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Weakly nonlinear degrees of freedom in dissipative quantum systems tend to localize near manifolds of
quasiclassical states. We present a family of analytical and computational methods for deriving optimal unitary
model transformations that reduce the complexity of representing typical states. These transformations minimize
the quantum relative entropy distance between a given state and particular quasiclassical manifolds. This naturally
splits the description of quantum states into transformation coordinates that specify the nearest quasiclassical
state and a transformed quantum state that can be represented in fewer basis levels. We derive coupled equations
of motion for the coordinates and the transformed state and demonstrate how this can be exploited for efficient
numerical simulation. Our optimization objective naturally quantifies the nonclassicality of states occurring in
some given open system dynamics. This allows us to compare the intrinsic complexity of different open quantum
systems.
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I. INTRODUCTION

A given quantum mechanical system can be described
in more than one way. Our choice of description is usually
motivated by the insight it provides, its economy, its accuracy,
and, when dealing with sufficient complexity, the efficiency
with which it can be numerically simulated and analyzed.

Closed quantum systems evolve unitarily, and if their
Hamilton operator admits a sufficient set of individually
tunable control operators one can, at least in principle, realize
arbitrary unitary operations on the system’s Hilbert space
[1]. This enables powerful quantum computing and quantum
simulation schemes that derive their advantage over classical
computers from the exponential scaling of the Hilbert space
dimension with system size.

We may then ask what the implications are for open
quantum systems which exhibit dissipative dynamics. As
dissipation increases it becomes increasingly difficult to use
them for unitary quantum computing, but there also exist
applications in quantum engineering that explicitly require
coupling to input and output fields, ranging from quantum
limited signal amplification [2,3], via quantum key distribu-
tion, to autonomously correcting quantum memories [4]. An
important class of such applications can be described in the
language of quantum feedback networks [5,6] or quantum
input-output models [7].

In general, our ability to design quantum systems for
specific tasks is severely limited by the state space complexity.
This is true of closed and open systems, but as fewer guarantees
exist on what dynamics are achievable with open quantum
systems than in the closed system case we are even more reliant
on efficient numerical schemes. Fortunately, the dynamics of
open quantum systems tend to exhibit phase-space localization
[8], which implies that there exist nonlinear sets within the
system’s Hilbert space that act as attractors for the quantum
dynamics.
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A very appealing feature of quantum network models
based exclusively on nonlinear oscillators is that they allow
continuously tuning between the coherent qubit regime [9]
and the semiclassical weakly nonlinear limit. Several near-
term applications exist for nonlinear oscillator networks: In
the weakly nonlinear regime these include frameworks for
photonic logic [10,11], photonic Ising machines [12,13], and
all-optical machine learning [14]. In the strongly nonlinear
regime novel quantum error correcting schemes have been
proposed [15] and implemented [16]. For all of these systems it
is an extremely interesting question to ask how their dynamics
and capabilities change as the ratio of dissipation to nonlinear-
ity is increased or decreased, but no existing simulation method
has allowed continuous interpolation between these regimes.
Our approach remediates this by providing a framework that
relies on exact quantum model transformations to exploit
semiclassical localization and obtain more efficient system
representations.

The key to our method is formulating the problem of finding
efficient state parametrizations as an optimization problem.
Specifically, we employ smoothly parametrized unitary trans-
formations to represent states in comoving adaptive bases.
The description of, e.g., a pure quantum state |ψt 〉 thus splits
into the transformation coordinates θt and a residual quantum
state |φt 〉 = U

†
θt
|ψt 〉 that is represented in a localized basis.

The diagram in Fig. 1 intends to visualize this. We quantify
localization in terms of complexity functionals that are shown
to have precise information geometric meaning.

With this, we establish a self-consistent analytic framework
that not only allows for numerical simulation but also serves
to derive coupled dynamical equations for the semiclassical
group manifold coordinates and the residual quantum state.
We provide expressions for different diffusive Schrödinger
equations as well as (stochastic) master equations. Although
stochasticity is not at all a necessary requirement of our
approach, we expect our method to have the greatest impact
for systems that are continuously weakly observed by the
environment and this naturally leads us to consider stochastic
dynamics.
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FIG. 1. Smoothly parametrized unitary maps induce a family
of localized orthonormal bases parametrized by the transformation
coordinates. These correspond to semiclassical phase-space variables.
If the group representation is irreducible and the group semisimple,
then the “ground state” attached to each manifold point can be
understood as a (generalized) coherent state [17]. For open, diffusive
quantum dynamics, quantum states often localize in the vicinity of
such generalized coherent states.

