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Gleason-Busch theorem for sequential measurements
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Gleason’s theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate
probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957)].
We show that Gleason’s theorem contains within it also the structure of sequential measurements, and along with
this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those
in Busch’s proof of Gleason’s theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003)], from which the familiar
Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in
making clear those assumptions which underlie the security of quantum communication protocols. Interestingly,
the two-time formalism is seen to arise naturally in this approach.
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I. INTRODUCTION

The Born rule is fundamental to quantum mechanics, giving
a prescription for alternatively predicting or interpreting mea-
surement statistics. It is perhaps natural to wonder, therefore,
whether the structure of quantum mechanics allows any other
rule for calculating probabilities, and it can be shown that it
does not. Gleason [1] showed that, within quantum theory (that
is, assuming that measurements are described by projectors,
and given some reasonable assumptions that any probability
measure must obey) every probability allowed by quantum
mechanics is calculated by a trace rule

Pr(i) = Tr(ρ̂P̂i). (1)

Busch [2] generalized Gleason’s theorem in two important
ways: Gleason’s original proof applied only to systems of
dimension 3 or more and also assumed that measurements
were described by projectors. Busch’s proof assumed only
that measurements were described by positive operators, thus
including the more general positive-operator-valued measure
(also known as the probability operator measure) formalism
[3]. This was later generalized further: Busch’s proof applies
to complete measurements, for which the operators sum to
the identity, a restriction which was relaxed in [4]. This
generalization means that probability rules may be derived
rather directly for cases involving postselection and for
retrodiction, for example.

In this work we are concerned with sequential measure-
ments: In quantum mechanics measurement causes distur-
bance and the state of the system must be updated post
measurement. This state update rule is given for projective
measurements by the von Neumann projection postulate [5] or
Lüders rule [6]

ρ̂ → P̂i ρ̂P̂i

Tr(ρ̂P̂i)
(2)

or more generally by the Kraus operator formalism [7]

ρ̂ →
∑

k Âikρ̂Â
†
ik

Tr(ρ̂
∑

k Â
†
ikÂik)

. (3)
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The description of measurement via positive operators is thus
only part of the story; for a complete description of measure-
ment we require both a means of calculating measurement
statistics and a means of expressing the change in state. The
Busch-Gleason theorem, which takes as an assumption that
measurements are described by positive operators, thus does
not immediately lend itself to sequential measurement. We
show nevertheless that a joint probability measure on pairs of
measurements may be derived via an extension of Gleason’s
theorem, which recovers the usual Kraus form for sequential
measurement.

The structure of transformations in quantum theory is of
course well understood: All physically allowed transforma-
tions are described by so-called completely positive maps.
These have several equivalent representations: the Kraus
form [7] and the Choi-Jamiolkowski isomorphisms [8,9],
both of which may be derived from the usual structure of
quantum mechanics on Hilbert space (see, e.g., [10]). The
advantage of an axiomatic approach is to make clear exactly
on which assumptions this structure relies, an approach of
both fundamental interest and practical relevance. In the era
of quantum communication and security it is crucial to know
which aspects of quantum theory are required for the security
of such schemes, both to feed into security proofs and to
reassure users.

There is by now in the literature a long tradition of axiomatic
approaches both to the description of measurement in quantum
theory [2,11–13] and indeed to derive the structure of quantum
theory from simple principles [14–17]. We note in particular
that previous work has addressed a scenario similar to that of
interest here: Cassinelli and Zanghi [12] derived the Lüders
rule for state update through consideration of conditional
probabilities via Gleason-type arguments. This is however
not readily generalized to more general measurements, those
which are not described by projectors. More recently Shrapnel
et al. [13], starting from an assumption that transformations are
described by completely positive maps, also used an axiomatic
approach similar to that of Busch and Gleason to derive a
probability measure which encompasses both the Born rule and
the state update rule. Motivated by recent work on indefinite
causal order in quantum mechanics [18–21], the Shrapnel et al.
work derives the most general rule resulting in a probability
measure on the set of completely positive maps. In the present
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work, by contrast, we show that sequential measurements
correspond to completely positive maps and derive the most
general form of these, from a few simple axioms.

