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We investigate under which conditions quantum nonlocal manifestations such as Einstein-Podolsky-Rosen
steering or Bell nonlocality can manifest themselves even at the macroscopic level of two mechanical resonators
in optomechanical systems. We adopt the powerful scheme of reservoir engineering, implemented by driving a
cavity mode with a properly chosen two-tone field, to prepare two mechanical oscillators in an entangled state.
We show that large and robust (both one-way and two-way) steering could be achieved in the steady state with
realistic parameters. We analyze the mechanism of the asymmetric nature of steering in our system of a two-mode
Gaussian state. However, unlike steering, a Bell nonlocality is present under much more stringent conditions. We
consider two types of measurements, displaced parity and on-off detection, respectively. We show that for both
the measurements the Bell violation requires very low environmental temperature. For the parity detection, a
large Bell violation is observed only in the transient state when the mechanical modes decouple from the optical
mode and with extremely small cavity losses and mechanical damping. However, for the on-off detection, a
moderate Bell violation is found in the steady state and is robust against cavity losses and mechanical damping.
Although a Bell violation with parity detection seems extremely challenging to demonstrate experimentally, the
conditions required for violating Bell inequalities with the on-off detection are much less demanding.
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I. INTRODUCTION

In 1964, Bell proved that no local realistic theory can
completely describe the predictions of quantum mechanics,
which is known as Bell’s theorem [1]. He showed the
limitations imposed by local realism in the form of inequalities.
The violation of Bell inequalities implies that the correlations
between the outcomes of measurements made upon composite
systems cannot be explained by local realistic theories or
simply, that nonlocal correlations are present within the
system. There is another form of nonlocality, namely, Einstein-
Podolsky-Rosen (EPR) steering. It was first pointed out in
1935 by Einstein, Podolsky, and Rosen [2] and later discussed
by Schrödinger [3]. It describes a phenomenon in which two
distant parties share an entangled state and one party, by
measuring its subsystem, can remotely change the state of
the other party’s subsystem. Like Bell nonlocality [1,4], EPR
steering is demonstrated by the violation of steering inequal-
ities [5]. However, unlike Bell nonlocality and entanglement
[6], steering has a fundamental asymmetric property in the
sense that in a steering test the two parties play a different
role: there exist entangled states which are only steerable from
one party to the other party (i.e., one-way steering), but not vice
versa. Such an asymmetric feature has important applications
for the task of one-sided device-independent quantum key
distribution [7,8]. Typically, steering is considered a form of
quantum correlation that lies in between entanglement and Bell
nonlocality: nonlocality implies two-way steerability, while
one-way steerability implies entanglement, and the converse
relations do not hold [9].

Nonlocality has recently been demonstrated by the violation
of Bell inequalities free of both locality and detection loop-
holes in photonic systems [10], and by the violation of steering
inequalities in a number of experiments [11]. However, these
demonstrations have been done only in microscopic systems.

Nonlocality has not yet been observed in mesoscopic or
macroscopic systems, e.g., between two massive mechanical
oscillators. The studies of the possibility of observing quantum
correlations shared by two macroscopic objects are of funda-
mental importance since they are related to the research of
quantum-to-classical transition [12], wave-function collapse
theories [13,14], macroscopic quantum mechanics [15,16],
and so on.

In this paper, we study the nonlocal properties, EPR
steering and Bell nonlocality, of two macroscopic mechanical
resonators (MRs) in optomechanical systems. Optomechanics,
addressing the coupling between optical and mechanical de-
grees of freedom via radiation pressure, provides a promising
platform to observe quantum effects in mechanical systems
[17–21]. In order to test steering and Bell inequalities in
mechanical systems, one should first prepare two MRs in
an entangled state. Many schemes have been proposed for
the generation of entanglement between two MRs in optome-
chanical systems. They exploit, for example, radiation pressure
[22–25], transfer of entanglement [26,27] and squeezing [28]
from optical fields, conditional measurements on light modes
[29–34], and reservoir engineering implemented by a properly
chosen two-tone driving [35–39]. In the present work, we
adopt the schemes of Refs. [38,39] which are able to generate,
either dynamically or in the steady state, large entanglement
between two MRs. The scheme of Ref. [39] is the improved
version of Ref. [38] and includes a coherent feedback loop,
which reduces the effective cavity decay rate, resulting in a
remarkable enhancement of the mechanical entanglement.