There already exist methods that rely on localization to
analytically derive semiclassical stochastic dynamics [18]
from quantum quasiprobability distributions [19–21]. These,
however, require approximations that can lead to significant
discrepancies with simulations based on a full quantum
state description [11,22]. Furthermore, there does not exist a
general approach to incrementally increase the accuracy of
these methods.

Even prior to Percival’s analytic results on localization,
Schack et al. developed the quantum state diffusion with
a moving basis (MQSD) simulation method [23,24], which
allowed simulating stochastic Schrödinger equations in dis-
placed Fock bases. It can be seen as a special case of our
approach, but it does not produce analytical equations of mo-
tion for the transformation coordinates. The MQSD simulation
method works well for strongly dissipative oscillator systems
that exhibit nearly Gaussian states with low amounts of
squeezing or multimode correlations, but it does not generalize
to other degrees of freedom. Furthermore, the MQSD is based
on a heuristic that has lacked a rigorous interpretation prior to
our framework.

There have also been several model-agnostic attempts
to reduce the computational complexity of simulating open
quantum systems: In [25] a photonic set-reset (SR) latch in the
weakly quantum regime was approximated by a finite state-
space Markov chain that could be reexpressed as an effective
quantum network model and in [26] a conceptually very ap-
pealing approach was proposed based on principal component
analysis of simulated quantum states. One important short-
coming of both of these methods, however, is that they require
at least one simulation of the full system model, which can be
very expensive and in many cases impossible. Furthermore,
they do not preserve important qualitative features of a quan-
tum model, such as the commutators of system observables.

The contents of this paper are as follows. First, we motivate
the technical details presented in subsequent sections by
presenting numerical results of our method applied to two
separate systems: (a) the Kerr-nonlinearity-based SR latch as

first described in [10] and discussed as an example in [25,26]
and (b) the degenerate parametric oscillator (DPO) model,
which is a highly interesting system both in the semiclassical
regime, where it exhibits a pitchfork bifurcation, and in the
strongly nonlinear quantum regime, where the semiclassical
fixed points limit to low decoherence cat states that can be
used to encode a qubit [15].

Next, we formally introduce the underlying state compres-
sion framework, which relies on positive penalty operators
to quantify the complexity of quantum states. We show that
their spectra can be directly related to achievable bounds on
numerical truncation errors and how this can be exploited for
adapting our approach to situations in which Gaussian states
poorly approximate the quantum dynamics.

We then describe how our method can be understood
from an information-theoretic point of view by relating our
complexity functional to the quantum relative entropy. This
allows us to characterize the attractors near which the dynamics
of a given system localize in terms of generalized Gibbs states
generated by our specific choice of penalty operator which is
smoothly transformed by our group. We further present a small
library of possible groups and penalty operators and finish by
providing an outline of how this method can be extended to
higher-dimensional Lie groups for which it is infeasible to
derive the transformation differential in closed form.

There are many exciting future directions and valuable
applications of our research, some of which we mention in
this paper’s conclusion.

II. APPLICATIONS

We first present some numerical results of our method.
The technical details will be described in the following
sections. Our results were obtained using a custom software
package QMANIFOLD [27] that not only facilitates analytic
derivations but also allows us to directly carry out numerical
simulations. It uses QuTiP’s [28] data structures and interfaces
with our existing package QNET [29] to automate various
tedious symbolic calculations related to deriving the adjoint
group representation and thus the derivation of the right
generators F>

j (θt ). Given a particular transformation Uθ and
complexity functional (cf. Sec. III), it can compute the
minimum complexity state |φt 〉 and coordinates θt for any
input state |ψt 〉. Furthermore, given a dynamical open system
model parametrized by its internal Hamiltonian H and some
dissipation operators L, it can directly derive and simulate
stochastic complex quantum diffusion dynamics.

