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Quantum simulation of quantum channels in nuclear magnetic resonance
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We propose and experimentally demonstrate an efficient framework for the quantum simulation of quantum
channels in nuclear magnetic resonance (NMR). Our approach relies on the suitable decomposition of nonunitary
operators in a linear combination of d unitary ones, which can be then experimentally implemented with the
assistance of a number of ancillary qubits that grows logarithmically in d . As a proof-of-principle demonstration,
we realize the quantum simulation of three quantum channels for a single-qubit: phase damping, amplitude
damping, and depolarizing channels. For these paradigmatic cases, we measure key features, such as the fidelity
of the initial state and the associated von Neumann entropy for a qubit evolving through these channels. Our
experiments are carried out using nuclear spins in a liquid sample and NMR control techniques.
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I. INTRODUCTION

In the last decades, significant progress has been achieved in
the isolation and coherent control of quantum systems, allow-
ing for the observation of their unitary dynamics [1–7]. Such a
degree of controllability has resulted in the implementation of
quantum machines composed of a growing number of qubits,
which have been used for key tests of quantum simulations
and quantum computers. As envisioned by Feynman [8],
large-scale quantum simulators would open the door to the
analysis of new quantum physical phenomena and to the
study of various models that are nowadays intractable with
classical computers. In opposition to quantum simulators of
closed quantum systems, the simulation of open quantum
systems, which has also been the subject of some research
both from a theoretical [9–17] and an experimental [18–20]
point of view, has been comparatively less explored. In this
sense, both from a theoretical and an experimental perspective,
simulating open quantum systems pose relevant challenges.
For example, understanding how quantum systems interact
with their environment could potentially shed light on the
physics of photosynthetic processes or transport phenomena
in general [21,22], which in turn could help us design more
efficient light-harvesting devices [23–25]. It could also help
us understand dissipation and thermalization processes, or
the nature of phase transitions. In the same manner, topics
related to the foundations of quantum physics, such as the mea-
surement process or the quantum-to-classical transition [26],
would greatly benefit from a deeper physical understanding of
open quantum systems.

In this work, we consider the simulation of a general CPTP
(completely positive trace-preserving) channel dynamics and
provide an efficient quantum algorithm for the implementation
of nonunitary quantum dynamics associated with paradigmatic
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quantum channels. Our approach works by decomposing the
nonunitary operators into a linear combination of unitary ones.
This can be physically implemented via the assistance of a
number of ancillary qubits that scales logarithmically with
respect to the number of the involved unitary operators. We
experimentally demonstrate our proposed quantum simulation
method via the implementation of a set of decoherence quan-
tum channels on a nuclear spin-qubit with nuclear magnetic
resonance (NMR) control techniques. More specifically, we
implement the phase damping (PD), the amplitude damping
(AD), and the depolarizing (DEP) channels.

II. THEORETICAL RESULTS

An open quantum system can be defined as a subsystem
of a larger system that includes the open system and its
environment and follows a unitary dynamics, as described by
ρse = U (ρ ⊗ ρenv)U †. Here, ρ and ρenv are the initial states
of the system and the environment, respectively, and are con-
sidered to be initially uncorrelated. The evolution of the prin-
cipal system can be retrieved as ρs = trenv[U (ρ ⊗ ρenv)U †],
where trenv is the partial trace over the environment degrees
of freedom [2]. Alternatively, the evolution of the system
can also be described by a completely positive and trace-
preserving map [27]: ε(ρ) = ∑

k EkρE
†
k , where Ek are Kraus

operators satisfying
∑

k E
†
kEk = I . Nonunitary processes of

open quantum systems can also be described by master
equations. While the Kraus formalism provides the description
of the dynamics for a discrete time step, a master equation can
provide a continuous time evolution of the density matrix that
describes the open quantum system.

Our method builds upon the framework of the so-called
duality quantum computing (DQC) [28]. Such a framework
allows for the arbitrary sum of d unitary operators acting on an
n-qubit system by the addition of log2(d) two-level ancillary
systems. Considering that Kraus operators {Ek} can also be
decomposed into a linear sum of d unitary operators, DQC
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appears to be of direct applicability to the simulation of an
open quantum system. A schematic of our proposal follows
these steps.

(a) A d-dimensional ancillary system is added to our
working system (for example, by the addition of n = log2 d

qubits) and the setup is initialized in the state |�〉|0〉, where
|�〉 and |0〉 are the input states of the working system and the
d-dimensional ancilla, respectively. One additional operation
V is then performed on the auxiliary qudit |0〉, transforming the
system to |�〉|0〉 → ∑d−1

i=0 Vi0|�〉|i〉, where Vi0 are the first
column elements of the unitary matrix V and are determined
by the target map {Ek}.

(b) The controlled operation Uc = U0 ⊗ |0〉〈0| + U1 ⊗
|1〉〈1| + · · · + Ud−1 ⊗ |d − 1〉〈d − 1| is implemented after-
wards. Here, U0, U1, . . . ,Ud−1 are the unitary basis corre-
sponding to the decomposition of the elements {Ek}. This will
result in the system evolving to the state

∑d−1
i=0 Vi0Ui |�〉|i〉.