Work on generalized probabilistic theories (we note in
particular [14,15]) takes as a starting point that probabilities
may be expressed as an inner product of a vector describing
the measurement and one describing the preparation. Trans-
formations are described by operators on these vectors and
a key point, in common with the present work, is a proof
that such transformations must further be linear operators on
the space. A theory is then defined by the structure of the
vector spaces describing states and measurements. Similarly, a
common thread through the present work is that probabilities
may be expressed as inner products; it is simply a case of
defining the appropriate space in each case.

II. SEQUENTIAL MEASUREMENTS

We begin by summarizing Busch’s proof of Gleason’s
theorem, before discussing the extension to sequential mea-
surements. Busch [2] assumes that measurement outcomes are
associated with positive-semidefinite operators Ê such that
Ê � Î (referred to therein as effects). He then seeks the most
general probability measure on this set of operators, ν(Ê),
which satisfies the following propositions.

(P1) 0 � ν(Ê) � 1.
(P2) ν(Î ) = 1.
(P3) ν(Ê + F̂ + · · · ) = ν(Ê) + ν(F̂ ) + · · · .
The proof proceeds by showing that the additivity propo-

sition (P3) on effects may always be extended to linearity on
all Hermitian operators; that is, for each such ν, we can define
an extension which acts not only on positive operators but on
all Hermitian operators and is linear. The allowed ν are all
real, according to proposition (P1), and noting that the set of
Hermitian operators forms a real vector space, it therefore
follows that each such function, by definition, is a vector
in the dual space [22]. Thus every measure on effects may
be associated with a Hermitian operator ρ̂, ν(Ê) = Tr(ρ̂Ê),
using the Hilbert-Schmidt inner product (Â,B̂) = Tr(Â†B̂).
Propositions (P1) and (P2) further constrain ρ̂ to be positive
and trace one, respectively.

We note at this point that the choice of Hilbert-Schmidt
inner product is not unique; we can in principle choose any
bilinear form. The most general probability rule is thus given
by v(Ê) = Tr[L(ρ̂)Ê] for some linear superoperator L. Of
course this does not give us any additional generality: The
requirement now is thatL(ρ̂) be a positive operator, and via the
substitution L(ρ̂) → ρ̂ we recover the previous formulation.
Indeed, attempts to generalize quantum theory have resulted
in theories with a nonstandard choice of inner product [23,24],
later shown to be equivalent to standard quantum theory as
long as the set of vectors which are allowed to represent states
is updated accordingly [25–27]. We return however to the
nonuniqueness of the inner product in the present context later.

In the sequential measurement case, we consider a setup
like that shown in Fig. 1, in which a single system undergoes
two successive measurements. Following Busch, we take as
a definition that measurements are represented by effects,
positive operators Â defined on a Hilbert space, and include
entanglement by allowing for measurements to be performed

FIG. 1. A measurement procedure can be visualized using this
flowchart. A preparation procedure, here labeled S, will output a
quantum system, which according to the Gleason-Busch theorem
can be described by a density matrix ρ̂. The first measurement is
associated with a set of effects Êi , while the second measurement
is associated with effects {F̂j }. Alternatively, the whole procedure
comprising both measurements is itself a measurement and is
represented by a set of effects {Êij }.

on subspaces of those (i.e., Â ⊗ B̂ is an allowed effect). This is
what is brought over from standard quantum mechanics; what
is derived is the probabilistic structure. Although we note that
there is much recent interest in causally neutral formulations of
quantum theory [19,21] and nonfixed causal orderings [18,20],
for simplicity we consider here a fixed causal order: The
measurements we consider are performed sequentially and on
the same system. Under the assumptions of the Gleason-Busch
theorem, measurements are described by positive operators:
We thus associate with the first measurement a set of positive
operators {Êi}, to the second measurement the set {F̂j }.
The combination of measurements of course is itself a
measurement procedure; we associate with this procedure the
operators {Êij }. Our task is to derive a relationship between
these three sets of operators.