A. Toy model: An empty cavity

Consider a simple open cavity model described by a
Hamiltonian H = h̄ωa†a and a single dissipation operator
L = √

κa. Using the group of coherent displacements and
linear excitation minimization (cf. Sec. VI A) of the canonical
counting operator N = a†a, we apply the method of gradient
coupled fiducial state dynamics with the fiducial state given
by a displaced Gibbs state

χβ,θ = Uθ Z(β)−1e−βN︸ ︷︷ ︸
χβ

U
†
θ (2.1)
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with moving basis excitation 〈N〉χβ
= nth. Summarizing the

manifold coordinates in a single complex amplitude α =
Q+iP√

2
, this coordinate and the reduced complexity state |φt 〉

have the joint equations of motion (cf. Sec. V)

dα = −[iω + κ/2]αdt + η〈a〉φdt + √
κnthdW, (2.2)

|dφt 〉 = −
(

iω + κ

2

)
a†a|φt 〉dt

− η〈a〉φa†|φt 〉dt + η〈a〉∗φa|φt 〉dt

− √
κntha

†|φt 〉dW +√
κ(nth+1)a|φt 〉dW ∗, (2.3)

where |dφt 〉 does not necessarily conserve the norm of |φt 〉
and we have dropped a term proportional to |φt 〉dt that does
not affect the evolution of any expectation values.

These dynamics can be simulated for any choice of nth

which can also be turned into a dynamic variable (cf. Sec. V F).
For any finite choice of η > 0 the mode operator expectation
will fluctuate around zero 〈a〉φt

≈ 0 and in the limit η → ∞ we
recover the hard constraint 〈a〉φt

|η→∞ = 0. We see that α only
couples to the input noise process if the moving basis excitation
is nonzero. On the other hand, for nth = 0 ⇔ β → ∞ we find
that |φt 〉 = |0〉 is a stable fixed point of the dynamics in accord
with our intuition about passive linear quantum systems. We
could have equally well derived a (stochastic) master equation
or a homodyne stochastic Schrödinger equation (SSE) using
the formulas from Sec. V.

We can easily add a coherent displacement to this model
by modifying L → L + ε and H → H +

√
κ

2i
(εa† − ε∗a). A

straightforward calculation reveals that this linear displace-
ment is fully absorbed into the dynamics of α such that relative
to Eqs. (2.2) and (2.3) we have

dα → dα − √
κεdt, (2.4)

while |dφt 〉 is left unchanged.

B. Kerr-cavity-based NAND latch

Mabuchi recently proposed [10] designing photonic logic
gates by using nonlinear resonators in an interferometric
feedback configuration. To achieve maximum power effi-
ciency, devices could operate in a semiclassical regime where
several tens of photons in a Kerr resonator would cause the
frequency to shift by one linewidth. A particularly interesting
model is that of a photonic NAND latch [10] symmetrically
constructed from two Kerr resonators with mutual coherent
feedback as visualized in Fig. 2. The circuit is designed
such that it has two metastable states with either the first
or the second resonator in a high-photon-number state while
the other resonator has low internal photon number. A full
quantum trajectory simulation of a stochastic Schrödinger
equation with D = d2 = 752 = 5625 levels for this model
with the same parameters as in [10,25] is feasible on a typical
workstation. In Fig. 3 we present the Fock level occupation
probability P(nj = n) := 〈�(j )

n 〉 for each oscillator mode j =
1,2 and each Fock level n = 0,1, . . . ,d − 1 where �

(j )
n is

the projection operator onto the nth Fock state of oscillator
j . We visualize this for both the original static basis and a
coherently displaced representation, obtained by solving the

FIG. 2. Coherent NAND latch as described in [10].

linear excitation minimization problem for N = a
†
1a1 + a

†
2a2,

i.e., the total number of excitations present in the displaced
frame. We find that we can represent the dynamics of the
system in a basis set that is between at least four and ten times
smaller depending on whether we dynamically update the basis
size during simulation without sacrificing any precision in the
simulation. If we further allow for modest simulation error,
we can achieve up to an additional order of magnitude in basis
reduction. Note that dimensional reduction for the same model
was studied in [25,26] and very similar physical models were
studied in [11], but we claim that ours is the only approach
that allows one to achieve strong dimensional reduction with a
controlled error and without having to simulate the full system
first.