We first study the EPR steering of the MRs and find that
large and robust steering could be generated in the steady state
with realistic parameters. We show optimal working conditions
for obtaining large steering and analyze the mechanism for
the asymmetric nature of steering in our system. We find
that such an asymmetric nature is due to the difference
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of quantum fluctuations of the two mechanical modes, and
the asymmetry disappears for equal fluctuations of the two
modes. Furthermore, we discuss the hierarchical relationships
of entanglement, and one-way and two-way steerings in our
system of two-mode Gaussian states. We then analyze if and
when the entangled state violates Bell inequalities constructed
in terms of the correlation functions of two different observ-
ables. Specifically, we consider the observables corresponding
to displaced parity and on-off measurements, respectively.
We find that for displaced-parity measurement a large Bell
violation is present only in the transient regime and it requires
very low environmental temperature and extremely small
cavity losses and mechanical damping. On the contrary, for
displaced on-off measurement, a moderate Bell violation is
found in the steady state even in the case of significant losses.
This allows for the possibility of testing the Bell nonlocality
of two macroscopic MRs in the near future.

The paper is organized as follows. In Sec. II, we introduce
our system that is used to prepare two MRs in an entangled
state. We then study the EPR steering of the MRs in Sec. III. We
discuss the relationships between entanglement and one-way
and two-way steerings in our specific model. In Sec. IV, we
test the Bell nonlocality in phase space with displaced parity
and on-off measurements, respectively. We show the parameter
regime within which the Bell inequality is violated. Finally,
we make our conclusions in Sec. V.

II. THE SYSTEM

We consider two MRs with different frequencies ω1 and
ω2 within an optical Fabry-Pérot cavity. The two MRs interact
via the usual optomechanical interaction with a cavity mode
of frequency ωc, which is bichromatically driven at the two
frequencies ωL1 = ω0 + ω1 and ωL2 = ω0 − ω2, where ω0 is
the reference frequency and is slightly detuned from the cavity
resonance by �0 = ωc − ω0. In other words, the cavity mode
is simultaneously driven close to the blue sideband associated
with the MR of frequency ω1 and close to the red sideband
associated with the MR of frequency ω2. The Hamiltonian of
the system in the reference frame rotating at the frequency ω0

reads [38]

Ĥ = h̄�0â
†â + h̄

2∑
j=1

ωj b̂
†
j b̂j + h̄

2∑
j=1

gj â
†â(b̂j + b̂

†
j )

+ h̄[(E1e
−iω1t + E2e

iω2t )â† + H.c.], (1)

where â (b̂1,2) is the annihilation operator of the cavity mode
(mechanical modes), gj is the bare optomechanical coupling
associated with the j th MR, and Ej =√

2Pjκ1/h̄ωLj , where
Pj is the power of the driving field and κ1 and κ2 are,
respectively, the cavity decay rates due to the transmission
through the two cavity mirrors.

The system dynamics can be efficiently studied by lin-
earizing the optomechanical interaction in the limit of strong
driving fields. The relevant degrees of freedom for the
linearized dynamics are the fluctuations of the cavity field
and the mechanical modes about their respective average
values. Unlike the standard approach adopted in the analysis
of optomechanical systems [17], here the average fields are
time dependent as a result of the bichromatic driving field.