We first note that, due to our choice of causal order, the
statistics of the first measurement alone are independent of
whether the second measurement is performed or not and may
be reconstructed by coarse graining over the second measure-
ment. Thus, for any Êij representing the joint measurement
procedure we must have

ν(Êi) =
∑

j

ν(Êij ) = ν

⎛⎝∑
j

Êij

⎞⎠. (4)

Here ν, which represents the preparation procedure, must
of course be independent of Êi and Êij . The above implies
that ν(Êi − ∑

j Êij ) = 0. The only effect Â consistent with

ν(Â) = 0 for all ν satisfying (P1)–(P3) is the zero operator.
Thus we conclude that

Êi =
∑

j

Êij . (5)

This physical notion of causality is formalized in the additional
postulate (A2) below. In the second measurement, each
outcome is represented by an effect F̂j . For each F̂j and each
outcome i of the first measurement, there is a distinct effect
Êij describing the joint measurement. Thus, for each i we can
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define a map F̂j → Êij = Ti(F̂j ). Further, for each i and for
any given measure ν(Êij ) on the joint measurement procedure,
we require that the statistics of the second measurement can
be derived from some (subnormalized) measure over F̂j .
That is,

Pr(i,j ) = μi
ν(F̂j ), (6)

where the notation μi
ν indicates that the measure depends on

both ν and i. To be clear, we assume that ν satisfies propositions
(P1)–(P3) and our additional assumptions on the joint measure
μi

ν are as follows.
(A0) μi

ν(F̂j ) = ν(Êij ) = ν(Ti(F̂j )).
(A1) 0 � μi

ν(F̂j ) � ν(Êi) < 1.
(A2) μi

ν(Î ) = ν(Êi).
(A3) μi

ν(F̂j + F̂k + · · · ) = μi
ν(F̂j ) + μi

ν(F̂k) + · · · .
These additional postulates are analogous to those used by
Busch, modified to allow for the idea of conditionality. The
probability rule is derived from these alongside our above
definition of a measurement as a Hilbert space operator,
inherent in which is the subspace structure. We first note that,
according to the arguments given by Busch [2], we can extend
any μi

ν satisfying the additivity property (A3) to full linearity
on all positive operators

μi
ν(αF̂j + βF̂k + · · · ) = αμi

ν(F̂j ) + βμi
ν(F̂k) + · · · , (7)

where α,β � 0. Thus it follows from proposition (P0′) that

ν(Ti(αF̂j + βF̂k + · · · )) = αν(Ti(F̂j )) + βν(Ti(F̂k)) + · · ·
= ν(αTi(F̂j ) + βTi(F̂k)) + · · · ,

(8)

where in the last line we have used linearity of ν, which follows
from Busch’s original proof. Finally, as we require this hold
for all ν, we obtain

Ti(αF̂j + βF̂k + · · · ) = αTi(F̂j ) + βTi(F̂k) + · · · . (9)

We can readily extend linearity on positive operators to
linearity on all Hermitian operators [2,14,15], from which we
obtain that Ti is a linear operator on the (real) vector space of
Hermitian operators. Thus we find that the most general joint
measure Pr(i,j ) satisfying the propositions (A0) and (A3) is
of the form

Pr(i,j ) = μi
ν(F̂j ) = Tr[ρ̂Ti(F̂j )] (10)

for some linear transformation Ti . Note that the presence of an
intermediate measurement is accommodated mathematically
through exactly the nonuniqueness of inner product discussed
earlier.

We have not yet addressed propositions (A1) and (A2), and
we return to these now. It is perhaps clearest to explicitly write
the operators ρ̂ and F̂j as vectors in the space of Hermitian
operators on Hilbert space. We use Liouville space notation
(see, e.g., [28,29]), in which

|i〉〈j | ↔ |ij †〉〉. (11)

In this notation, any operator Â = ∑
ij aij |i〉〈j | is therefore

represented by a Liouville space vector

|A〉〉 =
∑
ij

aij |ij †〉〉. (12)

Further, the inner product Tr(Â†B̂) is expressed as

Tr(Â†B̂) =
∑
ij

a∗
ij bij = 〈〈A|B〉〉 (13)

and thus our probability rule (10) may be written as

Pr(i,j ) = 〈〈ρ|Ti |Fj 〉〉, (14)

where Ti is an operator on Liouville space. Denoting the
Hilbert space on which ρ̂ and F̂j are defined, respectively,
as Hin and Hout; Ti is thus a linear operator

Ti : Hout ⊗ H†
out → Hin ⊗ H†

in. (15)

We use the subscripts in and out in the remainder of the paper
to distinguish between those indices associated with the states
ρ̂ and those associated with the measurement F̂j , respectively,
wherever this is required for clarity.