(c) Operation W is performed on the auxiliary system,
resulting in

∑
i Vi0Ui |�〉W |i〉 = ∑

i

∑
k WkiVi0Ui |�〉|k〉,

where WkiVi0 are complex coefficients, and the sum∑d−1
i=0 WkiVi0 = (WV )k0 corresponds to the (k,0) ele-

ment of the unitary matrix WV and therefore satisfies
| ∑d−1

i=0 WkiVi0| � 1. Thus, given a nonunitary transformation
described by {Ek}, its corresponding evolution can be effi-
ciently implemented if the unitary operations V , W , and Uc,
satisfying Ek = ∑

i WkiVi0Ui , are found. Notice that the first
column of V is defined by the specific decomposition of the
Kraus operators into unitary operators that is chosen, while the
rest of the matrix can be arbitrarily completed, with the only
requirement of it being unitary. On the other hand, matrix W

is uniquely determined by V .
(d) Finally, measuring the corresponding final state of the

working system, with the ancillary system in state |k〉〈k|, will
result in Ek|�〉〈�|E†

k . Therefore, if we trace out from the
final state of the complete system the degrees of freedom
associated with the ancillary qubits, that is, if we sum over each
state |k〉〈k|, with {|k〉} being a complete basis of the ancillary
system, the result ε(ρ) = ∑

k EkρE
†
k , with ρ = |�〉〈�|, will

correspond to the simulation of the map {Ek}.

III. THE THREE PARADIGMATIC CHANNELS
AND EXPERIMENTS

PD channel. We start the illustration of our method by
analyzing the effect of a PD channel acting on a single-qubit
[29]. The effect of the PD channel is to remove the coherences
of the qubit stored in the nondiagonal elements of its density
matrix ρin. In the Kraus representation, this corresponds
to E0 = [1 0; 0

√
1 − λ] and E1 = [0 0; 0

√
λ], where the

parameter λ ∈ [0,1] represents the strength of the PD channel.
In Fig. 1(a) we give the quantum circuit that would realize
such a noise channel according to the method introduced in
this paper, which needs the addition of a single ancillary qubit.
For this case, Kraus operators E0 and E1 can be decomposed
into a linear combination of the unitary operators I and σz,
where I is a 2×2 identity matrix and σx,y,z are Pauli matrices.

The decomposition is given by E0 = 1+√
1−λ

2 I + 1−√
1−λ

2 σz

and E1 =
√

λ
2 I −

√
λ

2 σz.

FIG. 1. Quantum circuit for the realization of the PD (AD)
channel (a) and the DEP channel (b). The black lines are the ancilla
qubits (held by the nuclear spins of 13H and 1F), and the blue lines
are the system qubits (held by the nuclear spin of 19C). The red
blocks represent the controlled operations. Operation Ui is applied
on the system qubit if the ancilla qubits are in the state |i〉, with
i = 0,1, . . . ,d − 1.

It can be easily checked that the unitary operators V , W , U0,
and U1 that fulfill conditions Ek = ∑1

i=0 WkiVi0Ui (k = 0,1)
for a PD channel are given by

U0 = I, U1 = σz, V = W =
⎛
⎝

√
1+√

1−λ
2

√
1−√

1−λ
2√

1−√
1−λ

2 −
√

1+√
1−λ

2

⎞
⎠.

(1)

As illustrated in Fig. 1(a), the composite system consisting of
an ancillary qubit and a working qubit is initialized in state
ρCH

in = ρin ⊗ |0〉〈0|, with the input state of the working qubit
ρin = |φ〉〈φ|. In order to extract the evolution corresponding
to the PD channel acting on the working qubit, we need
to trace out the ancillary degrees of freedom from the final
state ρCH

out . After doing so, the final state of the working qubit
should correspond to ρout = εPD(ρin) = E0ρinE

†
0 + E1ρinE

†
1.

The subspace where the ancillary qubit is in the state |0〉 will
be associated with the evolution of the working system that
corresponds to E0ρinE

†
0, while the subspace of the ancilla state

|1〉 will be associated with E1ρinE
†
1.

In order to experimentally demonstrate our proposed
quantum simulation scheme, we make use of the nuclear
spins in a sample of 13C-labeled chloroform dissolved in
deuterated acetone that we manipulate through techniques
of NMR [30,31]. The nuclear spins of 13C and 1H are used
to encode the two-level working qubit and the ancillary
qubit, respectively. The corresponding molecule structure and
parameters are illustrated in Fig. 2(a). Under the weak coupling
approximation, the natural Hamiltonian of an n-qubit NMR
system can be expressed as

Hn
int =

n∑
i=1

ωiσ
i
z +

n∑
i<j,i=1

πJij

2
σ i

zσ
j
z , (2)
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FIG. 2. Molecular structure and relevant parameters of experi-
mental samples. (a) 13C-labeledchloroform. (b) Diethyl fluoroma-
lonate. The values of the chemical shifts (Hz) and J -coupling constant
(Hz) between the column and the row nuclei of the molecule are
represented by the diagonal and off-diagonal elements of the table,
respectively. The tables also provide the longitudinal time T1 and the
transversal relaxation T2, which can be measured using techniques
such as the standard inversion recovery.

where ωi is the chemical shift of the ith nucleus and Jij is the
J -coupling constant between the ith and the j th nuclear spins.

