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One of the fundamental issues in the field of open quantum systems is the classification and quantification
of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-
Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize
the information flux for a given system state and show its connection to non-Markovianity. Here, by using the
concepts from thermodynamics and information theory, we discuss a potential definition of information flux of
an open quantum system, valid for static environments. We present a simple protocol to show how a system
attempts to share information with its environment and how it builds up system-environment correlations. We
also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy
of indivisibility of the system dynamics.
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I. INTRODUCTION

A detailed understanding of how a quantum system interacts
with an environment is important for a wide variety of fields
[1–6]. One of the fundamental issues in this topic is a
complete description of non-Markovian effects, i.e., memory
properties of the system-environment interaction which cannot
be captured by the conventional Born-Markov approxima-
tion. For example, many efforts have been devoted to the
quantification of non-Markovianity in open quantum systems
[6–8]. Several practical measures of non-Markovianity have
been proposed, typically based on the expected monotonicity
of certain quantities under completely positive and trace-
preserving (CPTP) maps [9–16]. The central idea is that when
these quantities show monotonicity, as a function of time, the
system dynamics can be classified as Markovian. In contrast,
whenever these quantities violate monotonicity, the dynamics
are classified as non-Markovian and the map which describes
the dynamics is said to be indivisible [10,17–19] or strong
non-Markovian [20]. A measure of non-Markovianity can thus
be constructed according to the overall nonmonotonic part of
these quantities.

One physical interpretation of the monotonicity of such
quantities under CPTP maps can be gained from the so-called
data processing theorem [21–23]. This says that, for a Marko-
vian process, information continuously dissipates out of the
system. Therefore, any retrieved knowledge on the system state
from the environment characterizes the non-Markovianity of
the process. For instance, in the non-Markovianity measure
proposed by Breuer, Lane, and Piilo (BLP) [9], the authors
focus on the trace distance of a pair of arbitrary initial states and
show that the revival of trace distance witnesses a backflow of
information, which increases the distinguishability of the state
pair and, consequently, characterizes the non-Markovianity.
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However, it is often not easy to characterize the “in-
formation” for a given system undergoing a dynamical
process without referring to any ancillary degrees of free-
dom. Moreover, existing quantity-based measures, while
each having various benefits, tend to show discrepancies
[19,24,25] between each other. Consequently, we expect that
more rigorously characterizing non-Markovianity in terms of
information flux will assist in concretely defining the nature
of non-Markovianity, and in developing new measures in the
future.

On the other hand, information theory and its interplay
with thermodynamics [26–32] has helped reveal the nature of
information not as an abstraction, but as a physical resource. In
this work we discuss how the language of thermodynamics and
information theory is used to explicitly define the information
flux through an open system, and in turn the non-Markovianity.

To this end, we revisit the thermodynamic task of work
extraction [33–37] and the thermodynamic quantity, entropy
production [38–42], in nonequilibrium situations. First, we
define the information flux via the negative entropy production
rate, and show that the system tends to share the outgo-
ing information with its environment and establish system-
environment correlations. For a convincing demonstration
of these definitions, we then discuss a protocol based on a
thermodynamic process involving a two-level system with
resonant components of a reservoir [37,43], which reaffirms
our main results.

To describe our definition within the framework of open
system, we will then consider how these quantities can be
defined in terms of Lindblad superoperator prescription, and
use this to discuss the non-Markovianity of a qubit pair
coupled with each other via a controlled-NOT (CNOT) gate.
This will help us see how information is exchanged in terms of
system-environment correlations during a dynamical process,
and how the information flux can be used to fully charac-
terize the hierarchy of indivisibility and non-Markovianity.
We will also discuss why the BLP measure [9] has
difficulty in capturing all of the information backflow in this
example.
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II. WORK EXTRACTION AND INFORMATION
IN A NONEQUILIBRIUM SYSTEM

Before explicitly defining information flux, we must
understand how to quantify the amount of information,
I neq(ρ), encoded in terms of a state configuration ρ out of
equilibrium. Given the important link between the task of
work extraction and information theory, as appears in the
examples of Maxwell’s demon [44], the Szilárd engine [45],
and Landauer’s erasure principle [46], it is becoming more
common to consider the nature of information as physical.
For example, in the Maxwell’s demon example, the demon
operates a Szilárd engine, consisting of a single ideal gas
molecule and a chamber divided into two sides with equal
volume. The demon is capable of accessing the initial position
of the molecule. By consuming this knowledge, the demon
can extract an average amount of work W ext = kBT ln2 from
a heat reservoir at temperature T , where kB is the Boltzmann
constant.

In the general case, for a system with nontrivial Hamiltonian
Ĥsys, then the maximal amount of average extractable work by
using the system in an initial state ρ, before it equilibrates
with a reservoir at temperature T , is given by the change in
free energy [35–37,42]

W ext = F (ρ) − F (ρeq) = kBT S(ρ‖ρeq), (1)

where F (ρ) = 〈Ĥsys〉 − kBT S(ρ), the Helmholtz free energy,
is one of the most fundamental quantities in thermody-
namics, F (ρeq) = −kBT lnZ is the free energy at thermal
equilibrium, S(ρ) = −Trρ lnρ is the von Neumann en-
tropy, S(ρ1‖ρ2) = Trρ1(lnρ1 − lnρ2) is the relative entropy
(Kullback-Leibler divergence), ρeq = exp [−Ĥsys/kBT ]/Z,
and Z = Tr exp [−Ĥsys/kBT ] is the partition function,
respectively.

The significance of a general Szilárd engine is that it
conjoins thermodynamics and information theory. It shows
the usefulness of information for performing some thermody-
namic tasks. Motivated by the task of work extraction, one
can therefore quantify the amount of information encoded in
a state configuration ρ with respect to its thermal equilibrium
ρeq via

I neq(ρ) = S(ρ‖ρeq). (2)

This definition is different to the Shannon entropy for a
probability distribution or von Neumann entropy for a quantum
state generically adopted in standard information theory.
Intuitively, whenever a system is more pure, it is usually more
useful for extracting work. But it possesses less von Neumann
entropy since it is less uncertain (i.e., requires less information
to encode). Here, inspired by the non-Markovianity measure
theory, we consider the “usefulness” or “purity” of a state as a
definition of information rather than the uncertainty of a state.