C. Degenerate parametric oscillator

Another simple nonlinear extension of the empty cavity is
given by the DPO. Degenerate parametric oscillators can ex-
hibit very rich dynamics and have long been employed for am-
plification [30] and generation of light at tunable wavelengths
[31] as well as more recently coherent optical Ising machines
[32]. It can be physically realized by a resonant signal mode
coupled to a strongly driven pump mode through a nonlinear
parametric interaction that mediates the conversion of signal
photon pairs to pump photons and vice versa. In the strongly
nonlinear limit and for a low-quality factor of the pump mode,
the pump mode can be adiabatically eliminated, yielding an
open system model in a rotating frame parametrized by

H = i
h̄χ

2
[a†2 − a2], (2.5)

L =
( √

κa√
βa2

)
. (2.6)

Using the same ansatz as above but with nth = η = 0 for
simplicity, we find for the deterministic part of the coordinate
dynamics

dαdet = −[κ/2 + β|α|2]αdt + χα∗dt. (2.7)

For positive pump phase χ > 0 the dynamics are primarily
captured by the evolution of the signal mode’s real quadrature
Q = (α + α∗)/

√
2 while the orthogonal P quadrature is
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FIG. 3. Heat map of the base-10 logarithm of the occupation probability of each oscillator’s Fock levels. The left panels show the results
in the static basis for the first oscillator (top left) and the second oscillator (bottom left). On the right-hand side we present the results obtained
in a jointly displaced basis for the first oscillator (top right) and second oscillator (bottom right). The overlaid white trace gives the expected
number of excitations 〈a†

j aj 〉 in each basis. The yellow (dark blue) traces show the contours at which the occupation probability reaches 10−3

(10−6).

suppressed. We can then fix P = 0 and consider the one-
dimensional differential equation valid in the classical limit

Q̇ ≈ −
(

κ

2
− χ + β

2
Q2

)
Q. (2.8)

Equation (2.8) is identical to the normal form of a pitchfork
bifurcation up to some rescaling. We visualize the bifurcation
diagram in Fig. 4. The bifurcation exists for any nonzero
two-photon loss rate β > 0, however the magnitude of β

strongly affects how nonclassical (which in this context we
take to mean non-Gaussian) the state of the signal mode
becomes. When the system is pumped only slightly above the
threshold, random switching or tunneling between the two
equilibria is possible. We present such a trajectory in Fig. 5.
For a constant steady-state mode amplitude the switching

FIG. 4. When the linear loss is larger than the gain κ/2 < χ the
real quadrature Q remains stably at 0. Above a critical pump χ � κ/2
this fixed point bifurcates into two stable symmetric solutions (solid
lines) and an unstable solution (dashed line) that is the continuation
of the below-threshold Q = 0 solution.

rate strongly depends on the ratio of linear to two-photon
loss. Additionally, in the strongly nonlinear case β � κ ,
the system can spontaneously evolve into catlike states that
feature exhibit significant simultaneous overlap with coherent
states centered at either equilibrium.

In the limit of vanishing linear loss κ/β → 0, the system
has a decoherence-free submanifold spanned by the two
equilibrium amplitude coherent states. In [15] Mirrahimi
et al. outlined a scheme to encode quantum information in
such a system. A detailed study of the switching dynamics
was carried out in [22].

In Fig. 6 we compare how each basis level contributes to
a whole trajectory of states when represented in the original
fixed basis to one obtained via linear excitation minimization
(cf. Sec. VI A 1) using either a coherently displaced basis
or a displaced and squeezed basis. We see that the adaptive
schemes perform well in the case of strong linear dissipation
but not so well in the case of strong two-photon loss. We
can understand this better by inspecting typical states that
occur in each evolution. In Fig. 7 we present snapshots of the
signal mode’s Wigner function. For strong linear dissipation,
the Wigner function of the signal mode typically appears
quite Gaussian in shape, whereas in the strong two-photon
loss case we see significant non-Gaussian features both in
the transition states and when the mode is at one of the
equilibria. The bad performance of the excitation minimization
functional in the non-Gaussian case is much improved by the
cumulant generating function (CGF) minimization approach
(cf. Sec. III E). In Fig. 8 we compare the efficiency of
the fixed basis with a coherently displaced basis where the
coordinates are determined either by excitation minimization
or by CGF minimization. We find that the CGF minimization
(for λ = 3/2) outperforms both the fixed basis and the
excitation minimization method (which is equivalent to the
QSD package’s approach). Here we have not even exploited
the additional advantages that a displaced and squeezed basis
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(a)

(b)

FIG. 5. Stochastic switching dynamics of a DPO above threshold.
Examples are shown for (a) very weak nonlinear loss β 
 κ (β/κ =
1/12) and (b) the strongly nonlinear case β = κ (β/κ = 1). In both
cases we have chosen the parameters β, κ , and χ such that the bistable
mode amplitude equals approximately αr,ss = ±1/

√
2. There is a

visible reduction in the switching rate and we can also see quite clearly
that the magnitude of fluctuations in either bistable state is strongly
reduced in the case of very strong nonlinearity. Specifically, the
simulation parameters were β = κ and χ = 5κ/2, and β = κ/12 and
χ = 2κ/3 for the strongly and weakly nonlinear cases, respectively.

combined with the CGF approach may yield. Further details
of the CGF minimized state representation can be found in
Appendix D.