In experiments, starting from an initial thermal equilibrium
state, we first generate a pseudopure state (PPS) associated
with the state |0〉⊗n, as the thermal state is not useful for
quantum computation because it is a highly mixed state. For
the employed liquid sample, the thermal equilibrium state can
be written as

ρthermal = I⊗n

2n
+

n∑
i=1

εiσ
i
z , (3)

where n is the number of qubits and εi represents the
polarization of the ith nucleus at room temperature. The spatial
averaging technique was used to initilize our system [32–34],
taking the thermal state to the following PPS:

ρ0 = 1 − ε

2n
I + ε|0〉〈0|⊗n. (4)

A state of this form is convenient as the term related to the
identity does not evolve under any unitary propagator and
cannot be observed in NMR. Therefore, we can restrict our
analysis to the deviation term |0〉〈0|⊗n and use it to encode
the behavior of the quantum system. For our experimental
analysis, we consider the following initial state for the working
qubit: |X〉 = (|0〉 + |1〉)/√2, | − Y 〉 = (|0〉 − i|1〉)/√2, and
|Z〉 = |0〉. Second, for each given input state ρin, we measure
the expectation values 〈σx,y,z〉 = Tr(ρoutσx,y,z) on the working
qubit at the output of the circuit, after it has undergone all
the unitary steps. We do this for a collection of values of the
parameter λ, ranging from 0 to 1 and incremental steps of
1/20. The output state of the working qubit ρout is directly
obtained via single-qubit tomography.

The whole process, from the PPS |00〉〈00| to the end of
the protocol, contains the following steps: a single rotation of
the system qubit to prepare its initial state ρin ⊗ |0〉〈0| from
the PPS |00〉〈00|; the operations V , W , and all the controlled
operations; and the readout π/2 pulse. These operations are
all packed up together and realized via the gradient ascent
pulse engineering (GRAPE) technique [35,36]. The GRAPE
approach provides a 5-ms pulse width and over 99.5% fidelity

for the whole package. Analytically, for any input state of
the form ρin = 0.5I + ασx + βσy + γ σz, the PD channel
should result in the final state ρ th

out = 0.5I + α
√

1 − λσx +
β
√

1 − λσy + γ σz. In Fig. 3(a), the expectation values of
〈σx,y,z〉 are plotted, which agree well with the theoretically
expected values. These clearly show that the PD channel
reduces all the magnetization, Mx,y , in the xy plane, while
keeping the magnetization, Mz, in the z direction for any input
state ρin.

AD channel. We move now to analyze the case of the
AD channel [37], which is characterized by taking every
input to a specific state. The AD channel is described in the
Kraus representation via the operators M0 = [1 0; 0

√
1 − λ]

and M1 = [0
√

λ; 0 0]. Alternatively, the AD process can
be represented as M0ρinM

†
0 + λS0ρinS

†
0, where S0 is a Kraus

operator corresponding to the completely positive and trace-
preserving process described by the set of Kraus operators
{S0,S1}, with S0 = [0 1; 0 0] and S1 = [0 0; 1 0]. For ex-
perimental convenience, we choose to implement this second
decomposition in terms of M0 and S0. We do this, on the
one hand, because the M0ρinM

†
0 part can be directly obtained

from the simulation of the PD channel, and on the other
hand, because the simulation of S0 is specially convenient
as it does not depend on parameter λ, and therefore a single
experimental run serves to compute the effect of any value of λ,
clearly reducing the experimental requirements. The evolution
associated with the Kraus operators S0 and S1 can easily be
given by the operators V , W , U0, and U1 taking the values

U0 = σx, U1 = iσy, V = W =
√

1
2

(
1 1
1 −1

)
. (5)

Thus, the experiment is performed in two steps, corre-
sponding to the quantum circuit shown in Fig. 1(a) with two
different settings of the operators V , W , U0, and U1. The first
setting is chosen according to Eq. (1), and only subspace |0〉
of the ancillary qubit is measured, which is associated with the
transformation M0ρinM

†
0 . The second setting is that shown in

Eq. (5), and we only measure the subspace of the ancillary qubit
corresponding to state |0〉, which leads to the term S0ρinS

†
0.