III. INFORMATION FLUX THROUGH OPEN SYSTEMS

A. Definition of information flux

When a system undergoes a dynamical process, the change
in entropy of the system originates from two sources

�Ssys = �Srev + �S irr, (3)

where �Srev = �Q/kBT is the reversible entropy change
arising from exchanging heat �Q with the environment,
and the irreversible contribution �S irr = �Ssys − �Q/kBT

is referred to as the entropy production. The heat exchange is
defined as

�Q =
∫ t

0
Tr

[
Ĥsys(τ )

∂

∂τ
ρ(τ )

]
dτ, (4)

which is positive if heat is flowing into the system and negative
if reversed. The overline reminds readers that this quantity
is path dependent, rather than a state function. The system
Hamiltonian Ĥsys(t) can be time dependent in general. The
sources of time dependence may come from external driving
or the interaction with environment.

Irreversibility is an ubiquitous phenomenon in nature.
Historically, this was conceived as an empirical axiom and
stated in terms of the second law of thermodynamics. The
positivity of entropy production �S irr � 0 is called the Clau-
sius inequality and is one of the various ways of expressing
the second law. Therefore, �S irr is customarily said to be
irreversible. Inspired by the quantity-based non-Markovianity
measures described in the Introduction, one may pose the
question of whether the positivity of entropy production
is also promising for constructing a practical measure of
non-Markovianity. One may also ask the following: how does
the entropy production characterize the information flux out
of the system and how does it relate to the non-Markovianity
of a dynamical process?

One can expect that the information flowing out of a system
should be either transferred into the environment or contained
in the system-environment correlations (e.g., in the form of
quantum entanglement). The former is encoded in the form
of heat transfer, namely the reversible entropy change �Srev.
Hence its nature is more “energetic.” We are particularly
interested in the latter, which is associated to the irreversible
entropy production �S irr and has a more “informational”
meaning. This intuition is schematically shown in Fig. 1
and will become clear in the following. Since the system-

FIG. 1. Change in system entropy is partitioned into two terms.
The reversible entropy change �Srev = �Q/kBT arises from ex-
changing heat with the environment, while the irreversible contribu-
tion �S irr, referred to as the entropy production, characterizes the
information flux out of the system. The system attempts to share
this outflowing information with the environment and establishes
system-environment correlations Imut.
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environment correlation is so fragile and suffers damage from
the environmental fluctuations, it is therefore responsible for
the irreversibility associated to the entropy production.

Inspired by the above intuition, here we define, for a
sluggish or static environment, the total information flux F
through the system is equal to the negative entropy production
rate, i.e.,

F = −∂S irr

∂t
. (5)

We emphasize that, in principle, the entropy production rate
∂tS

irr can be calculated for any general case with vigorous
environments. Nevertheless, its capability of characterizing
the information flux becomes ambiguous in such general cases
since we quantify the amount of information in ρ with I neq(ρ)
in Eq. (2), which is based on the task of work extraction from
a static reservoir. Besides, some of our following arguments
rely on this hypothesis as well. We will argue that, under the
hypothesis of static environment, Eq. (5) can be related to the
system-environment correlations and the non-Markovianity of
open quantum systems, and demonstrate several protocols and
examples, which reaffirm our definition.

B. Static environment hypothesis

In the task of work extraction, the reservoir is considered
to be static in the sense that the perturbation given by a finite
dimensional system is negligibly small and will relax in a
time scale much shorter than the characteristic time of system
dynamics. Hence reservoir’s population is assumed to be fixed
and obeys the Boltzmann distribution.

More precisely, it is assumed that the environment deviates
from thermal equilibrium by a small variation during a
dynamical process, i.e., ρenv(t) = ρ

eq
env + δρ(t) with Trδρ(t) =

0. As pointed out in Ref. [32], the information stored in the
environmental configuration, in analog to Eq. (2), is expressed
as

I neq
env (t) = S

(
ρenv(t)‖ρeq

env

)
= −�Q

kBT
− �Senv

= 1

2
Tr

[(
ρeq

env

)−1
δρ2

] + O(δρ3), (6)

which becomes vanishingly small as δρ → 0. Therefore, the
entropy change of the environment is solely described by the
amount of heat flowing into the system

�Senv = −�Q

kBT
. (7)

In this work, we may slightly release the assumption.
Namely, we solely require ρenv = Trsysρtot(t) to be time
independent, but not necessarily homogeneously thermalized.
This also implicitly requires that the environment Hamiltonian
is constant in time. This assumption is weaker than the
conventional Born approximation, which explicitly eliminates
all system-environment correlations. Additionally, we stress
that even though the environment is assumed to be static,
the system and the environment can still build significant
correlations during evolution [5], and the system dynamics can

exhibit a non-Markovian nature if it contacts to a structured
environment with sufficient long correlation times [47], even
though the environment is thermalized. This justifies the
significance of our work.

C. Information exchange of an open system

Considering a system undergoing nonequilibrium dynamics
with a time-dependent Hamiltonian Ĥsys(t). We define an
“instantaneous” equilibrium ρeq(t) = exp [−Ĥsys(t)/kBT ]/Zt

at each time instance in a similar manner to the static case.
The system starts from a nonequilibrium initial state ρ(0) and
evolves to another nonequilibrium state ρ(t) at a later time t .

