � λjk we can write the
effective Hamiltonian (within the RWA) as

H̃I =
N∑

i=1

λi(f
†
i σ−

i + fiσ
+
i ). (8)

The validity of this effective RWA and of the full Hamiltonian
has been analyzed in detail in Refs. [36] and [37].

Following Refs. [27] and [34], we assume a weak-coupling
regime for the interaction parameter, i.e., λiτ � 1 (with τ

being the time in which the TLS interacts with the spin system).
When the TLSs are prepared in the ground |g〉 or in the excited
|e〉 states, we obtain the engineered Liouvillian:

Lengρ =
N∑

i=1

γi−

2
(2fiρf

†
i − ρf

†
i fi − f

†
i fiρ)

+
N∑

i=1

γi+

2
(2f

†
i ρfi − ρfif

†
i − fif

†
i ρ), (9)

where γi− = rg(λiτ )2, γi+ = re(λiτ )2, and rg(e) is the switch-
ing on/off rate of the TLS-spin interaction. The dissipative
dynamics of the open system is assumed to be Markovian and
governed by a master equation of Lindblad form,

Lnatρ =
∑

i

κ

2
(1 + n)(2S−

i ρS+
i − ρS+

i S−
i − S+

i S−
i ρ)

+
∑

i

κ

2
n(2S+

i ρS−
i − ρS−

i S+
i − S−

i S+
i ρ)

+
∑

i

κφ

2

(
2Sz

i ρSz
i − ρ

)
, (10)

with decay rates κ , dephasing κφ , and n is the average number
of bosons in the thermal bath. We want to drive the system of
interest to a target steady state. To that effect, we choose an
eigenmode of the system of interest and prepare the associated
reservoir in |e〉 while the other N − 1 “TLS reservoirs” are
prepared in the |g〉, and, as it will be shown later in the
Numerical Results section, it might not be necessary to use
all of the N − 1 depumping terms. To validate our protocol
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FIG. 2. (a) Fidelity Fsteady = √
T r(|φ〉〈φ|ρss) as a function of γ /κ for various temperatures (represented by n̄) for the N = 5 spin chain,

with steady state as given by the Eq. (12). Here we consider only one engineered reservoir connected with the pump Liouvillian at γ+ = γ and
γ− = κφ = 0. (b) Same as in (a) but for five different numbers of reservoirs (as indicated in the figure). Here we set γ+ = γ− = γ, κφ = κ . The
temperature of all the reservoirs is assumed to be equal, n = 0.001. (c) Purity Psteady = T r[ρ2

ss] and (d) concurrence between the second and
third spins against γ /κ for the same parameters of panel (b). (e) Time evolution (τ = t/γ ) of the fidelity and purity P(t) for three different
degrees of randomness (10,20,30)% of the effective decay rates γ+ and γ− . (f) Fidelity and purity are obtained for the state |φ〉N against number
N of spins in the chain with the other parameters kept the same as in panel (e).

we solve numerically the full master equation

dρ

dt
= −i[H̃I ,ρ] + Lnatρ + Lengρ, (11)

running in QuTIP [38], and compute the steady-state density
matrix ρS as t → ∞.

III. NUMERICAL RESULTS

Let us start by considering the effect of the temperature on
the preparation of the steady (entangled) state,

|φ〉 = 1

2
√

3
|↑↓↓↓↓〉 + 1

2
|↓↑↓↓↓〉 + 1√

3
|↓↓↑↓↓〉

+ 1

2
|↓↓↓↑↓〉 + 1

2
√

3
|↓↓↓↓↑〉, (12)

in a chain of N = 5, when only one engineered reservoir is
present, i.e., only the pump Liouvillian with γ+ = γ and γ− =
κφ = 0. To show that indeed the system approaches the target
state, in Fig. 2(a) we show the fidelity Fsteady = √