Nevertheless, approximated, time-independent equations for
the system dynamics can be derived by focusing only on the
dominant resonant processes, and the nonresonant processes
can be safely neglected if the following conditions are fulfilled
[38]:

|gjEj/ωj |, κ1,2 � ω1,2, |ω1 − ω2|. (2)

Equation (2) implies significantly different mechanical fre-
quencies in order to suppress unwanted optomechanical
processes [38] and sets stringent constraints due to the rela-
tively small mechanical frequencies that typically characterize
massive resonators, of which the nonlocal properties are what
we are interested in. In practice, the restriction on the op-
tomechanical couplings |gjEj/ωj | � ω1,2, |ω1 − ω2| can be
easily satisfied by lowering the power of the driving field, while
the condition on the cavity decay rates κ1,2 � ω1,2, |ω1 − ω2|
is more difficult to be met. However, as shown in Ref. [39],
by including a proper coherent feedback loop, which would
reduce the effective cavity decay rate, the above condition
can be largely relaxed. Furthermore, the entanglement of the
MRs can be enhanced due to an enhanced cooperativity. This
is important since, in general, only when the entanglement
is strong enough do one- and two-way steering and Bell
violations appear.

With conditions (2) fulfilled, the dynamics of the system
with coherent feedback can be described by the following set of
quantum Langevin equations, which in the interaction picture
with respect to Ĥ0 = h̄

∑2
j=1 ωj b̂

†
j b̂j are given by [39]

δ ˙̂a = −(κ̃ + i �̃)δâ − iG1δb̂
†
1 − iG2δb̂2 +

√
2 κ̃ Âin, (3)

δ ˙̂b1 = −γ1

2
δb̂1 − iG1δâ

† +√
γ1b̂

in
1 , (4)

δ ˙̂b2 = −γ2

2
δb̂2 − iG∗

2δâ +√
γ2b̂

in
2 , (5)

where κ̃ and �̃ are the effective cavity decay rate and detuning
modified by the feedback, given by [39]

κ̃ = κ1 + κ2 − 2
√

κ1 κ2 rB cos θ,

�̃ = � − 2
√

κ1 κ2 rB sin θ, (6)

where the detuning � includes the frequency shift due
to the optomechanical interaction [38], and rB and θ are
two parameters related to the feedback loop [39]. rB is
the reflection coefficient of the controllable beam splitter
and θ is the phase shift of the light in the feedback loop.
From Eq. (6), we see that the cavity decay rate can be
significantly reduced when the cavity is symmetric with
κ1 = κ2, the reflectivity approaches unity, rB → 1, and the
phase shift θ = 2mπ (m = 0,1,2, . . .). For these values of θ ,
the detuning remains unchanged: �̃ = �. γ1 and γ2 are the
damping rates of the two mechanical modes, respectively.
G1 = g1E1/(ω1−�̃+iκ̃) and G2 = g2E2/(−ω2−�̃+iκ̃)
are the effective optomechanical couplings. Âin =
[(
√

κ2 −√
κ1e

iθ rB) âin
2 +

√
κ1(1 − r2

B) âin
1 ]/

√
κ̃ is the new

input noise operator modified by the feedback and satisfies
the correlation function 〈Âin(t)Âin†(t ′)〉=δ(t−t ′). âin

1 and
âin

2 , instead, denote the original input noises without
feedback entering the two cavity mirrors [39], and their
nonzero correlation functions are 〈âin

i (t) âin
i (t ′)†〉 = δ(t−t ′).
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b̂in
j describes the noise of the j th MR and its correlation

functions are 〈b̂in
j (t) b̂in

j (t ′)†〉= (n̄j+1) δ(t−t ′) and 〈b̂in
j (t)†

b̂in
j (t ′)〉= n̄j δ(t−t ′), with n̄j = [exp(h̄ωj/kBT ) − 1]−1

the mean thermal phonon number which is assumed to stay at
the same environmental temperature T .