III. QUANTUM STATE COMPRESSION

In this section we discuss different options for quantifying
the efficiency of representing a given state in a particular
basis and we introduce a corresponding optimization problem.
We will always assume that our adaptive Hilbert space bases
are related to the original fixed basis by means of a unitary
transformation U ∈ G belonging to a connected Lie group that
is locally generated by a finite-dimensional Lie algebra g.

If our quantum state in the original fixed basis is |ψt 〉, we
assume that it can be related to a reduced complexity state |φt 〉
via

|ψt 〉 = Ut |φt 〉 ⇔ |φt 〉 = U
†
t |ψt 〉. (3.1)

The generalization to mixed states is obvious; the fixed basis
state ρt and the reduced complexity state σt are mutually

(a)

(b)

FIG. 6. (a) For the weakly nonlinear case (β/κ = 1/12) both
the displaced basis (dashed lines) and the displaced and squeezed
basis (dash-dotted lines) perform fairly well, although the displaced
basis truncation error falls off less rapidly than either the static
or the displaced squeezed basis. (b) For the strongly nonlinear
case (β/κ = 1), however, we find that the static basis (solid lines)
outperforms both the displaced (dashed lines) and the displaced
squeezed (dash-dotted lines) basis. This indicates that the system
dynamics depart significantly from the squeezed and displaced
coherent state manifold. In both figures the thinner lines of otherwise
the same style indicate the 90% level of the error, i.e., 90% of all
states had lower truncation error than that.

related via

ρt = UtσtU
†
t ⇔ σt = U

†
t ρtUt . (3.2)

In the following we will work with mixed states for full
generality. Special results applying only to pure states will
be discussed as they arise.

By themselves, Eqs. (3.1) and (3.2) give an overparameter-
ization of the original state. In the next section we outline how
to remove this redundancy by deriving additional constraints
on σt .

We will usually assume an explicit smooth parametrization
Ut ≡ Uθt

by a set of coordinates θt ∈ D ⊂ Rn. Explicit
parametrizations allow us to obtain analytic insight into the
coupled dynamics of the reduced complexity quantum state
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(a)

(b)

FIG. 7. Comparing the Wigner functions of either system in typ-
ical transitions states and typical metastable states we see clearly that
the Wigner functions of (b) the strongly nonlinear system (β/κ = 1)
appear much less Gaussian in shape than for (a) the system dominated
by linear dissipation (β/κ = 1). We have furthermore indicated the
support set of different bases. The blue circles correspond to the fixed
basis, the red circles to a coherently displaced basis and the black
ellipses to a displaced and squeezed basis.

and the corresponding group element. We will sometimes
drop the explicit time index t and write U,φ,ψ,ρ,σ,θ when
it is clear that they are to be taken at the same time
coordinate. This, however, depends on our ability to derive
explicitly (and in a form that can be efficiently evaluated) the
partial derivatives of the transformation with respect to the

FIG. 8. When changing the optimization problem to CGF mini-
mization (dashed lines), we see that it achieves higher representation
efficiency than the static basis (solid lines) while so far only using a
displaced nonsqueezed basis (dash-dotted lines). Again, the thinner
lines of the same style indicate the 90% levels.

coordinates

F>
j (θ ) := iU

†
θ

∂Uθ

∂θj
. (3.3)

Note that these right generators {F>
j (θ ), j = 1,2, . . . ,n} are

necessarily Hermitian elements of the group’s Lie algebra g.
In Appendix A we outline how to derive the right generators

for some types of parametrizations. In general, however, this
requires the ability to explicitly compute exponentiated ma-
trices of the adjoint representation of g. For high-dimensional
Lie algebras this can be fairly challenging. In Sec. VII we
formulate a version of our method that does not require an
explicit parametrization of the transformation.