We use the same sample as that of the previous experiment
in order to experimentally simulate the dynamics of the AD
channel. We follow the same experimental steps as those in
the previous section, performing the experiment twice, for
two different setting of the quantum gates in the circuit.
As an example, for the case in which the expectation value
〈σy〉 of the final state is measured for the initial state |X〉,
we first prepare the initial state ρCH

in = |X〉〈X| ⊗ |0〉〈0| from
the PPS and drive it following the quantum circuit shown
in Fig. 1(a), as described by Eq. (1). Then, the observable
σy ⊗ |0〉〈0| is measured to provide the y element associated
with the evolution M0ρinM

†
0 . Next, the same preparation and

measurement are performed but this time utilizing the setting
of unitary operators in Eq. (5), the results corresponding now
to the y element associated with S0ρinS

†
0. Combining these

two results, one obtains the desired value 〈σy〉 for a qubit
undergoing an AD channel. As in the previous experiment,
the GRAPE technique is employed to generate the evolution
corresponding to the quantum circuits.
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FIG. 3. Experimental results for the quantum simulation of the PD channel (a) and the AD channel (b). In each of the two experiments,
we initially prepare the working qubit in states |X〉, | − Y 〉, and |Z〉, which is easily realized by using a π/2 pulse around the x axis (y axis)
starting from the initial state |Z〉 = |0〉. Then, we measure the expectation values σx,y,z for the output state of the working qubit. The parameter
λ is varied from 0 to 1 with 1/20 increments.

For the input state ρin, the AD channel can be shown to
result in ρ th

out = 0.5I + α
√

1 − λσx + β
√

1 − λσy + [γ (1 −
λ) + 0.5λ]σz. In Fig. 3(b), we show the experimental mea-
surements of 〈σx,y,z〉, necessary for the reconstruction of the
system qubit, and how these measurements compare to the
analytically computed values. The experimental results show a
good agreement with the theoretical predictions, which clearly
show that the AD channel damps the system towards the
ground state |0〉〈0|, reducing the magnetization in the xy plane,
while increasing it in the z direction. This could be of interest
in the initialization of a system that is in an arbitrary state.

DEP channel. To complete our study of decoherence
channels, we consider the DEP channel εDEP [38]. For this

case, the Kraus representation is given by E0 =
√

1 − 3p

4 I,

E1 =
√

p

4 σx , E2 =
√

p

4 σy , and E3 =
√

p

4 σz. It can be trivially

shown that the effect of the DEP channel on an initial state ρin

is to evolve towards the maximally mixed state εDEP(ρin) =
pI/2 + (1 − p)ρin, with some probability p.

In Fig. 1(b), the quantum circuit to realize the quantum
simulation of the DEP channel is depicted, following our
proposed protocol. In this case, we set U0 = I, U1 = σx ,
U2 = σy , and U3 = σz, while operator V is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 − 3p

4 −
√

p

4 (1− 3p

4 )
1− p

4
−

√
p

4 (1− 3p

4 )
(1− p

4 )(1− p

2 ) −
√

p

4−2p√
p

4

√
1 − p

4 0 0√
p

4 − p

4
√

1− p

4

√
1− p

2
1− p

4
0√

p

4 − p

4
√

1− p

4

− p

4
√

(1− p

4 )(1− p

2 )

√
4−3p

4−2p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On the other hand, operation W is fixed to a 4×4 identity
matrix. The quantum circuit for the DEP channel is then
implemented by combining two ancillary qubits initially

prepared in the state |00〉〈00| and a system qubit in the input
state ρin. At the end of the protocol, the two ancillary qubits
are traced out to acquire the output state of the DEP channel,
ρout = εDEP(ρin).

Experimentally, we need a three-qubit quantum-
information processor, which is implemented via diethyl
fluoromalonate dissolved in d6-acetone in NMR, where the
nuclear spins of 13C, 1H, and 19F in the diethyl fluoromalonate
molecule act as the system qubit and the two ancillary qubits,
respectively. Figure 2(b) shows the corresponding structure
and parameters. The spatial averaging technique is again used
to prepare the PPS |000〉〈000| [39]. The unitary operators are
implemented via the GRAPE technique that provides a 10-ms
pulse width. For the DEP channel, we only carry out xx,
ȳy, and zz experiments, which are enough to demonstrate
the properties of the DEP channel. For instance, for the case
of the ȳy experiment, we prepare the system in the state
| − Y 〉〈−Y | ⊗ |00〉〈00| by applying a π/2 pulse around the x

0.0 0.2 0.4 0.6 0.8 1.0

-1

0

1

FIG. 4. Experimental results for the quantum simulation the DEP
channel. We perform three experiments, preparing the system qubit in
states +x, −y, and +z, which corresponds to a direction in the Bloch
sphere. We then measure the expectation value of a Pauli matrix in the
same axis for each initial state. For instance, the observable 〈σy〉 =
Tr(ρoutσy) will be measured if the initial state is the −y direction.