As shown in Refs. [41,42], the change in the information
of the system during the dynamical process is given by

�I neq = I
neq
t − I

neq
0 = −�S irr + �W irr

kBT
. (8)

The two components on the right-hand side of Eq. (8) have their
own individual physical interpretations. The first term, −�S irr,
denotes the contribution to the change in the information
caused by state transformation, and the minus sign reflects
that the information flowing out of the system gives rise to a
reduction of the residual information in the system. This means
that the entropy production does characterize certain informa-
tion lost in the system and supports our definition in Eq. (5).
The second term �W irr = �W − kBT (−lnZt + lnZ0) is the
irreversible work [42] and �W = ∫ t

0 Tr[ρ(τ )∂τ Ĥsys(τ )]dτ is
the work performed on the system. Therefore, the irreversible
work accounts for the contribution arising from the time
variation of Hamiltonian. It is zero for the case of constant
Hamiltonian.

Consequently in our definition (5), we only take the entropy
production rate into account and ignore the contribution by
irreversible work since the entropy production rate quantifies
the time-varying rate of information in the system caused by
state transformation. In particular, given a dynamical process,
one is usually interested in state transition and may not clear
how the Hamiltonian evolves.

D. Geometric interpretation

A heuristic geometric interpretation of Eq. (8) is sketched
in Fig. 2. The state space of the system forms a subset of
positive semidefinite operators with unit trace in a C∗ algebra
of linear operators on the n-dimensional Hilbert space Hn.
For simplicity, we schematically depict it as a Bloch sphere.
As the system Hamiltonian is time varying, the corresponding
instantaneous eigenbasis is also time varying. Consider the
diagonalized system Hamiltonian in its corresponding eigen-
basis; it can be expressed as a linear combination in the Cartan
subalgebra of u(n) and the component in su(n) effectively
defines a rotating “z axis” of the Bloch sphere.

The instantaneous equilibrium states are always on the
rotating z axis and denoted as the red dots in Fig. 2. The
nonequilibrium system states are denoted by the black dots
and the dynamics is represented by the black trajectory. The
information I neq (blue dashed line) can then be considered as
the “distance” connecting the system state and the correspond-
ing instantaneous equilibrium. As time proceeds, I neq varies
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FIG. 2. We depict the state space as a simplified Bloch sphere.
The time-varying Hamiltonian defines a rotating z axis of the Bloch
sphere. The instantaneous equilibrium states always lie on the z axis
and are denoted by red dots. The dynamics of the system is represented
by the black curve inside the Bloch sphere. The amount of information
I neq(ρ) = S(ρ‖ρeq) is the length of the blue dashed straight line
connecting the system state and the instantaneous equilibrium state.
Both state transformation and the time variations of the Hamiltonian
give rise to the change in the information I neq, as shown in Eq. (8).

due to its two ends moving in the Bloch sphere. Accordingly,
the variation in I neq consists of two contributions separately
associated to the state transformation and the time-varying
Hamiltonian, as shown in Eq. (8).

E. System-environment correlations

Our second finding is that the system attempts to share
outflowing information with the environment and establish
system-environment correlations. A straightforward way to
visualize this is to consider the system and environment in
totality as a closed system such that the total state ρtot(t)
evolves unitarily without a change in the total entropy.
The bipartite mutual information, Imut = Ssys + Senv − Stot,
quantifies the amount of information shared between the two
parties. In a closed total system the rate of change of the mutual
information consists of the change in entropy of the system and
the environment, i.e., ∂t I

mut
t = ∂tSsys + ∂tSenv.

Assuming that the environment is static and kept thermal-
ized at temperature T , then taking the time derivative form
of Eq. (7) leads to one of our main results that the change in
the mutual information comes from the information flowing
through the system:

∂Imut
t

∂t
= ∂Ssys

∂t
− 1

kBT

∂Q

∂t
= −F . (9)

Namely, the information contained in the system-environment
correlations is offered by the system per se.

For a more precise consideration, suppose that the initial
total state is a direct product of system and environment.

In the beginning, we neither require the environment to be
thermalized nor static. One can show that, in a similar manner
to Ref. [40], the entropy production can be expressed in terms
of relative entropy:

�S irr = S
(
ρtot(t)‖ρ(t) ⊗ ρeq

env

) − S
(
ρenv(0)‖ρeq

env

)
= Imut(t) + I neq

env (t) − I neq
env (0). (10)

More details of Eq. (10) are shown in Appendix A. Its
meaning states that the entropy production of the system not
only quantifies the amount of mutual information, but also
contains the information change caused by the environmen-
tal state transition. Finally, if we further assume that the
environment is static [i.e., I

neq
env (t) = I

neq
env (0)], it reduces to

system-environment correlations exclusively:

�S irr = Imut(t). (11)

This supports our intuition shown in Fig. 1. And then taking
time derivative form immediately recovers our main result in
Eq. (9).

IV. PROTOCOL

Now we present a simple protocol (Fig. 3) to explicitly
demonstrate Eq. (9). We consider a two-level system as
the “system” in our protocol, with a nontrivial Hamiltonian
Ĥsys = Ea|a〉〈a| + Eb|b〉〈b|, where Ea > Eb. The initial state
of the system is given by ρsys = pa|a〉〈a| + pb|b〉〈b| with pa +
pb = 1. Although here we only consider a simplified model
without initial coherence, this restriction can be relaxed and
generalized to that with initial coherence straightforwardly.

In this protocol the environment is assumed to be a huge
reservoir in the sense that we can freely and repeatedly pick
one copy of a virtual or ancillary two-level-system (or qubit)
[37,43], which is on resonance with the real system, out of
the environment, in each single run of the protocol. Suppose
that the two levels of the virtual qubit are labeled as 1 and
0 with E1 > E0; then the state of the virtual qubit can be

FIG. 3. We consider a simple protocol showing how the system-
environment correlations are established by sharing the outflowing
information. The system is modeled as a two-level system with initial
state ρsys = pa|a〉〈a| + pb|b〉〈b|. The environment is in thermal
equilibrium at temperature T and we can repeatedly pick one virtual
qubit Z−1(q1|1〉〈1| + q0|0〉〈0|) out of the environment in each single
run of the protocol.
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expressed as

ρvir = q1

Z
|1〉〈1| + q0

Z
|0〉〈0|, (12)

where q1/q0 = exp [−(Ea − Eb)/kBT ] and Z is the partition
function of the environment.