Although our method allows for arbitrary unitary repre-
sentations of Lie groups some group manifolds cannot be
fully parametrized by a single coordinate patch. This can
lead to additional technical difficulties which we will usually
avoid by limiting ourselves to a single convex coordinate
patch θ ∈ D ⊂ Rn that includes the origin 0 which we always
assume to map to the identity U0 = 1. This poses no serious
limitation in most cases of interest. Finally, note that any such
parametrization is not unique. We can smoothly reparametrize
the coordinates and then derive the transformed generators via
the chain rule. Our use of upper indices for the coordinates
and lower indices for the generators is thus motivated by
their covariant and contravariant transformation under such
reparametrizations.

A. Complexity functional

Consider first a canonical example: For a single bosonic
degree of freedom with lowering operator a and a transfor-
mation group given by coherent displacements Uθ = D(α) =
eαa†−α∗a , an intuitive constraint would be to demand that
〈a〉σt

= 0 or, equivalently, 〈a〉ρt
= θ . This fully fixes the

coordinates and removes the redundancy. This is precisely
the constraint which the QSD software package implements.
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As we demonstrate below, this approach is equivalent to
finding the coherent displacement coordinates of the nearest
(in the sense of minimal quantum relative entropy distance)
symmetric variance Gaussian oscillator state. This approach
works well for nearly coherent states ρt , but as we saw in
Sec. II C, it can actually increase the complexity when ρt has
significant non-Gaussian features.

Below we rederive this as the result of an optimization
problem, which enables us to generalize and improve the ap-
proach. To formulate the problem, we introduce a complexity
functional J (θ ; ρ) which, given a state ρ, attains a unique
global minimum on the space of coordinates θ ; we can then
fix our coordinates at all times to be

θt := θ (J )
∗ (ρt ) = arg minθ J (θ ; ρt ). (3.4)

B. Expectation minimization

The simplest choice of complexity functional is obtained
by evaluating the expectation of a lower bounded operator
M that penalizes population of undesired basis levels in the
transformed basis

JM (θ ; ρ) := 〈UθMU
†
θ 〉ρ︸ ︷︷ ︸

〈M〉
U
†
θ
ρUθ

. (3.5)

For a bosonic degree of freedom, the penalty operator M could
simply be the canonical number operator M = a†a. As we
will see below, when the transformation is given by coherent
displacements Uθ := D(θ1 + iθ2) this particular choice leads
to the QSD scheme θ∗ = (Re[〈a〉ρ],Im[〈a〉ρ]).

More generally, however, any lower bounded operator
defines a partial order relation for its eigenspaces via the
ordering of its eigenvalues. According to such an order, a low-
complexity state would be characterized by being confined to
a subspace spanned by basis states of low order. For composite
systems comprising multiple degrees of freedom or even just
competing measures of complexity for a single degree of
freedom, we can define composite penalty operators by taking
linear combinations of e mutually commuting, positive penalty
operators {Mk | Mk � 0, [Mk,Ml] = 0, k,l = 1,2, . . . ,e}
with positive weights {βk � 0, k = 1,2, . . . ,e}, i.e.,

M(β) =
e∑

k=1

βkMk, βk > 0, k = 1,2, . . . ,e. (3.6)

We discuss how to choose the weights β below. We will
generally refer to this class of optimization problems as
expectation minimization.

C. Counting operators

For single degrees of freedom there often exists a special
class of such positive operators that has an evenly spaced
and nondegenerate spectrum λk = λ0 + λk. Examples of this
are the number operator for a bosonic degree of freedom
and any projection to a single spatial axis of the angular
momentum operator such as Jz for a system with conserved
total angular momentum �J 2 = h̄2J (J + 1). Any such operator
can be normalized such that λ0 = 0 and λ = 1 by rescaling
and translation M → (M − λ01)/λ. We will refer to such

normalized operators as single-degree counting operators

N =
d∑

k=0

k|k〉〈k|, d ∈ N ∪ {∞}, (3.7)

where {|k〉, k = 0,1, . . . ,d} is the orthonormal eigenbasis of
N . Such counting operators may also admit certain raising and
lowering operators A± = A

†
∓ satisfying [N,A±] = ±A±. This

implies that A±|k〉 ∝ |k ± 1〉. It is then possible to show that
under the additional condition that [A−,A+] = α11 + αNN

for some real numbers α1 and αN this reduces exactly to the
above-mentioned examples, i.e., in the infinite-dimensional
case d = ∞ the above conditions imply that our problem is
equivalent to a harmonic oscillator with the typical raising and
lowering operators A+ ∝ a†, while the finite-dimensional case
d = 2J + 1 is equivalent to an angular momentum space of
fixed integer or half-integer J with the angular momentum
ladder operators A± ∝ J±.