062303-4



QUANTUM SIMULATION OF QUANTUM CHANNELS IN . . . PHYSICAL REVIEW A 96, 062303 (2017)

FIG. 5. Fidelity F (ρexp
out ,ρ

th
out) of the state after the quantum simulation of the PD and AD channels with respect to the analytically expected

state. For a number of input states |X〉, | − Y 〉, and |Z〉, the output density matrices ρ
exp
out are measured and their fidelity F (ρexp

out ,ρ
th
out) with

respect to the ideal values is computed. Panels (a) and (b) present the corresponding fidelities for the PD and AD channels, respectively. n(λ)
represents each of the steps of parameter λ as it increases from 0 to 1 in 18 steps.

axis to the system qubit 13C. Then, we measure the observable
σy ⊗ I ⊗ I, which provides us with the expectation value
〈σy〉 = Tr(ρoutσy). ρout is the output state of the system
qubit 13C after tracing out the ancillary qubits 1H and 19F
at the end of quantum circuit. Two other experiments are
performed in a similar fashion similarly corresponding to
ȳy experiments. Figure 4 illustrates the corresponding results
of three experiments xx, ȳy, and zz for different values of
p, which presents a good agreement between the theoretical
predictions and the experiments.

IV. DISCUSSION

In order to evaluate the accuracy of our simulations,
we have computed the fidelity F (ρexp

out ,ρ
th
out) between the

reconstructed single-qubit density matrix ρ
exp
out and the ideal

state ρ th
out for each of the PD and AD channels using the

following procedure. These results are illustrated in Fig. 5.
The adopted fidelity definition through the whole work is F =
Tr(ρaρb)/

√
Tr(ρ2

a )Tr(ρ2
b ). In our experiments, the average

fidelities between the reconstructed single-qubit state ρ
exp
out and

the ideal output state ρ th
out are around 99.52% and 99.87% for

the PD and AD channels, respectively.
For an n-qubit quantum system ρSA, with one system qubit

and (n − 1) ancillary qubits, the operation of tracing out the
ancillary qubits, in order to obtain the state of our system qubit
ρS = TrA(ρSA), can be realized by measuring the following
operators of the output state ρSA,

Mx,y,z = σx,y,z ⊗ I⊗n−1. (6)

In an NMR platform, 2n−1 peaks will be observed, with the
mth peak providing the expectation values of operators

Mm,n
x = σx ⊗ |b(m − 1,n − 1)〉〈b(m − 1,n − 1)| and

Mm,n
y = σy ⊗ |b(m − 1,n − 1)〉〈b(m − 1,n − 1)|, (7)

where b(m − 1,n − 1) is the binary representation of number
m − 1 in n − 1 bits.

Summing the following results over m from 1 to 2n−1 leads
to Mx,y = ∑2n−1

m=1 Mm,n
x,y . To measure the observable Mz, we

apply an additional readout pulse (π/2 pulse around y axes) on

the system qubit at the end, which transfers the magnetization
in the z direction to the x direction. In this manner, the
expectation value of Mx corresponds to the value of the
desired observable Mz. Moreover, single-qubit tomography
of the system qubit can easily be realized using the following
rule,

ρS = 1

2
I + 〈Mx〉

2n
σx + 〈My〉

2n
σy + 〈Mz〉

2n
σz, (8)

where the coefficient 2n is a normalization constant and
〈Mx,y,z〉 is the expectation value of the observable Mx,y,z,
Tr(ρSAMx,y,z).

We further complete our analysis by the study of the
behavior of some additional properties under these quantum
channels. More precisely, we look at the fidelity F (ρout,ρin)
and the von Neumann entropy S(ρout) = −Tr(ρoutlog2ρout) for
an input state |X〉 as it undergoes the PD and AD channels.
These results are illustrated in Fig. 6. F (ρout,ρin) reflects the

FIG. 6. Fidelity F (ρout,ρin) and entropy S(ρout) for a qubit
evolving under a PD channel (a) and an AD channel (b). F (ρout,ρin) is
decreasing because the output ρout slowly deviates from the input state
ρin. The behavior of S(ρout) is directly guided by the entanglement
strength between the system qubit and the environment, or the purity
of the system qubit after tracing out the environment.
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strength of the quantum channel acting on a qubit, which
decreases for higher strength λ. S(ρout) quantifies the strength
of the entanglement between the system qubit and the ancillary
system, such that S will increase together with the strength
λ of the PD channel. On the opposite, for the AD channel
the entropy clearly shows a maximum for λ = 0.5, while it
vanishes for minimal (λ = 0) and maximal (λ = 1) values of
λ. This happens because under the PD channel the initial state
|X〉 will tend towards a maximally mixed state while, for an
AD channel, it will gradually tend towards the ground state |0〉
through intermediate mixed states, respectively.