To describe the “thermal contact” microscopically and in
a quantum mechanical regime, we consider the interaction
Hamiltonian

Ĥint = h̄γ (|b〉〈a| ⊗ |1〉〈0| + |a〉〈b| ⊗ |0〉〈1|). (13)

The time evolution of the total system is then governed by the
unitary operator Ût = exp [−i(Ĥsys + Ĥenv + Ĥint)t/h̄].

The first stage of the protocol in each run is an infinitesimal
evolution

ρtot(0) → ρtot(δt) = Ûδtρtot(0)Û †
δt . (14)

The initial state ρtot(0) is a direct product of the system
and the environment. After an infinitesimal evolution, heat
δQ and information −δS irr are exchanged between the real
system and the virtual qubit. Moreover, the correlation δImut

is also established during the infinitesimal evolution. In the
second stage, we erase the correlations established in the first
stage and obtain the reduced state of the system and the
environment. We are now able to calculate the heat and the
amount of correlations induced by the infinitesimal evolution
in the first stage. We finally discard the exhausted virtual
qubit back into the environment and again pick a new virtual
qubit from the environment. Once again, we are ready for the
next run of the protocol. Following Ref. [48], the bipartite
correlation can be quantified by the relative entropy δImut =
S(ρtot(δt)‖ρsys(δt) ⊗ ρenv(δt)). Finally, we can conclude that

δImut ≈ δSsys − δQ

kBT
= δS irr = −Fδt (15)

up to a negligible high-order term O(δt2). Consequently, the
information flux quantified by the entropy production rate is
shared by the system and can be used to establish the system-
environment correlations. Detailed calculations are shown in
Appendix B.

V. LINDBLAD SUPEROPERATOR PRESCRIPTION

One of the most important approaches in open quantum sys-
tems is the well-known Lindblad master equation [49,50]. The
dissipative effects caused by the environment are described by
the standard Lindblad superoperators acting on system density
operator

Ri,j {ρ} = ÂiρÂ
†
j − 1

2 {Â†
j Âi ,ρ}. (16)

Each superoperator Ri,j is associated with a decay rate γi,j . In
general, these rates can be time varying. The non-Markovianity
and indivisibility of a dynamical map Et is characterized by
the Kossakowski matrix Kt = [γi,j (t)](n−1)×(n−1) formed by
collecting the decay rates. If Kt is positive semidefinite for all
time instances, Et are shown to be CP divisible and Markovian.
On the other hand, if some eigenvalues of Kt temporarily
become negative, Et then deviates from being CP divisible and
exhibits a hierarchy of non-Markovianity. However, the non-
Markovianity usually cannot be detected by quantity-based

measures unless Et exhibits the essential non-Markovianity
[18,19] or strong non-Markovianity [20].

Now we are ready to precisely describe the thermodynamic
quantities discussed so far within an open system framework.
According to the definitions in Ref. [51], the heat absorption
rate by the system is defined as

∂Q

∂t
=

∑
i,j

γi,j Tr(Ri,j {ρ} · Ĥsys). (17)

And the changing rate of the system entropy is

∂Ssys

∂t
=

∑
i,j

−γi,j Tr(Ri,j {ρ} · lnρ). (18)

Combining Eqs. (17) and (18), the entropy production rate in
the Lindblad prescription is given by

∂S irr

∂t
=

∑
i,j

−γi,j Tr

[
Ri,j {ρ} ·

(
lnρ + 1

kBT
Ĥsys

)]
. (19)

If we image each superoperator Ri,j defines an interaction
channel with the environment, according to definition (5)
and Eq. (19), the total information flux can be written as
a summation over the flux through each interaction channel
F = ∑

i,j Fi,j , where

Fi,j = γi,j Tr

[
Ri,j {ρ} ·

(
lnρ + 1

kBTi,j

Ĥsys

)]
. (20)

The right-hand side of Eq. (20) is proportional to the decay
rate γi,j and it therefore concludes one of our main results,
connecting the information flux with the non-Markovianity of
system dynamics.

VI. HIERARCHY OF NON-MARKOVIANITY

For textual completeness and convenience in the following
discussions, here we briefly review the concepts of k positivity
and hierarchy of non-Markovianity [18,19]. Let C be a C∗
algebra of linear operators on the n-dimensional Hilbert space
Hn, C+ be the subset of positive elements in C, and L(C,C)
denote the set of linear maps fromC toC. A TP mapE ∈ L(C,C)
is said to be positive if E(C+) ⊆ C+. Namely, E preserves the
positivity of the domain C+.

Since a quantum system may be entangled with some other
ancillary degrees of freedom, the notion of positivity of a map
should be generalized to k positivity to ensure the validity
of the map in the presence of entanglement. A TP map E ∈
L(C,C) is said to be k positive if Ik ⊗ E : Mk ⊗ C → Mk ⊗ C
is positive and CP if E is k positive for all positive integers
k, where Ik is the identity map acting on the k × k matrix
algebra Mk .

Having the notion of k positivity, we can generalize CP
divisibility to a hierarchy of k divisibility: an invertible CPTP
dynamical process Et,0 is said to be k divisible if, ∀t,τ > 0,
the complement process

�t+τ,t = Et+τ,0 ◦ [Et,0]−1 (21)

is k positive. Accordingly, n divisibility is equivalent to CP
divisibility and Et,0 is zero divisible if �t+τ,t violates the
positivity for some t or τ . Introducing a family of sets Dk
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containing processes Et,0 with divisibility less than k, one has
a chain of inclusions,

D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn, (22)

whereDn consists of all CPTP dynamical processes, regardless
of their degree of divisibility. In particular, D0 consists
of zero-divisible processes, which is said to be essentially
non-Markovian [18,19] or strong non-Markovian [20], and all
processes in Dn−1 − D0 are said to be weakly non-Markovian
[18–20]. We can further define the sets of proper k divisibil-
ity PDk = Dk − Dk−1; then PDn = Dn − Dn−1 consists of
processes which are exactly n divisible (i.e., CP divisible),
and therefore Markovian, processes, and PD0 = D0. Thus the
above inclusion chain can be expressed as a partition of Dn in
terms of PDk

Dn =
n⋃

k=0

PDk. (23)

It is therefore convenient to visualize the partition in Eq. (23)
in terms of a k-divisibility phase diagram [19] and investigate
the dependence of k divisibility on dynamical parameters of
interest.