As above, we can combine individual counting operators
{Nk, k = 1,2, . . . ,e} to define composite counting operators

N (β) :=
e∑

k=1

βkNk, βk > 0, k = 1,2, . . . ,e. (3.8)

In most cases of interest to us the resulting operators have
a unique ground state N (β)|�〉 = 0 and they always have a
very simple spectrum. An important special case is realized
when the individual counting operators Nk count excitations
of different physical subsystems and each has its own pair
of raising and lowering operators [Nk,Al,±] = ±δklAl,±. It
is easy to see that these must still be raising and lowering
operators of the composite counting operator

[N (β),Al,±] = ±βkAk,±. (3.9)

In some cases there exist additional generalized raising
and lowering operators for the composite counting operator
beyond the raising and lowering operators associated with
individual subsystems corresponding to particle exchange or
correlated particle creation. As an example, for a collection
of harmonic oscillators with raising and lowering operators
{a1,a

†
1, . . . ,ae,a

†
e} we could define N (β) = ∑e

k=1 βka
†
kak as

a composite counting operator and we would then find that
the quadratic operators {a†

j ak, j,k = 1,2, . . . ,e}, which induce

unitary mixing of multiple oscillator modes, or {a†
j a

†
k, j,k =

1,2, . . . ,e}, which, along with their Hermitian conjugates,
induce multimode squeezing, are also generalized raising and
lowering operators:[

e∑
k=1

βka
†
kak,a

†
l am

]
= (βl − βm)a†

l am, (3.10)

[
e∑

k=1

βka
†
kak,a

†
l a

†
m

]
= (βl + βm)a†

l a
†
m, (3.11)

[
e∑

k=1

βka
†
kak,alam

]
= −(βl + βm)alam. (3.12)

These are useful for reducing the representation complexity
associated with multidegree correlations. When combining
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several individual counting operators, it may not be a priori
known how to pick good weights β := (β1, . . . ,βe)T . In
Sec. IV we will see that ρ itself contains all the information
required to choose β.

We will generally refer to this class of optimization prob-
lems, i.e., minimizing the expectation of single or composite
counting operators, as linear excitation minimization. The
expectation value of counting operators and polynomials of
counting operators can generally be expressed as a finite
linear combination of operator expectations with coefficients
depending on the coordinates. In some cases this allows us to
solve for the optimal coordinates directly and in closed form.

D. Iterative complexity reduction

While some choices of complexity functionals lead to
solutions in closed form, we must usually resort to numer-
ical optimization. For compact Lie groups represented on
finite-dimensional Hilbert spaces there exist some provably
powerful gradient flow methods as described in [33,34] but
the noncompact and (at least formally) infinite-dimensional
case that is often of interest to us is more complicated and
less well understood. Nonetheless, for specific examples of
groups and parametrizations we are able to prove the convexity
of some linear and even nonlinear expectation minimization
schemes, which allows us to employ existing schemes such as
the generalized Newton method [35] for obtaining optimal
coordinates. Here we derive explicit expressions for the
gradient and Hessian in terms of operator moments resulting
from a second-order expansion of the functional

J (θ + δθ ; ρ)=J (θ ; ρ) +
n∑

j=1

yj (θ ; ρ)δθj

+1

2

n∑
j,k=1

hjk(θ ; ρ)δθj δθk+O(δθ3). (3.13)

If the complexity functional is strictly convex, then the Hessian
h(θ ; ρ) = (hjk)nj,k=1 is positive definite everywhere and an
appropriate variant of Newton’s method can be applied to
find the optimal coordinates which are implicitly defined by
requiring the gradient to vanish yj (θ ; ρ) = 0, j = 1,2, . . . ,n.

For the case of expectation minimization with penalty
operator M , the explicit expressions for the gradient and
Hessian are also given by simple expectation values

yj (θ ; ρ) = 〈Y>
j (θ )〉

U
†
θ ρUθ

, (3.14)

hjk(θ ; ρ) = hkj (θ ; ρ) = 〈H>
jk(θ )〉

U
†
θ ρUθ

, (3.15)

where

Y>
j (θ ) := i[M,F>

j (θ )], (3.16)

H>
jk(θ ) := [F>

j (θ ),[M,F>
k (θ )]] + i

[
M,

∂F>
k (θ )

∂θj

]
. (3.17)

Although it is not immediately obvious from Eq. (3.17), the
symmetry of the Hessian operators H>

jk(θ ) = H>
kj (θ ) follows

straightforwardly from ∂2Uθ

∂θj ∂θk = ∂2Uθ

∂θk∂θj .
When ρt evolves with time we can now either solve the

minimization problem (3.4) at each time and use this to obtain
the coordinates θt or alternatively derive explicit (stochastic)
differential equations for the coordinates. While the former
will allow us to adapt our scheme to arbitrary stochastic
dynamics (jump equations and diffusive dynamics), the latter
method can provide us with more insight into the dynamics
and open up interesting opportunities for designing control
schemes.