V. CONCLUSION

We have proposed a method for the quantum simulation of
open quantum dynamics and experimentally implemented the
proposed simulation procedure, realizing proof-of-principle
experiments in an NMR setup. Our experiment is a small-scale
demonstration of the working principles of the proposed
techniques, which can be considered as building blocks for
more involved protocols. The experimental results show a
high degree of correspondence with the theoretical predictions,
showing the capacity of our method to simulate paradigmatic
decoherence channels. A natural extension of this work
is the development of methods to construct algorithms to
simulate the dynamics of open quantum systems in higher
dimensions. For example, using the Weyl operator basis, any
three-dimensional channel in the Kraus representation can
be decomposed into a linear combination of Weyl operators:
M = ∑2

n,m=0 bnmUnm [40], where Unm is the Weyl operator
and bnm are coefficients. Namely, we can perform any Kraus
operator in the form of a linear combination of Weyl operators
with the proposed method.
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APPENDIX A: SCALING OF THE PROTOCOL

The size of the ancillary system in our protocol is given
by the greatest of these two: the number of Kraus operators
d1, and the number of unitary operators d2 onto which the
Kraus operators are decomposed. For an n-qubit system,
with a Hilbert space dimension dS = 2n, any operator can
be decomposed in the Weyl basis [40] as the complex
superposition of maximally d2

S unitary operators, which are
also traceless and tracewise orthogonal. Therefore, all the
simulated Kraus operators, which act on a system of n qubits,
can be decomposed into a basis of not more than N = 22n

unitary operators. As a consequence, the total number of
ancillary qubits is upper bounded by log2(N ) = 2n. This is
similar to other simulation approaches, such as the Stinespring

FIG. 7. The decomposition of a controlled operation C2n(U ).
C2n(U ) can be decomposed into a combination of controlled
operations C2n−1(M), C1(M†), and C1(M) and two Toffolli gates
over 2n qubits. Here, M2 = U .

dilatation method, which also takes a maximum of 2n ancillary
qubits.

In order to count the number of required gates, we split our
protocol in two parts. On the one hand, we have the initial
and final operations V and W , which act on the ancillary
system and are, in general, arbitrary matrices. It is known that
an arbitrary unitary operation acting on an M-qubit system
can always be implemented with a circuit containing a total
of O(M322M ) single qubit and controlled-NOT (CNOT) gates
[2,41,42]. Therefore, in the most unfavorable case, where a
total of 2n ancillary qubits are required, our method would
employ up to O(8n324n) single-qubit and two-qubit gates to
implement the V and W operations.

On the other hand, we have the controlled unitary operations
acting on the target system of n qubits. These operations are
not arbitrary, but they correspond to a specific basis of unitary
operators. One can, for example, choose a basis consisting
of the tensor product of Pauli operators. In this case, it can
be shown that the gate complexity for each of the controlled
operations goes like O(n2) [41]. Let Cm(U ) denote a controlled
gate where the number of control qubits is m and U acts on a
target system of n qubits. We use Tm to denote the gate cost
of decomposing Cm(U ). The circuit in Fig. 7 shows a suitable
decomposition of C2n(U ). Moreover, the Toffoli gate over 2n

qubits can be decomposed into O(n) single-qubit and CNOT

gates. On the other hand, M† and M , which fulfill M2 = U ,
can also be decomposed into n single-qubit gates, as U is a
tensor product of Pauli matrices. The cost of decomposing
the gates C1(M) and C1(M†) is therefore O(n). From such
a decomposition, the following recurrence relation can be
inferred,

Tm = Tm−1 + O(n). (A1)

Hence, the total gate complexity to implement each controlled
unitary operator C2n(U ) is proportional to O(n2).

According to the discussion above, a total of 22n unitary
operations form a complete basis of the n-qubit system,
and therefore the implementation of these basis operators
controlled with respect to the ancillary system takes a
total of O(n222n) single-qubit and CNOT gates. In total our
algorithm in the most general case can be associated with a
gate complexity of O(8n324n + n222n). If we consider other
simulation methods, like the Stinespring dilatation, where the
system is enlarged to accommodate a 2n-qubit environment
in the most general case, we find that to perform an arbitrary
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unitary operation in the enlarged Hilbert space, we need up to
O(27n326n) single-qubit and CNOT gates, which is an expo-
nential factor more gates than we need. This is because, while
our method keeps the size of the operations either to the size
of the system or to that of the ancillary space, the Stinespring
dilatation method needs to perform operations on the complete
system-plus-ancilla space. However, for specific cases where
the number of Kraus operators is small and their decomposition
requires a large number of unitary operators, it can be the
case that the Stinespring dilatation method is more convenient.
Ultimately, the comparison should be done case by case.

APPENDIX B: MEASUREMENTS IN NMR

While NMR spectroscopy is a so-called ensemble weak
measurement, which does not collapse the total wave function,
expectation values of arbitrary global spin observables can be
measured, and with these one can reproduce the outcome of
projective measurements, which can be distinguished by the
spectra of the NMR ensemble and individually operated on
with selective pulses in NMR. In this manner, one can imitate
the outcomes of projective measurements and their associated
probabilities [43–45]. Besides, in NMR, the measurement of
the expectation value of an observable corresponds to the spec-
troscopy of macroscopic ensembles of quantum spins, which

TABLE I. The standard deviations between simulated results and
theoretical predictions. The subscript in ε indicates the input state.

Deviations εx εȳ εz

PD channel 0.0136 0.0158 0.0107
AD channel 0.0091 0.0098 0.0103
DEP channel 0.0994 0.0203 0.0434

results in an usually significantly precise and stable measure-
ment. Indeed, the precision of the measured data is such that the
error bars are typically smaller than the plotted dots, as is the
case for the experimental data presented throughout this paper.