T r|φ〉〈φ|ρss

for which the steady state is obtained for different n as a

function of γ /κ. We observe that, for typical qubits (atoms,
ions, superconductors) on microwave experiments, where
n ≈ 0.001 [39], we can achieve a fidelity above 0.9 with
γ /κ ≈ 50 and re ≈ 103, as currently done in cavity QED [40].
To clarify the role played by the N − 1 cooling Liouvillians
and to show how our protocol improves over previous works,
in Fig. 2(b) we plot the steady-state fidelity against γ /κ for
different numbers of engineered reservoirs. Here we choose
γ+ = γ− = γ, κφ = κ , and n = 0.001. Note that when only
one pump is used the fidelity decreases to 0.6, even for high
γ /κ rates. This reveals that the steady-state fidelity is strongly
sensitive to dephasing. That being said, our scheme shows how
to circumvent this unwanted effect by adding other reservoirs
acting to cooldown the undesired modes. Therefore, when all
the reservoirs are turned on we can obtain Fsteady close to
unity (see, for instance, the magenta line for five reservoirs).
It is known that the fidelity alone is not enough to asses
the quality of the steady state. Therefore, in Figs. 2(c) and
2(d) [with the same parameters of Fig. 2(b)] we show the
purity Psteady = T r[ρ2

ss], as a complementary measure since
it quantifies the degree of mixing. In Fig. 2(d) we compute
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the concurrence [41] between the second and third spins. As
pointed out, the Fsteady is dubious as a witness of merit [one
can have high fidelity for a fairly mixed state, as a comparison
between figures (b) and (c) reveals upon inspection], as we see
high purity only with all the five reservoirs turned on. In this
case, we achieved Psteady above 0.9 and concurrence close to
that of the ideal target state |φ〉.

An important feature for experimental realizations is to
test its robustness against variations of the system parameters.
To analyze this, in Fig. 2(e) we use the same parameters of
Fig. 2(b) with all Liouvillians switched on, setting γ /κ =
102. We show the evolution of F(t) = √

T r(|φ〉〈φ|ρ(t) ) and
P(t) = T r[ρ(t)2] versus the scaled time τ = t/γ for three
different degrees of randomness (10,20,30)% on the effective
decay rates γ+ and γ− . In this scenario, we are effectively
introducing fluctuations in the interaction parameter λτ , as
well as in the rates r+(r−) the switching on (off) the interaction.
As displayed in Fig. 2(e), despite the wide range of parameter
fluctuation, our scheme is shown to be very robust within
the considered random parameter fluctuations. Finally, in
Fig. 2(f) we investigate the scalability of our protocol, and
once again we plot the Fsteady and Psteady to obtain the target

state |φ〉N = f
†
1 |0〉N =

√
2

N+1

∑N
j=1 sin ( jπ

N+1 )S+
j |0〉N , where

|0〉N = | ↓↓↓ . . . ↓〉N , considering the same parameters of
Fig. 2(e) as a function of the number the spins. Although,
Fsteady seems to be independent of N , the degree of mixture
increases with N as revealed by the decrease of Psteady,
indicating the need for raising the rate γ /κ . As stated
before, our method can be used for other Hamiltonians as
well. Thus other entangled states can be prepared, as long
as the spectrum of such Hamiltonian is resolvable and the
strongly off-resonant terms are not coupling other modes with
more than one reservoir spin (

√
Nλi � J in the isotropic

XY Hamiltonian). Furthermore, we can use the techniques
developed to determine the inverse eigenvalue [42] and inverse
eigenmode [43] to engineer the Hamiltonian that leads to the
desired target state and then apply our scheme.

IV. CONCLUSIONS

In conclusion, we have proposed a simple approach for
preparation of many-body entangled states in the Markovian
limit. Our proposal relies on engineered dissipations assisted
by a set of spins (qubits or two-level systems) that mediates
the dissipation and pumping of the system eigenmodes. The
main requirement is that spectrum of the system has to be
resolved, which is possible by a convenient choice of suitable
Hamiltonians describing the spin-spin interactions, and also
by allowing local control of transverse fields. Remarkably, our
protocol requires neither initial state preparation nor unitary
dynamics or feedback control. Moreover, the method is robust
against fluctuations in the parameters as well as damping
and dephasing. Within this approach, any eigenmode can be
chosen as a target state. The limiting factors for scalability
are the spectral resolution, which leads to individual artificial
Liouvillians and the switching on-off rate rg(e) associated with
the effective decay rates �−(+). Our results also suggest that
the purity decreases as the number of spins in the system
increases to a fixed γ /κ rate. Therefore, to obtain a highly
pure steady state we must increase rg(e), which may be
experimentally challenging. Further effort is still needed to
extend our approach to embody preparation of steady states
in degenerated systems as well as gapped systems in the
thermodynamic limit, leading to a plethora of multipartite
entangled states. Another aspect worth of further investigation
is how the non-Markovianity (when the condition λiτ � 1 is
not fulfilled) affects the preparation of the many-body steady
state.
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