Since the dynamics of the system is linearized and all noises
are Gaussian, the dynamical map of the system preserves
the Gaussian nature of any input state. In this situation, the
system state is completely characterized by the first and
second moments of the quadrature operators. Since we are
interested here in the correlation properties of the two MRs,
the first moments are not relevant and we thus discard them.
The second moments can be arranged in the form of a
covariance matrix (CM) V (t) with its entries defined as Vij =
1
2 〈{ûi(t),ûj (t)}〉, where {·,·} denotes an anticommutator and
û is the vector of quadrature fluctuation operators of the two
mechanical modes, i.e., û(t) = (δq̂1(t),δp̂1(t),δq̂2(t),δp̂2(t)),
with δq̂j=(δb̂j+δb̂

†
j )/

√
2, δp̂j=i(δb̂

†
j−δb̂j )/

√
2 (j=1,2). The

CM V (t) at any time t can be obtained following the method
provided in the appendix of Ref. [39]. Here we do not reiterate
it but present the results directly in the next sections.

III. EPR STEERING AT STEADY STATE

In this section, we study the EPR steering of the MRs. We
adopt the measure of Ref. [40], which is defined for arbitrary
bipartite Gaussian states of continuous-variable (CV) systems
under Gaussian measurements. For the simplest case of two-
mode Gaussian states, it assumes the following simple form:

G1→2(V ) = max{0,S(2V1) − S(2V )}, (7)

and for defining G2→1(V ) by replacing S(2V1) with S(2V2). V1

and V2 are 2 × 2 CMs corresponding to the reduced states of
subsystems of MR 1 and 2, respectively. S is the Rényi-2 en-
tropy, which for a Gaussian state with CM σ is given by S(σ ) =
1
2 ln(detσ ) [41]. Note that there is a difference of a factor of 2 in
S(·) between definition (7) and Eq. (5) of Ref. [40] due to their
different definitions of CM. A nonzero G1→2(V ) [G2→1(V )]
denotes that the state described by CM V is steerable from
MR 1 (MR 2) to 2 (1) by applying Gaussian measurements on
MR 1 (MR 2), and its value quantifies the amount by which
the steering inequality is violated [40]. G1→2 and G2→1 are
generally different quantities and they are equal when the CMs
of two subsystems are identical. If a state has both nonzero
G1→2 and G2→1 we call the state two-way steerable; otherwise
we call the state either only one-way steerable or nonsteerable.

Steering has been investigated in optomechanical systems
mainly focusing on the quantum correlations between me-
chanical and optical degrees of freedom [42–44]. In Ref. [44],
steering was studied between two MRs of which the entangled
state is prepared via entanglement swapping. There two
identical MRs were considered, which results in the absence
of the asymmetry of steering. Instead, we adopt a different
entanglement-generation scheme and the unequal couplings
G2 > G1 required for the system stability yield generally
different CMs V1 and V2 which, according to definition (7),
lead to generally different steerings G1→2 	=G2→1. In our
system, the entangled state of the MRs is a two-mode squeezed
state and the reduced state of each MR is a purely thermal state

[38] with CM V1 = diag(a,a) for MR 1 and V2 = diag(b,b)
for MR 2, where a and b denote the variance of the quadrature
fluctuations of MR 1 and 2, respectively, i.e., a ≡ 〈δq̂2

1 〉 =
〈δp̂2

1〉 and b ≡ 〈δq̂2
2 〉 = 〈δp̂2

2〉. In fact, G2 > G1 implies that
MR 2 that is driven on the red sideband (corresponding to the
process of removing mechanical excitations) is more strongly
coupled to the light with respect to MR 1 that is driven on
the blue sideband (corresponding to the process of adding
mechanical excitations). In our system, the fluctuation of the
quadratures of MR 2 is always smaller than that of MR 1 in
the steady state, i.e., a > b, implying that S(2V1) > S(2V2),
which, according to definition (7), means G1→2 > G2→1.
Physically this could be interpreted that, for a two-mode
Gaussian state (under Gaussian measurements), the mode with
a lower excitation number, or fluctuation, is easier to be steered
by the other mode with a higher excitation number. Such a
feature has been demonstrated by the results of Figs. 1 and 2.