Alternatively, we can write

Pr(i,j ) = Tr(Ti |Fj 〉〉〈〈ρ|). (16)

In the same way as we can consider ρ̂ alternatively to be
an operator in Hilbert space or a Liouville space vector, it is
convenient to consider Ti to be a vector on the space Hin ⊗
H†

in ⊗ Hout ⊗ H†
out. In what follows, we can then interpret this

as an operator on various spaces, as appropriate. We first note
that we require this probability to be a real number. Both ρ̂

and F̂j are positive operators and thus may be expressed as
positive linear combinations of pure states. Thus, without loss
of generality, we can consider pure states only, ρ̂ = |ψ〉〈ψ |
and F̂j = |mj 〉〈mj |, and define

|Fj 〉〉〈〈ρ| = |mjm
†
j 〉〉〈〈ψψ†|

↔ (|ψ〉in ⊗ |mj 〉out)(〈ψ |in ⊗ 〈mj |out). (17)

We thus find that if we interpret Ti as an operator on Hin ⊗
Hout, the requirement that probabilities be real implies that it
be a Hermitian operator on this space. Explicitly, we define T ′

i

to be that operator on Hin ⊗ Hout such that

Pr(i,j ) = Tr(Ti |mjm
†
j 〉〉〈〈ψψ†|)

= Tr(T ′
i |ψ〉in ⊗ |mj 〉out〈ψ |in ⊗ 〈mj |out), (18)

which implies that the matrix elements satisfy

〈〈iinlout|T ′
i |jinkout〉〉 = 〈〈iinj

†
in|Ti |koutl

†
out〉〉. (19)

We then require T ′
i to be a Hermitian operator. This interpre-

tation is precisely the Jamiolkowski form of a map [9,19] and
is seen to arise naturally in this approach.

It remains to impose positivity and normalization of our
joint probability. It is clear from the discussion so far that
positivity requires that Ti , when interpreted as above, have
a positive expectation value for all product states in Hin ⊗
Hout. We require also the more stringent constraint of complete
positivity: If Ti acts only on a subsystem A of a larger system
AB, all probability measures on the joint system must remain
positive. Equation (14) then becomes

〈〈ρAB |T A
i ⊗ IB |FjAB〉〉 � 0. (20)

The requirement of complete positivity follows from the struc-
ture of effects and the requirement of positivity of probabilities
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(A1). Specifically, the assumption that all positive operators
Ê � Î are allowed effects, along with an assumption that all
measures are possible in principle, imposes the requirement
(20).

As before, without loss of generality, we consider ρ̂ and F̂j

to be pure states. We further write |ψ〉 in the Schmidt basis

|ψ〉 =
∑

i

λi |i〉A|i〉B, (21)

where λi > 0. In this basis we define

|mj 〉 =
∑
ik

c
(j )
ik |i〉A|k〉B. (22)

Thus

|ρAB〉〉 =
∑
ik

λiλk|iAiBk
†
Ak

†
B〉〉,

|FjAB〉〉 =
∑
iklm

c
(j )
ik c

(j )∗
lm |iAkBl

†
Am

†
B〉〉. (23)