VII. CNOT GATE

A. Dynamics of T qubit

As an instructive paradigm, we consider a pair of qubits
coupled with each other via a CNOT gate. The initial state of the
control (C) qubit is assumed to be a mixture ρC = a|1C〉〈1C| +
(1 − a)|0C〉〈0C| with a ∈ [0,1]. The qubit pair has no initial
interqubit correlation and their interaction can be described by
the Hamiltonian ĤCT = J

2 (|1C〉〈1C| ⊗ σ̂x + |0C〉〈0C| ⊗ Î). In
addition, we impose noisy isotropic depolarizing channels on
the target (T) qubit. Although the entire dynamics of the qubit
pair is Markovian, it is not the case if we consider the dynamics
of the T qubit after tracing out the C qubit. It is governed by
the master equation

∂

∂t
ρT = − i

h̄
[Jx(t)σ̂x,ρT] + γ + γC,x(t)

2
(σ̂xρTσ̂x − ρT)

+
∑
j=y,z

γ

2
(σ̂j ρTσ̂j − ρT), (24)

where Jx(t) = [J/2r2(t)][a2 + a(1 − a) cos(J t/h̄)],

γC,x(t) = a(1 − a)J

h̄r2(t)
sin

J

h̄
t, (25)

and r(t) =
√

(1 − a)2 + 2a(1 − a) cos(J t/h̄) + a2. Further
detailed solutions can be found in Appendix C.

In this paradigm, the T qubit couples to two environments.
One is the Markovian isotropic depolarizing channels, which
attempts to wash out all information in the T qubit and push
it toward a completely mixed state. Hence the corresponding
temperature is assumed to be infinitely high in accordance
with the notion of virtual temperature [37,43]. The other
environment is played by the C qubit, which introduces
non-Markovianity into the T qubit dynamics in terms of
the time-varying rate γC,x(t) associated to σ̂x channel. It is
interesting to notice that the C qubit consists of only two states,

far from being an authentic reservoir. However, our definitions
(5) and (20) still hold since the C qubit has a static population
during the entire dynamics and therefore behaves as a “static
environment.”

B. k divisibility and retrieved information

The non-Markovian features of the T qubit are shown in
the k-divisibility phase diagram Fig. 4(a). If γC,x(t) = 0 for all
t (e.g., a = 0,1), this corresponds to the two yellow dashed
lines in the green Markovian PD2 region. Namely the T qubit
experiences the Markovian evolution and the positive decay
rate γ implies that the information is continuously washed
out due to three depolarizing channels. As a approaches 0.5
or γ decreases, the T qubit dynamics shows transition from
Markovian PD2 to essentially non-Markovian PD0 region
and therefore exhibits non-Markovianity and indivisibility.

This landscape of non-Markovianity is a result of the
competition between the retrieved information and dephasing.
If the amplitude of γC,x(t) is finite, its oscillating behavior
implies that partial information is periodically flowing out of
the T qubit and is subsequently retrieved from the correlations
with C qubit. The numerical results are shown in Figs. 4(b)–
4(d), corresponding to the black dashed line at a = 0.3 in
Fig. 4(a).

In Fig. 4(b), we assume a small γ /J value at 0.1 such that
the amplitude of γC,x(t) is larger than 2γ . The information
flux induced by the C qubit via σ̂x channel, FC,x (black
solid curve), becomes temporarily positive after an initial
negative period, revealing substantial retrieved information
which overcomes not only the dephasing via the depolarizing
σ̂x channel,Fdep,x (black dashed curve), but also three isotropic
depolarizing channels, Fdep = ∑

j=x,y,z Fdep,j (black dashed
curve). This competition results in the positive periods of
total information flux, F = FC,x + Fdep (red solid curve).
This explicit backflow of information can be detected by
the BLP measure [9] and the T qubit dynamics is essentially
non-Markovian, zero divisible, and corresponds to the redPD0

region in Fig. 4(a).
If the amplitude of γC,x(t) lies between γ and 2γ , as

shown in Fig. 4(c) with γ /J = 0.4, the transiently retrieved
information, FC,x (black solid curve), within the periods of
positive values, is possible to overcome the dephasing via the
σ̂x channel, Fdep,x (black dashed curve); more precisely, there
exists some time periods such that Fx = FC,x + Fdep,x > 0.
Therefore, the T qubit can temporarily receive the retrieved
information via σ̂x channel and its dynamics shows weak
non-Markovianity, 1 divisibility, and deviating from being
CP divisible. However, even though the T qubit can receive
the temporarily retrieved information via σ̂x channel, it is
not strong enough and will be smeared by the σ̂y and σ̂z

depolarizing channels. Consequently, the total information
flux, F = Fx + Fdep,y + Fdep,z (blue solid curve), is negative
and the quantity-based measures end up with null non-
Markovianity in the blue PD1 region in Fig. 4(a) [19].

Figure 4(d) shows the result of γ /J = 0.6. In this case,
|γC,x(t)| � γ for all t . The transiently retrieved information is
too weak to compensate the dephasing via σ̂x channels. Hence
both Fx and the total information flux F are flowing out of
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FIG. 4. (a) k-divisibility phase diagram for the T qubit dynamics vs a and γ /J . It is CP divisible and Markovian for a = 0,1, as indicated
by the two yellow dashed lines in the green PD2 region. As a approaches 0.5 or γ decreases, the T qubit dynamics shows transition from
PD2 to PD0 region, and therefore shows enhancements in indivisibility and non-Markovianity. The black dashed line represents the case for
a = 0.3, along which the numerical results and the BLP measure are depicted following and in Fig. 5, respectively. In panels (b), (c), and (d),
we show the detailed information flux for the T qubit. In these calculations we fix a = 0.3 and increase γ /J = 0.1, 0.4, to 0.6, respectively. The
information flux induced by the C qubit via σ̂x channel, FC,x (black solid curve in each panel), shows temporary positive periods. This reveals
the competitions with dephasings via σ̂x channel, Fdep,x , or the whole depolarizing channels, Fdep (black dashed curves). The resulting total
information flux, F (colored curve in each panel), shows different behavior in each panel, corresponding to three regions in the k-divisibility
phase diagram.

the T qubit and its dynamics is CP divisible and Markovian,
corresponding to the green PD2 region in Fig. 4(a).