In Fig. 1 we show two different direction steerings, G1→2

and G2→1, of the two MRs as a function of two key parameters,
G1/G2 and rB , at different temperatures and compare them
with the entanglement EN quantified by logarithmic negativity
[45] in consideration of their similar definitions for Gaussian
states [40]. The mechanism for the presence of optimal
values of G1/G2 and rB has been expounded in Ref. [39].
For simplicity, we have assumed ω2 = 2ω1 in all the figures
throughout the paper. For the ideal case of zero temperature,
n̄1,2 = 0, the optimal values of G1/G2 and rB are almost the
same for G1→2, G2→1, and EN , and the two steerings are
almost equal. This is because in this case G1 and G2 are
so close that the CMs V1 and V2 have little difference, leading
to the fact that G1→2 ≈ G2→1. As the temperature rises, the
optimal couplings G1 and G2 will have a larger difference
(or, a lower ratio of G1/G2 for fixed G2) in order to generate
large entanglement [39]. A larger difference of G1 and G2 will
eventually lead to a larger difference of G1→2 and G2→1, as
explained in the previous paragraph and shown in Figs. 1 and 2.
In Figs. 1(d)–1(f), the optimal values of G1/G2 and rB for
G1→2, G2→1, and EN are no longer overlapped and start to
separate to what extent depending on the temperature.

Figure 2 shows the time evolution of G1→2, G2→1, and
EN , which lead to a steady state, for different temperatures
with n̄1 = 2n̄2 = 0, 200, and 1000. It is evident that the two
steerings and entanglement show similar behaviors due to their
similar definitions for Gaussian states. We have verified in
our specific model [see the insets of Figs. 2(a) and 2(b)] that
the state with logarithmic negativity EN > ln 3 ≈ 1.1 is of
two-way steerability. This is valid for any two-mode Gaussian
state under Gaussian measurements [40,46]. Figure 2(c) shows
that one-way steering is a type of quantum correlation that
is stronger than entanglement and it occurs only when the
entanglement is strong enough.

IV. TESTING BELL NONLOCALITY IN PHASE SPACE

Having observed strong one-way and two-way steerings
between the MRs in the steady state, in this section we
devote ourselves to the study of another type of nonlocality,
namely, the Bell nonlocality, demonstrated by the violation
of a proper Bell inequality. Proposals to test Bell inequal-
ities in an optomechanical system have been put forward
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FIG. 1. Contour plot of the steady-state entanglement (logarithmic negativity) EN (left), steering G1→2 (middle), and G2→1 (right) as a
function of G1/G2 and rB with (a)–(c) n̄1 = n̄2 = 0 and (d)–(f) n̄1 = 2n̄2 = 200. We have taken γ1 = γ2 = 10 Hz, G2 = 2κ1 = 2κ2 = 105 Hz,
� = 0, and θ = 0. For these parameters, the effective cavity decay rate is simply κ̃ = 2κ1(1 − rB ).

[47,48], focusing on the correlations between the optical and
mechanical degrees of freedom. Here, instead, we study the
nonlocal correlations between two MRs. Typically, the Bell
nonlocality is considered the strongest quantum correlation
that is stronger than any other types, such as two- and
one-way steering and entanglement [9]. This is indeed the
case in our system; as we show later, the presence of a Bell
nonlocality requires much more stringent conditions than those
for steering and entanglement. We test Bell inequalities based
on two observables corresponding to displaced parity and
on-off detection, respectively. Using the fact that the mean
values of these two measurements are proportional to the

quasiprobability functions, this allows one to perform Bell
tests in phase space [49–51].