Finally, the minor deviations of the measured data can
be associated with imperfections of the PPS initialization,
imprecisions of the GRAPE pulses, and dephasing effects
caused by decoherence, which are the leading sources of error
in our setup. We have numerically simulated the GRAPE
pulses including a contrasted decoherence model for our
qubits, in order to estimate an error bar for each simulated
channel. We compute the standard deviation of our simulated

data as ε =
√∑M

i=1(xi
sim − xi

th)2/(M − 1), with M being the
number of sampling points. In Table I we give the results for
different input states in the PD, AD, and DEP channels.

[1] S. Lloyd, Science 273, 1073 (1996).
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University, Cambridge,
England, 2000).

[3] R. Gerritsma, G. Kirchmair, F. Zähringer et al., Nature (London)
463, 68 (2010).

[4] G. R. Feng, G. F. Xu, and G. L. Long, Phys. Rev. Lett. 110,
190501 (2013).

[5] K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards
et al., Nature (London) 465, 590 (2010).

[6] G. R. Feng, Y. Lu, L. Hao, F. H. Zhang, and G. L. Long,
Sci. Rep. 3, 2232 (2013).

[7] B. P. Lanyon, C. Hempel, D. Nigg et al., Science 334, 57
(2011).

[8] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[9] S. Lloyd and L. Viola, Phys. Rev. A 65, 010101 (2001).

[10] D. S. Wang, D. W. Berry, M. C. de Oliveira, and B. C. Sanders,
Phys. Rev. Lett. 111, 130504 (2013).

[11] S. J. Wei, D. Ruan, and G. L. Long, Sci. Rep. 6, 30727 (2016).
[12] R. Sweke, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 90,

022331 (2014).
[13] R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and J.

Casanova, Sci. Rep. 5, 9981 (2015).
[14] E. Andersson and D. K. L. Oi, Phys. Rev. A 77, 052104 (2008).
[15] C. Shen, K. Noh, V. V. Albert, S. Krastanov, M. H. Devoret,

R. J. Schoelkopf, S. M. Girvin, and L. Jiang, Phys. Rev. B 95,
134501 (2017).

[16] R. Iten, R. Colbeck, and M. Christandl, Phys. Rev. A 95, 052316
(2017).

[17] T. Francesco and L. Viola, Quantum Sci. Technol. 2, 034001
(2017).

[18] J. T. Barreiro et al., Nature (London) 470, 486 (2011).
[19] J. P. Schindler et al., Nat. Phys. 9, 361 (2013).
[20] H. Lu, C. Liu, D. S. Wang et al., Phys. Rev. A 95, 042310 (2017).
[21] S. F. Huelga and M. B. Plenio, Contemp. Phys. 54, 181 (2013).
[22] S. Mostame et al., New J. Phys. 14, 105013 (2012).
[23] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A.

Svidzinsky, Proc. Natl. Acad. Sci. USA 108, 15097 (2011).
[24] K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully,

Proc. Natl. Acad. Sci. USA 110, 2746 (2011).
[25] C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin,

Phys. Rev. Lett. 111, 253601 (2013).
[26] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[27] M. B. Ruskai, S. Szarek, and E. Werner, Linear Alg. Appl. 347,

159 (2002).
[28] G. L. Long, Commun. Theor. Phys. 45, 825 (2006).
[29] D. F. Walls and G. J. Milburn, Phys. Rev. A 31, 2403 (1985).
[30] D. Lu, T. Xin, N. Yu, Z. Ji, J. Chen, G. Long, J. Baugh, X. Peng,

B. Zeng, and R. Laflamme, Phys. Rev. Lett. 116, 230501 (2016).
[31] D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N.

Boulant et al., Fortschr. Phys. 48, 875 (2000).
[32] T. Xin, J. S. Pedernales, L. Lamata, E. Solano, and G. L. Long,

Sci. Rep. 7, 12797 (2017).
[33] E. Knill, I. Chuang, and R. Laflamme, Phys. Rev. A 57, 3348

(1998).
[34] D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci.

USA 94, 1634 (1997).
[35] N. Khaneja, T. Reiss, C. Kehlet et al., J. Magn. Reson. 172, 296

(2005).
[36] C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R.

Laflamme, Phys. Rev. A 78, 012328 (2008).
[37] H. Fan and L. Hu, Opt. Commun. 282, 932 (2009).