Putting all this together and simplifying gives

〈〈ρAB |T A
i ⊗ IB |FjAB〉〉

=
∑

iklmnp

λiλkc
(j )
lm c(j )∗

np 〈〈iAiBk
†
Ak

†
B |T A

i ⊗ IB |lAmBn
†
Ap

†
B〉〉

=
∑

iklmnp

λiλkc
(j )
lm c(j )∗

np 〈〈iAk
†
A|T A

i |lAn
†
A〉〉〈〈iBk

†
B |mBp

†
B〉〉

=
∑

iklmnp

λiλkc
(j )
lm c(j )∗

np 〈〈iAk
†
A|T A

i |lAn
†
A〉〉δimδkp

=
∑
ikln

λiλkc
(j )
li c

(j )∗
nk 〈〈iink

†
in|Ti |loutn

†
out〉〉, (24)

where in the last line we have dropped the label A, which is
no longer needed, and introduced subscripts denoting input
and output spaces for clarity. The structure of this final line
indicates that it would be fruitful to consider the representation
of Ti on the space Hin ⊗ H†

out. We thus define T̃i to be that
operator on this space such that

〈〈iinl
†
out|T̃i |kinn

†
out〉〉 = 〈〈iink

†
in|Ti |loutn

†
out〉〉, (25)

where, for convenience, we have extended the concept of the
Liouville space vector in the natural way to include cases in
which the bra and ket vectors may be on different spaces. Thus
we obtain

〈〈ρAB |T A
i ⊗ IB |FjAB〉〉

=
(∑

il

λic
(j )
li 〈〈iinl

†
out|

)
T̃i

(∑
kn

λkc
(j )∗
nk |kinn

†
out〉〉

)
. (26)

Finally, defining

|	j 〉〉 =
∑
kn

λkc
(j )∗
nk |kinn

†
out〉〉, (27)

we see that our probability rule has the rather compact form

Pr(i,j ) = 〈〈ρAB |T A
i ⊗ IB |FjAB〉〉 = 〈〈	j |T̃i |	j 〉〉. (28)

Thus |	j 〉〉 is a state on the spaceHin ⊗ H†
out and the discussion

above shows that, in general, this need not be a product state.

Thus we require that Ti , when interpreted as an operator
on this space (i.e., T̃i), be a positive operator. This is the
Choi form of a map [8,19] and again is seen to arise rather
naturally in this approach. As T̃i is a positive operator, it has
an eigendecomposition

T̃i =
∑

k

|αik〉〉〈〈αik|, (29)

where |αik〉〉 = ∑
lm α

(ik)
lm |linm†

out〉〉 is not normalized. Thus any
joint probability satisfying the propositions has the form

Pr(i,j ) =
∑

k

|〈〈αik|	j 〉〉|2

=
∑

k

∣∣∣∣∣
(∑

lm

α
(ik)∗
lm 〈〈linm†

out|
)

×
(∑

np

λnc
(j )∗
pn |ninp

†
out〉〉

)∣∣∣∣∣
2

=
∑

k

∣∣∣∣∣∑
np

λnc
(j )∗
pn 〈p|outÂik|n〉in

∣∣∣∣∣
2

, (30)

where Âik = ∑
lm α

(ik)∗
lm |m〉out〈l|in. Note that the combination

of preparation and measurement is described by a so-called
entangled two-time state [30,31]. A two-time state may be
used to describe pre- and postselection and is comprised of a
state vector describing the preparation and one describing a
later measurement [32–34]: in the language of Hilbert spaces,
a vector on Hin ⊗ H†

out. Nonproduct states arise in exactly the
way we have seen here, through pre- and postselections which
are entangled with another system.

For the product state case, in which the coefficients cpn

are independent of n, we have ρ̂ = ∑
ij λiλj |i〉〈j | and F̂j =∑

mn c
(j )
m c

(j )∗
n |m〉〈n| and we obtain the familiar sequential

measurement rule

Pr(i,j ) =
∑

k

∣∣∣∣∣∑
np

λnc
(j )∗
p 〈p|outÂik|n〉in

∣∣∣∣∣
2

= Tr

(
F̂j

∑
k

Âikρ̂Â
†
ik

)
. (31)

Finally, we return to normalization of the measure: Proposition
(A2) is satisfied if

Tr(ρÊi) = Tr

(∑
k

Âikρ̂Â
†
ik

)
= Tr

(
ρ̂

∑
k

Â
†
ikÂik

)
. (32)

We thus require
∑

k Â
†
ikÂik = Êi .