A. Bell violation with parity detection

Nonlocality of CV systems can be tested in phase space
by making the displaced parity measurement on each mode
[49–51]. Such a phase-space approach is based on the fact that
the expectation value of the displaced-parity operator is linked
to the Wigner function [49,52]. Therefore, Bell inequalities
can be constructed in terms of the Wigner functions. This
method has been utilized for testing Bell inequalities in

FIG. 2. Time evolution of steeringG1→2 (middle red lines),G2→1 (bottom blue lines) and entanglement EN (top black lines) for (a) rB = 0.95,
G1 = 0.999G2, and n̄1 = n̄2 = 0; (b) rB = 0.7, G1 = 0.953G2, and n̄1 = 2n̄2 = 200; (c) rB = 0.5, G1 = 0.869G2, and n̄1 = 2n̄2 = 1000. The
gray dashed lines denote EN = ln3, above which both G1→2 and G2→1 are nonzero, i.e., two-way steerable. This is clearly seen in the insets.
The other parameters are as in Fig. 1.
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FIG. 3. Time evolution of |Bmax| in the dynamical case of G1 = G2 = 105 Hz. The evolution starts from an initial separable state of the
cavity mode in the vacuum state and each MR in its thermal state with mean thermal phonon number n̄1,2. (a) γ1 = γ2 = 0, (b) γ1 = γ2 =
0.3 mHz. The dashed lines denote |Bmax| = 2 and the insets show the Bell violation about t = 2π/�. The other parameters are � = 104 Hz,
κ̃ = 0, n̄1 = n̄2 = 0, and θ = 0.

various CV systems [53]. Given the CM V of the MRs, it
is straightforward to compute the Wigner function [54]. For
our two-mode Gaussian state, the Wigner function is defined
as the Fourier transform of the Weyl characteristic function
χ (u) = exp(−uV uT) [55], which takes the form of

W (u) = exp(−uV −1uT)

π2
√

detV
, (8)

where u denotes the phase-space variables associated with
the quadrature fluctuation operators of û. We then apply
the displaced-parity operator �̂(α) = D̂(α)�̂D̂†(α) to be
measured on each mode of the MRs, where D̂(α) is the
displacement operator, D̂(α) = exp(αb̂† − α∗b̂) (α ∈ C), and
�̂ is the parity operator, given by

�̂ = (−1)n̂ =
∞∑

n=0

(|2n〉〈2n| − |2n + 1〉〈2n + 1|), (9)

with n̂ = b̂†b̂ the bosonic number operator. It should be
noted that in principle one could not directly make the above
measurement on the MRs. However, this can be done by
sending a weak red-detuned probe light, to which the state of
the MR is transferred, and then measuring the probe mode [56].
The displaced parity measurement could be realized using a
beam splitter and a photon number detector [52]. By using the
fact that 〈�̂(α)〉=(π/2)W (α) for each mode [49], we construct
the phase-space version of the Bell-Clauser-Horne-Shimony-
Holt (CHSH) inequality [57], |B| � 2, with

B = π2

4
[W (u1,u2) + W (u′

1,u2) + W (u1,u
′
2) − W (u′

1,u
′
2)],

(10)

where uj = {δqj ,δpj } and u′
j = {δq ′

j ,δp
′
j } (j = 1,2) embody

pairs of different values of the same quadrature operators of
the j th MR. Any local realistic theory imposes the bound
|B| � 2, and its violation implies that nonlocal correlation
is shared by the MRs. In what follows, we define Bmax

as the maximum of B optimized over the full range of
{δq1,δp1,δq2,δp2,δq

′
1,δp

′
1,δq

′
2,δp

′
2}, and it is known that the

maximal violation allowed by quantum mechanics is |Bmax| =
2
√

2 [58].