062303-7

https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1038/nature09071
https://doi.org/10.1038/nature09071
https://doi.org/10.1038/nature09071
https://doi.org/10.1038/nature09071
https://doi.org/10.1038/srep02232
https://doi.org/10.1038/srep02232
https://doi.org/10.1038/srep02232
https://doi.org/10.1038/srep02232
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1103/PhysRevLett.111.130504
https://doi.org/10.1103/PhysRevLett.111.130504
https://doi.org/10.1103/PhysRevLett.111.130504
https://doi.org/10.1103/PhysRevLett.111.130504
https://doi.org/10.1038/srep30727
https://doi.org/10.1038/srep30727
https://doi.org/10.1038/srep30727
https://doi.org/10.1038/srep30727
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1038/srep09981
https://doi.org/10.1038/srep09981
https://doi.org/10.1038/srep09981
https://doi.org/10.1038/srep09981
https://doi.org/10.1103/PhysRevA.77.052104
https://doi.org/10.1103/PhysRevA.77.052104
https://doi.org/10.1103/PhysRevA.77.052104
https://doi.org/10.1103/PhysRevA.77.052104
https://doi.org/10.1103/PhysRevB.95.134501
https://doi.org/10.1103/PhysRevB.95.134501
https://doi.org/10.1103/PhysRevB.95.134501
https://doi.org/10.1103/PhysRevB.95.134501
https://doi.org/10.1103/PhysRevA.95.052316
https://doi.org/10.1103/PhysRevA.95.052316
https://doi.org/10.1103/PhysRevA.95.052316
https://doi.org/10.1103/PhysRevA.95.052316
https://doi.org/10.1088/2058-9565/aa722a
https://doi.org/10.1088/2058-9565/aa722a
https://doi.org/10.1088/2058-9565/aa722a
https://doi.org/10.1088/2058-9565/aa722a
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/nphys2630
https://doi.org/10.1103/PhysRevA.95.042310
https://doi.org/10.1103/PhysRevA.95.042310
https://doi.org/10.1103/PhysRevA.95.042310
https://doi.org/10.1103/PhysRevA.95.042310
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1103/PhysRevLett.111.253601
https://doi.org/10.1103/PhysRevLett.111.253601
https://doi.org/10.1103/PhysRevLett.111.253601
https://doi.org/10.1103/PhysRevLett.111.253601
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1088/0253-6102/45/5/013
https://doi.org/10.1088/0253-6102/45/5/013
https://doi.org/10.1088/0253-6102/45/5/013
https://doi.org/10.1088/0253-6102/45/5/013
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1103/PhysRevLett.116.230501
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1038/s41598-017-13037-4
https://doi.org/10.1038/s41598-017-13037-4
https://doi.org/10.1038/s41598-017-13037-4
https://doi.org/10.1038/s41598-017-13037-4
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1103/PhysRevA.57.3348
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1073/pnas.94.5.1634
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevA.78.012328
https://doi.org/10.1103/PhysRevA.78.012328
https://doi.org/10.1103/PhysRevA.78.012328
https://doi.org/10.1103/PhysRevA.78.012328
https://doi.org/10.1016/j.optcom.2008.11.029
https://doi.org/10.1016/j.optcom.2008.11.029
https://doi.org/10.1016/j.optcom.2008.11.029
https://doi.org/10.1016/j.optcom.2008.11.029


XIN, WEI, PEDERNALES, SOLANO, AND LONG PHYSICAL REVIEW A 96, 062303 (2017)

[38] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal,
Phys. Rev. Lett. 83, 3081 (1999).

[39] T. Xin, H. Li, B. X. Wang, and G. L. Long, Phys. Rev. A 92,
022126 (2015).

[40] R. A. Bertlmann and P. Krammer, Ann. Phys. 324, 1388 (2009).
[41] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.

Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Phys. Rev. A 52, 3457 (1995).

[42] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa,
Phys. Rev. Lett. 93, 130502 (2004).

[43] J.-S. Lee and A. Khitrin, Appl. Phys. Lett. 89, 074105
(2006).

[44] R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S.
Oliveira, and L. C. Céleri, Phys. Rev. A 85, 032121 (2012).

[45] M. A. Nielsen, E. Knill, and R. Laflamme, Nature (London)
396, 52 (1998).

062303-8

https://doi.org/10.1103/PhysRevLett.83.3081
https://doi.org/10.1103/PhysRevLett.83.3081
https://doi.org/10.1103/PhysRevLett.83.3081
https://doi.org/10.1103/PhysRevLett.83.3081
https://doi.org/10.1103/PhysRevA.92.022126
https://doi.org/10.1103/PhysRevA.92.022126
https://doi.org/10.1103/PhysRevA.92.022126
https://doi.org/10.1103/PhysRevA.92.022126
https://doi.org/10.1016/j.aop.2009.01.008
https://doi.org/10.1016/j.aop.2009.01.008
https://doi.org/10.1016/j.aop.2009.01.008
https://doi.org/10.1016/j.aop.2009.01.008
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1063/1.2337158
https://doi.org/10.1063/1.2337158
https://doi.org/10.1063/1.2337158
https://doi.org/10.1063/1.2337158
https://doi.org/10.1103/PhysRevA.85.032121
https://doi.org/10.1103/PhysRevA.85.032121
https://doi.org/10.1103/PhysRevA.85.032121
https://doi.org/10.1103/PhysRevA.85.032121
https://doi.org/10.1038/23891
https://doi.org/10.1038/23891
https://doi.org/10.1038/23891
https://doi.org/10.1038/23891