We thus obtain the usual Kraus form of a map from a
simple extension of the Gleason-Busch theorem: Given the
assumption that measurements are described by effects, that
is, positive operators Ê � Î , along with some reasonable
assumptions (A0)–(A3), every joint probability over sequential
measurements is of the form

Pr(i,j ) = 〈〈	j |T̃i |	j 〉〉, (33)
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where |	j 〉〉 is a two-time vector (defined on the Hilbert space
Hin ⊗ H†

out) representing the measurement and preparation
and T̃i is a positive operator on this space. Where |	j 〉〉 is
a product state, this reduces to the familiar Kraus form

Pr(i,j ) = Tr

(
F̂j

∑
k

Âikρ̂Â
†
ik

)
. (34)

It is readily verified that these probabilities sum to one, as
desired:∑

i,j

Pr(i,j ) = Tr

⎛⎝∑
j

F̂j

∑
i,k

Âikρ̂Â
†
ik

⎞⎠
= Tr

(∑
i

ρ̂
∑

k

Â
†
ikÂik

)
= Tr

(∑
i

ρ̂Êi

)
= 1.

(35)

From this we can further derive conditional probabilities

Pr(j |i) = Pr(i,j )

P (i)

= Tr(F̂j

∑
k Âikρ̂Â

†
ik)

Tr(ρ̂
∑

k Â
†
ikÂik)

= Tr

( ∑
k Âikρ̂Â

†
ik

Tr(ρ̂
∑

k Â
†
ikÂik)

F̂j

)
, (36)

from which we recover the Kraus update rule

ρ̂ → ρ̂i =
∑

k Âikρ̂Â
†
ik

Tr(ρ̂
∑

k Â
†
ikÂik)

. (37)

To summarize, from the assumption that measurements
are associated with effects (positive operators Ê � Î ) along
with some reasonable propositions that measures and joint
measures should obey, we find that pre- and postselections
are described by two-time states, intermediate measurements
are associated with positive operators on the vector space of
two-time states, or alternatively with positive Choi states, and
the state update rule is given by the familiar Kraus form.
Up to the particular choice of description (Choi-Jamiolkowski
isomorphism or Kraus operator form), this is thus the unique
way to define joint probabilities over sequential measurements
in quantum mechanics.

Herein we have considered just two sequential measure-
ments, however our result could be easily generalized to
longer chains. One would argue for the preparation and first
measurement, represented as the vector

∑
k Âik ⊗ Â

†
ik|ρ〉〉, as

representing an individual preparation procedure. The two
measurements in the above procedure would then represent the
second and third measurements in the new scenario and then
find the expected three-measurement probability rule using the
same method.

We note that a key component of our approach is a proof that
intermediate measurements are described by transformations
of effects and that these must be linear. Other proofs of the
most general form of transformation [7–10,35] take linearity
as an assumption. Indeed, strange and seemingly unphysical
things become possible if we allow nonlinear evolution in

quantum mechanics [36–39]. In our approach the requirement
of linearity (and indeed, that an intermediate measurement
corresponds to a transformation on effects) follows from the
requirement that the statistics of sequential measurements be
derived from a measure on the second measurement. We note
that we did not assume that the intermediate measurement
was associated with a transformation; we simply observed
that for each i there exists a mapping between any set of
operators describing the joint measurement procedure and that
describing the second measurement alone.

III. PHYSICAL MEANING OF THE AXIOMS

The axioms (A0)–(A3) may be considered rather abstractly,
as desired properties of probability measures, or can be
motivated through physical considerations. Following Hardy
[14], we suppose that probabilities are measurable in the
following sense: If we repeat an experiment a large number
of times N , the fraction of runs in which we observe a
particular event i tends to a constant Ni