C. Non-Markovianity and retrieved information

To further reveal the connection between the quantity-based
measures and information backflow, in Fig. 5 we show the
BLP measure [9] along the black dashed line at a = 0.3 in
Fig. 4(a). The BLP measure decreases rapidly with increasing
γ and identifies nonzero non-Markovianity only in the PD0

region. This can be understood from Fig. 4(b), where the total
information flux F shows positive periods, revealing strong
enough information backflow resulting in the increments of
trace distance and nonzero BLP measure.

The equivalence between total information flux F and BLP
measure can be realized by observing that F is proportional to
the time varying rate of trace distance of a specific state pair:

F =
∑

j=x,y,z

−∂Sj

∂t
∝ ∂

∂t

1

2
‖Et (|1〉〈1| − |0〉〈0|)‖1, (26)

where Et is the process generated by the master equation (24).
The trace distance revives only when the total information is
incoming, no matter how much detailed information through
each interaction channel is transiently retrieved.

It is worthwhile to notice that, in the PD1 region, partial
information can be retrieved via σ̂x channel, resulting in
a low degree of indivisibility (i.e., 1 divisibility), whereas

essentially
non-Markovian

weakly
non-Markovian

Markovian

no
n-

M
ar

ko
vi

an
ity

 (B
LP

)

0 0.2 0.4 0.6 0.8

0.1

0.3

0.5

FIG. 5. BLP measure decreases rapidly with increasing γ . The
measure can only detect the non-Markovianity in the zero-divisible
PD0 region since the information backflow is strong enough to
increase the trace distance. In the PD1 region, although partial
information can also be retrieved, it is not enough to overcome
the dephasing by the isotropic depolarizing channels. The overall
information is outgoing and therefore the BLP measure is blind to
this partial information backflow.
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the quantity-based measures tend to be blind to the weak
non-Markovianity in the PD1 region [19]. This is because
they can at most detect the total information flux F , which is
outgoing in the PD1 region, rather than access the detailed
flux through each interaction channel, which is possibly
incoming, as seen from Fig. 4(c). In other words, if solely
relying on the quantity-based measures, one can neither
detect the weak non-Markovianity nor distinguish between
PD1 and PD2. This can only be understood when one
analyzes the detailed information flux through each interaction
channel.

VIII. DISCUSSIONS AND CONCLUSIONS

Finally, we explore the possibility of experimental im-
plementation of our protocol presented above. We briefly
discuss two types of promising candidates. We notice that
the interaction Hamiltonian (13) is of the form of the Jaynes-
Cummings model within the rotating-wave approximation. It
has been shown that the linear optical setups are competent for
simulating such systems and achieving several thermodynamic
tasks [52–54]. Additionally, they can be used to demonstrate
the transition between different non-Markovian regimes as
well [20,55]. On the other hand, thanks to the massive efforts
devoted to the studies of nanoscale devices, considerable
improvements in the fabrication and the manipulation of the
electronic circuits have been realized. Many experiments have
been performed for verifying the fundamental theories of
classical and quantum thermodynamics [56,57]. Based on the
experiments reported above, we believe that our approach may
have potential applications in various types of quantum heat
engines [58–61].

In summary, our main results exhibited that, when a
system interacts with a static environment, the information
flux is equal to the negative entropy production rate. The
system attempts to share this outflowing information with the
environment and establish system-environment correlations.
For these results, we revisited the thermodynamic task of
work extraction and the second law of thermodynamics. We
quantified the amount of information in a system by the relative
entropy with respect to its thermal equilibrium and described
how this information changes during a dynamical process. We
further presented a simple protocol to reaffirm our arguments.

Invoking the Lindblad superoperator prescription, we in-
vestigated the information flux within the framework of open
system. We found that the indivisibility of the dynamics is
intimately connected to the direction of information flux.
In general, a higher degree of non-Markovianity or indi-
visibility implies a stronger backflow of information. To
explicitly reveal the connection between non-Markovianity
and information backflow, we considered the CNOT gate model.
We found that when increasing the strength of information
backflow, the dynamics of the target qubit transfers from
being Markovian to non-Markovian and shows a higher
degree of non-Markovianity and indivisibility. This supports
the physical interpretation of the BLP measure of non-
Markovianity and shows that the quantity based measures [9–
16] are not sensitive enough to capture the detailed information
backflow.
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APPENDIX A: DERIVATION OF EQ. (10)

Here we show the detailed derivation of Eq. (10). The
approach is similar to that in Ref. [40]. As mentioned
in the main context, we do not assume thermalized nor
static environment in the beginning of our derivation. The
environment is kept general. Since the system and environment
are considered in totality as closed, the total state evolves
unitarily without a change in total entropy. Besides, the initial
total state is assumed to be a direct product of system and
environment; we therefore have

Stot(t) = Stot(0) = Ssys(0) + Senv(0). (A1)

And the change in system entropy can be written as

�Ssys(t) = Ssys(t) − Ssys(0)

= −Trρsys(t)lnρsys(t)

+ Trρtot(t)lnρtot(t) − Trρenv(0)lnρenv(0). (A2)

By noticing that Trρsys(t)lnρsys(t) = Trρtot(t)ln[ρsys(t) ⊗
Îenv], where Îenv is the identity operator acting on the
environmental Hilbert space, we have