Unlike steering and entanglement, which are found in
the steady state with large values, we have observed the
Bell violation with parity detection only in the transient
state when the mechanical modes decouple from the optical
mode, which occurs at tm=2mπ/� (m=1,2, . . .) in the case
of equal couplings G1 = G2, and in the ideal parameter
regime G � � � κ̃ [38,39]. At these times, the mechanical
entanglement can be strong. |Bmax| shows peaks at tm, at
which the violation of the CHSH inequality is observed with
vanishing cavity decay rate κ̃ , mechanical damping rate γ ,
and thermal excitations n̄1,2, as shown in Fig. 3(a). As soon as
γ increases a little bit, |Bmax| drops rapidly and the nonlocal
correlation shared by the MRs vanishes, as shown in Fig. 3(b).
In Fig. 4 we plot |Bmax| as a function of γ and κ̃ at the optimal
time t = 2π/� for n̄1 = 2n̄2 = 0 and 0.05. It shows that a little
rise of the thermal excitations will kill the nonlocality. This
means that the Bell nonlocality of the MRs with the parity
detection is extremely sensitive to any kinds of system noises.
A similar finding has been observed in a hybrid atom-light-
mirror system where the tripartite nonlocality is demonstrated
by the violation of the Mermin-Klyshko inequality [59]. Since
our scheme is valid with conditions (2) fulfilled and it has been
verified numerically that the scheme works optimally when
ω1,2 � 102 max{G1,2,κ̃} [38], this implies ω1,2 � 107 Hz and
a mechanical Q factor Qm = ω1,2/γ > ∼107/10−4 = 1011 for
the parameters used in Fig. 4 in order to see the Bell violation.
Taking smaller values of G1,2, the maximum allowed values
of γ for violating the CHSH inequality also decrease, keeping
the Q factor Qm > ∼1011. Levitated nanospheres [60–62] are
promising systems to achieve such a goal. Furthermore, it
requires very low environmental temperature and an almost
perfect cavity with extremely small cavity losses, which seems
unrealistic to be implemented.

B. Bell violation with on-off detection

Although large violation of the Bell inequality has been
found with displaced-parity detection, it is extremely fragile
and only exists in the transient regime and in a system with
extremely small noises. This is because the parity measurement
detects effectively higher-order phonon number correlations
and it requires very high detector efficiency or very low system
noises [51]. Instead, the on-off detection, which measures only
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FIG. 4. Contour plot of |Bmax| versus γ1 = γ2 ≡ γ and κ̃ in the dynamical case of G1 = G2 = 105 Hz: (a) n̄1 = n̄2 = 0, (b) n̄1 = 2n̄2 = 0.05.
We take the optimal time t = 2π/�, � = 104 Hz, and θ = 0.

correlations between vacuum and phonons (or phonon absence
and presence), would relax the stringent conditions for system
losses in order to see the Bell violation.

Unlike the displaced-parity operator, the mean value of
displaced on-off detection is proportional to the Husimi
Q function, Q(β)= 1

π
〈�̂(β)〉 [63], with �̂(β) the oper-

ator for displaced on-off detection, �̂(β)=D̂(β) �̂ D̂†(β)
(β ∈C), where �̂ = |0〉〈0| represents the on-off measure-
ment which yields an eigenvalue of 1 for the vacuum
state and zero for all nonzero phonon number states. In
fact, �̂(β)=D̂(β) |0〉〈0| D̂†(β)=|β〉〈β| denotes the projection
onto a coherent state. In order to keep the same form of
the Bell inequality |B′| � 2 for local realistic theories, we
use the measurement operator 2�̂(β)−Î (where Î is the
identity operator) as the observable, which yields two possible
measurement outcomes: ±1. In such a way, the Bell inequality
could be formulated in phase space in terms of the Q functions,
analogous to the Clauser-Horne inequality [64], i.e., |B′| � 2
with [50,51]

B′ = 4π2[Q(u1,u2) + Q(u′
1,u2) + Q(u1,u

′
2) − Q(u′

1,u
′
2)]

− 4π [Q(u1) + Q(u2)] + 2, (11)

where uj and u′
j (j = 1,2) are defined in the same way as in

Eq. (10), and Q(u1) and Q(u2) are the marginal distributions

of Q(u). Q(u) can be derived straightforwardly if the Wigner
function W (u) is known [by Eq. (8)] and it is a convolution of
the Wigner function and a Gaussian weight [55], i.e.,

Q(β1,β2) = 4

π2

∫∫
d2α1d

2α2W (α1,α2)