N
, which we interpret as

a probability pi = Ni

N
. Additivity then follows rather naturally

from counting events pi + pj = Ni+Nj

N
, while clearly 0 �

Ni � N .
For the sequential measurement case, we have introduced

a rather innocuous “zeroth” proposition (A0), which corre-
sponds to an assumption of noncontextuality at the level of
the description of measurement. Noncontextuality means that
the value assigned to a physical quantity is independent of the
context in which that quantity is measured, that is, independent
of anything else which may be measured with it [3]. Gleason’s
theorem is generally taken as proof that a noncontextual
hidden-variable model reproducing the predictions of quantum
theory is not possible [2,40]. At the level of operators in
Gleason’s theorem, noncontextuality means that if an effect
Ê is a member of two different sets, the probability associated
with Ê is independent of which set we are considering.
Physically, this means that if Ê represents a measurement
outcome in two different measurements, the probability of
seeing this outcome is independent of which measurement is
actually performed. Noncontextuality in this sense is implicitly
assumed in the Gleason-Busch theorem, in the assumption that
each measure is a function on Ê (see also [11] for a discussion
of noncontextuality in this context).

In the present work, we assume noncontextuality in the
mapping from physical measurement apparatus to mathemat-
ical description; that is, if a particular measurement outcome
may be associated with an operator Ê, then for every physical
experiment containing the corresponding apparatus, the prob-
ability of obtaining this outcome may be expressed as some
measure ν(Ê). For the first measurement, the assumption of
noncontextuality means that the description of measurement is
independent of any postprocessing, from which we obtain the
requirement Êi = ∑

j Êij , formalized in (A2). For the second
measurement, noncontextuality means that every measure is a
linear function of the operators {F̂j }, leading to our proposition
(A0). In essence, this is what is meant by the assumption that
the measurement is described by operators {F̂j }; however, as
this is the key assumption, it is worth being rather explicit
about the physical meaning.
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IV. DISCUSSION

In this work we have shown that the Gleason-Busch theorem
is rich enough to contain the structure not only of single
measurement statistics, but also of sequential measurements.
We note that we do not at any point assume explicitly
that intermediate measurements are associated with transfor-
mations or that these transformations be linear; rather this
emerges as a consequence of the above considerations. We
have given a small set of reasonable, physically motivated
axioms, from which the structure of sequential measurements
follows.

The Gleason-Busch theorem [1,2] shows that if measure-
ments are described by effects, the Born rule is the most
general probability rule allowed. More recently, Shrapnel
et al. [13] derived the most general frame function on
completely positive maps, with a view to understanding recent
work on nonfixed causal order. Our work provides a link
between the two, starting from a minimal set of axioms
to show that the most general sequential measurement rule
consistent with these axioms corresponds to a completely
positive map.

We note that we have not explicitly assumed convex
linearity on preparations: We do not assume anything about the
relationship between ν and μi

ν . The linearity of the resulting
probability rule in both preparation and measurement emerges
as a consequence of the axioms. An alternative approach
could argue that mixtures of preparations are allowed and
any probability rule should be linear in these. This further
has the advantage of treating preparations and measurements
symmetrically. Our aim in the present work was however to
provide a set of axioms as close as possible in spirit to the
Gleason-Busch theorem and to assume as little as possible
about preparations.

We finally note that we have not assumed in our sequential
measurement axioms that the joint probability rule is linear in
the effects describing the first measurement. Indeed, it turns
out that this is not the case: Seeking a rule linear in both sets of
effects would be much more restrictive. This is, of course, not
contrary to the Gleason-Busch theorem in its original form,
which refers only to statistics and says nothing about state
update. The choice of causal order dictates that it is the effects
describing the second and final measurement in which the joint
probability rule must be linear.

The formulation arrived at herein, similar to that of Silva
et al. [34], with the explicit role of pre- and postselection
lends itself in particular to calculations of relevance to quantum
cryptography, in which post-measurement information is often
made available. We explore these applications elsewhere.

We finish with a comment on the importance of an
axiomatic approach to quantum communications. Classical
cryptosystems are of course rather effective. The practical
significance of quantum cryptographic protocols as a techno-
logical development has been the subject of some debate (see,
e.g., [41,42] and references therein). The oft-cited advantage
of quantum key distribution, for example, is that security is
contingent only on the laws of quantum mechanics being
correct and not on computational assumptions. For skeptics
this begs the question: How confident are we in the correctness
of quantum mechanics? An axiomatic approach illuminates
exactly what assumptions underlie security proofs.
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