�Ssys(t) = S
(
ρtot(t)‖ρsys(t) ⊗ ρeq

env

)
− Trρenv(0)lnρenv(0) + Trρenv(t)lnρeq

env

= S
(
ρtot(t)‖ρsys(t) ⊗ ρeq

env

) − S
(
ρenv(0)‖ρeq

env

)
+ Tr[ρenv(t) − ρenv(0)]lnρeq

env. (A3)

Due to the closure of the total system, the environment can
only exchange heat with the system. The last term is equal to
�Q/kBT . We obtain the first line of Eq. (10) that

�S irr = S
(
ρtot(t)‖ρ(t) ⊗ ρeq

env

) − S
(
ρenv(0)‖ρeq

env

)
. (A4)

We proceed to expand the first relative entropy on the right-
hand side of Eq. (10). Simple algebraic skill leads to

S
(
ρtot(t)‖ρ(t) ⊗ ρeq

env

) = Ssys(t) − Stot(t)

− Trρenv(t)lnρeq
env

+ Senv(t) + Trρenv(t)lnρenv(t).

(A5)

We finally obtain the second line of Eq. (10) that

�S irr = Imut(t) + I neq
env (t) − I neq

env (0). (A6)

It is interesting to notice that, if we adopt a thermalized
initial environment state ρenv(0) = ρ

eq
env, we have

I neq
env (0) = S

(
ρenv(0)‖ρeq

env

) = 0. (A7)

We therefore recover the results in Eq. (10). Alternatively, if
we assume the static environment hypothesis, then we have
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I
neq
env (t) = I

neq
env (0). Consequently entropy production reduces

to system-environment correlations exclusively:

�S irr = Imut(t). (A8)

Therefore, taking the time derivative form of the above
equation recovers our main result in Eq. (9) immediately.

APPENDIX B: INFORMATION FLUX OF THE PROTOCOL

Here we show further details regarding our protocol. The
notion of virtual qubit [37,43] is one of the critical ingredients
in our protocol. Whenever we specify certain two states of the
environment as a virtual qubit on resonance with the system,
then the state of the environment can be expressed as

ρenv =
(

q1

Z
|1〉〈1| + q0

Z
|0〉〈0|

)
⊕ ρred

env, (B1)

where q1/q0 = exp [−(Ea − Eb)/kBT ] and ρred
env is the

redundant state apart from the virtual qubit with Trρred
env =

1 − q1/Z − q0/Z.
The initial state ρtot(0) is a direct product of system and

environment. The infinitesimal evolution of the system and
virtual qubit in the first stage can be written as

ρsys ⊗ ρvir =
[
pa 0
0 pb

]
⊗ 1

Z

[
q1 0
0 q0

]

→

⎡⎢⎣
pa

q1

Z
0 0 0

0 pa
q0

Z
− pZδt ipZδt 0

0 −ipZδt pb
q1

Z
+ pZδt 0

0 0 0 pb
q0

Z

⎤⎥⎦
+O

(
p2

Zδt2
)
, (B2)

where pZ = (paq0 − pbq1)γ /Z. The off-diagonal elements
reveal that a nonclassical correlation is established during the
infinitesimal evolution in this stage.

In the second stage, we erase the system-environment
correlation and obtain the reduced density matrices for the
system and environment:

ρsys(δt) =
[
pa − pZδt 0

0 pb + pZδt

]
, (B3)

ρenv(δt) =
[

q1

Z
+ pZδt 0

0 q0

Z
− pZδt

]
⊕ ρred

env. (B4)

The heat absorbed by the environment is equal to the one

transferred from the system

δQ = −(Ea − Eb)pZδt. (B5)

The small change in the entropy of the system is

δSsys = −Tr(δρsys · lnρsys) =
(

ln
pa

pb

)
pZδt. (B6)

And the one of the environment is

δSenv = −
(

ln
q1

q0

)
pZδt = − δQ

kBT
. (B7)

This satisfies the results in Eq. (7) that the entropy change in
an authentic reservoir solely arises from exchange of heat.

Now we proceed to the quantification of correlation pro-
posed in Ref. [48]. Since the initial total state is a direct product
of system and environment, the increment in the correlation
is therefore quantified by S(ρtot(δt)‖ρsys(δt) ⊗ ρenv(δt)). Modi
et al. [48] have shown that this is equal to the increment in
bipartite mutual information δImut. The relative entropy can
be expanded as

S(ρtot(δt)‖ρsys(δt) ⊗ ρenv(δt))

= Trρtot(0)lnρtot(0) − Trρtot(δt)lnρsys(δt) ⊗ ρenv(δt)

= Trρsys ⊗ ρvirlnρsys ⊗ ρvir + Trρsys ⊗ ρred
envlnρsys ⊗ ρred

env

− Trρsys,vir(δt)lnρsys(δt) ⊗ ρvir(δt)

− Trρsys ⊗ ρred
envlnρsys(δt) ⊗ ρred

env. (B8)

In the first equality, we have used the unitarity of total system
such that Stot(δt) = Stot(0). Finally, substituting Eqs. (B2)–
(B4) into Eq. (B8), we can recover the result in Eq. (15).

APPENDIX C: INFORMATION FLUX THROUGH T QUBIT

As shown in Ref. [19], the dynamics of T qubit can be
expressed as

ρT(t) = α0ρ11(t) + β0ρ00(t) + δ0ρ01(t) + δ∗
0ρ10(t), (C1)

where α0, β0, δ0, and δ∗
0 denote the initial condition of the T

qubit and

ρ11(t) =
[

1
2 [1 + e−2γ tA(t)] i a

2 e−2γ t sin J t
h̄

−i a
2 e−2γ t sin J t

h̄
1
2 [1 − e−2γ tA(t)]

]
, (C2)

ρ00(t) =
[

1
2 [1 − e−2γ tA(t)] −i a

2 e−2γ t sin J t
h̄

i a
2 e−2γ t sin J t

h̄
1
2 [1 + e−2γ tA(t)]

]
, (C3)

ρ01(t) =
[

−i a
2 e−2γ t sin J t

h̄
a e−2γ t sin2 J t

2h̄
1
2e−2γ t [1 + A(t)] i a

2 e−2γ t sin J t
h̄

]
, (C4)

ρ10(t) =
[

i a
2 e−2γ t sin J t

h̄
1
2e−2γ t [1 + A(t)]

a e−2γ t sin2 J t
2h̄

−i a
2 e−2γ t sin J t

h̄

]
, (C5)

with A(t) = 1 − a + a cos J t
h̄

. Having acquired the full
dynamics of ρT(t), the master equation (24) can be derived
following the methods outlined in Ref. [62].