× exp{−2|α1 − β1|2 − 2|α2 − β2|2}, (12)

where βj = (δqj + iδpj )/
√

2. Q(β1,β2) [i.e., Q(u)] is there-
fore the Husimi Q representation of the state of the MRs.
Similarly, we define B′

max as the maximum of B′ optimized
over the full range of {δq1,δp1,δq2,δp2,δq

′
1,δp

′
1,δq

′
2,δp

′
2}. The

violation of |B′
max| � 2 implies the presence of nonlocal

correlations shared by the MRs.
In Fig. 5 we show |B′

max| in the steady state as a function
of some key parameters of the system. As expected, the Bell
violation with the on-off detection is not sensitive to cavity
losses and |B′

max| is almost unchanged by altering the effective
cavity decay rate (realized by adjusting rB), as shown in
Fig. 5(a). |B′

max| � 2 is violated even with large values of
the cavity decay rate. This overcomes the biggest obstacle
for observing the Bell violation with the parity measurement.
However, since it is in the steady state, which is more affected
by various noises than when it is in the transient state, the
violation of the Bell inequality is only moderate. One may

FIG. 5. Contour plot of |B′
max| in the steady state as a function of (a) G1/G2 and rB with n̄1 = n̄2 = 0, γ1 = γ2 = 1 Hz, (b) G1/G2 and

n̄1 = 2n̄2 with rB = 0.5 and γ1 = γ2 = 1 Hz, and (c) G1/G2 and n̄1 = 2n̄2 with rB = 0.5 and γ1 = γ2 = 100 Hz. The other parameters are
G2 = 2κ1 = 2κ2 = 105 Hz, � = 0, and θ = 0.
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expect a larger violation occurs in the transient state in the case
of equal couplings G1 = G2. However, after a careful check,
we find only a tiny Bell violation in the case of G1 = G2.
This may be due to the fact that G1 = G2 is not optimal for
Bell violation with the on-off detection (the optimal values of
G1/G2 are away from 1; see Fig. 5). Figures 5(b) and 5(c) show
that |B′

max| is sensitive to the thermal excitations n̄1,2 but not
so sensitive to the mechanical damping rate γ : |B′

max| drops
only a bit when γ increases from 1 to 100 Hz. In order to see a
Bell violation, the system must be at very low environmental
temperature; e.g., for nanogram-sized MRs of frequencies
∼108 Hz [17], n̄1,2 ∼ 1 implies that the temperature must be
as low as ∼ 1 mK, which is still quite challenging. For more
massive MRs with typically lower characteristic frequencies
[65], Bell violation requires even lower temperature, which
poses a greater challenge to the experiment.

V. CONCLUSIONS AND REMARK

We have studied nonlocal properties, specifically EPR
steering and Bell nonlocality, of two macroscopic MRs in
optomechanical systems. We have shown that large and robust
one-way and two-way steerings could be achieved in the
steady state with realistic parameters, and we analyzed the
mechanism that accounts for the asymmetric nature of steering.
Furthermore, we have tested Bell inequalities in phase space
based on displaced-parity and on-off measurements, respec-
tively. For displaced-parity detection, a large Bell violation is

observed in the transient state but it requires extremely small
system noises and dissipation rates. In contrast, for displaced
on-off detection, a moderate Bell violation is found in the
steady state and the nonlocality is robust against cavity losses
and mechanical damping. For both measurements, very low
environmental temperature is required in order to violate Bell
inequalities, which is the main obstacle for the case with on-off
detection. Our work offers a possible answer in the framework
of standard quantum mechanics for the lack of observations
of quantum correlations shared by macroscopic or massive
objects.

We remark that throughout the paper we have assumed
perfect state transfer from MRs to probe modes and per-
fect realization of the displaced-parity and on-off detection
(Gaussian measurements for steering) and have not considered
any technical imperfections, such as detector inefficiencies,
dark counts, various technical noises, and so on. A serious
proposal for an actual experimental test should include all
of these effects. Here for simplicity we have neglected these
imperfections.
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