For symbolic brevity, we parametrize the initial
condition by polar coordinate (r0,θ0,φ0) and it evolves to
[r0 exp(−2γ t)r̃(t),θ (t),φ(t)] at latter time t with r̃(t) =√

(cos2 θ0 + sin2 θ0 sin2 φ0)r2(t) + sin2 θ0 cos2 φ0.
According to the definitions (17)–(20), the heat fluxes via

each channel are given by

∂Qx

∂t
= 0, (C6)

∂Qy

∂t
= ∂Qz

∂t
= −γ r0 sin θ0 cos φ0Jx(t)e−2γ t , (C7)
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and the entropy changing rates are given by

∂Sx

∂t
= γ + γx(t)

2
[1 − sin2 θ (t) cos2 φ(t)]B(t), (C8)

∂Sy

∂t
= γ

2
[sin2 θ (t) cos2 φ(t) + cos2 θ (t)]B(t), (C9)

∂Sz

∂t
= γ

2
sin2 θ (t)B(t), (C10)

where B(t) = 2r0e
−2γ t r̃(t)artanh[r0e

−2γ t r̃(t)], with
artanh(z) = 1

2 ln 1+z
1−z

the inverse hyperbolic tangent. As
discussed in the main text, the temperature assigned to the
σ̂y and σ̂z channels is infinitely high. Hence the information

flux via each channel is exactly equal to the negative entropy
changing rate

Fj = −∂Sj

∂t
, (C11)

where j = x, y, and z. And the total information flux is given
by their summation

F =
∑

j

Fj = ∂r0e
−2γ t r̃(t)

∂t
artanh(r0e

−2γ t r̃(t)). (C12)

Additionally, in the calculations of information flux in Fig. 4,
we adopt the initial condition ρT(0) = |1〉〈1|.
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Comparative study of non-Markovianity measures in exactly
solvable one- and two-qubit models, Phys. Rev. A 90, 052103
(2014).

[26] C. H. Bennett, The thermodynamics of computation—a review,
Int. J. Theor. Phys. 21, 905 (1982).

[27] M. B. Plenio and V. Vitelli, The physics of forgetting: Landauer’s
erasure principle and information theory, Contemp. Phys. 42, 25
(2001).

[28] K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics
of Maxwell’s demon and information, Rev. Mod. Phys. 81, 1
(2009).

062114-10

https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
http://arxiv.org/abs/arXiv:1703.09428
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1038/srep05720
https://doi.org/10.1038/srep05720
https://doi.org/10.1038/srep05720
https://doi.org/10.1038/srep05720
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevA.90.052118
https://doi.org/10.1103/PhysRevA.90.052118
https://doi.org/10.1103/PhysRevA.90.052118
https://doi.org/10.1103/PhysRevA.90.052118
https://doi.org/10.1103/PhysRevLett.116.020503
https://doi.org/10.1103/PhysRevLett.116.020503
https://doi.org/10.1103/PhysRevLett.116.020503
https://doi.org/10.1103/PhysRevLett.116.020503
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevA.92.042105
https://doi.org/10.1103/PhysRevA.92.042105
https://doi.org/10.1103/PhysRevA.92.042105
https://doi.org/10.1103/PhysRevA.92.042105
https://doi.org/10.1038/srep17520
https://doi.org/10.1038/srep17520
https://doi.org/10.1038/srep17520
https://doi.org/10.1038/srep17520
https://doi.org/10.1103/PhysRevLett.113.140502
https://doi.org/10.1103/PhysRevLett.113.140502
https://doi.org/10.1103/PhysRevLett.113.140502
https://doi.org/10.1103/PhysRevLett.113.140502
https://doi.org/10.1103/PhysRevA.93.012101
https://doi.org/10.1103/PhysRevA.93.012101
https://doi.org/10.1103/PhysRevA.93.012101
https://doi.org/10.1103/PhysRevA.93.012101
https://doi.org/10.1103/PhysRevA.90.012310
https://doi.org/10.1103/PhysRevA.90.012310
https://doi.org/10.1103/PhysRevA.90.012310
https://doi.org/10.1103/PhysRevA.90.012310
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1007/BF02084158
https://doi.org/10.1080/00107510010018916
https://doi.org/10.1080/00107510010018916
https://doi.org/10.1080/00107510010018916
https://doi.org/10.1080/00107510010018916
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1103/RevModPhys.81.1


THERMODYNAMIC DESCRIPTION OF NON-MARKOVIAN . . . PHYSICAL REVIEW A 96, 062114 (2017)

[29] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano,
Experimental demonstration of information-to-energy conver-
sion and validation of the generalized jarzynski equality, Nat.
Phys. 6, 988 (2010).

[30] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[31] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner, The minimal
work cost of information processing, Nat. Commun. 6, 7669
(2015).

[32] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Quantum
and Information Thermodynamics: A Unifying Framework
Based on Repeated Interactions, Phys. Rev. X 7, 021003 (2017).

[33] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen,
Maximal work extraction from finite quantum systems,
Europhys. Lett. 67, 565 (2004).

[34] A. E. Allahverdyan and K. V. Hovhannisyan, Work extraction
from microcanonical bath, Europhys. Lett. 95, 60004 (2011).

[35] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki,
Thermodynamics of quantum information systems-Hamiltonian
description, Open Syst. Inf. Dyn. 11, 205 (2004).
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