E. Nonlinear excitation minimization

In this section we explain the importance of the level
spacing of the penalty operator spectrum. Assume that we
are starting with a counting operator N . Since N is positive,
we can bound the probability of highly excited states using
Markov’s inequality

Pρ[Nθ > N0] � 〈Nθ 〉ρ
N0

. (3.18)

Unfortunately, this bound decays only as O(N−1
0 ).

A useful alternative is then to exploit Markov’s extended
inequality by applying a monotonically increasing map to
N → f (N ). In this case we must have

Pρ[Nθ � N0] = Pρ[f (Nθ ) � f (N0)] � 〈f (Nθ )〉ρ
f (N0)

. (3.19)

If f (n) increases superlinearly with n, then the resulting
penalty operator f (N ) has an increasing spacing of eigen-
values versus N and thus the bound on high excitations will
decrease faster than O(N−1

0 ).
A very strong bound can be achieved with the exponential

map f (n) = exp(λn) parametrized by λ > 0. This gives

Pρ[Nθ > N0] � 〈eλ(Nθ −N0)〉ρ (3.20)

= e−λN0+J CGF
N , (3.21)

where we have naturally been lead to introduce the CGF of the
penalty operator

J CGF
N (θ ; ρ,λ) := ln

⎡
⎢⎢⎢⎣ 〈eλNθ 〉ρ︸ ︷︷ ︸

〈eλN 〉
U
†
θ
ρUθ

⎤
⎥⎥⎥⎦, (3.22)

which for very small 0 < λ 
 1 reduces to

J CGF
N (θ ; ρ,λ) ≈ λ〈Nθ 〉ρ + λ2

2
var(Nθ )ρ + O(λ3), (3.23)

showing that for small λ this optimization problem is equiv-
alent to directly minimizing the expectation of the penalty
operator while for increasing λ also penalizing large variance.

Note that when N is unbounded there may exist normal-
izable states ρ for which 〈eλNθ 〉ρ diverges for any λ > 0,
but this is generally true for 〈Nθ 〉ρ itself. We will assume
here without proof that such states do not actually arise in
the dynamical evolution of open quantum systems. For a
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...
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FIG. 9. Many physically relevant Lie groups admit unitary repre-
sentations in which there exists a natural ordering of the basis states
according to the spectrum of some generalized energy or counting
operator. Here we visualize such basis levels by black dots and suggest
that they are (partially) ordered from left to right. The black arrows
represent coherent transitions induced by a Hamilton operator, while
the red arrows indicate dissipation-induced transitions. Transforming
the dynamics to a parametrized basis induces a mapping from
this graph to one with potentially more transitions, e.g., under a
squeezing transformation a → cosh ra + sinh ra†, which generally
increases the terms of the Hamilton operator, but if the transformation
coordinates are chosen wisely, the system state can be kept close to
the left side of this graph, i.e., it is trapped in a low-dimensional
subspace of the overall transformed basis.

constantly spaced, unbounded spectrum if there exist constants
N0 ∈ N and α ∈ [0,1) such that for all n � N0 we find

〈n + 1|U †
θ ρUθ |n + 1〉

〈n|U †
θ ρUθ |n〉

� α;

then 〈eλNθ 〉ρ exists for all λ < ln 1/α. The inequality in (3.20)
and (3.21) is an example of a Chernoff bound. Since the bound
is satisfied for any λ we can minimize the right-hand side over
λ to achieve the most restrictive bound, yielding

lnPρ[Nθ � N0] � min
λ

J CGF
N (λ) − λN0. (3.24)

Given N0, the optimal λ∗ leading to the lowest bound is
implicitly defined via

∂J CGF
N (λ)

∂λ

∣∣∣∣
λ∗

= N0. (3.25)

The negated left-hand side in Eq. (3.24) above is proportional
to the digits of relative accuracy obtained when truncating
the basis at the level N0. The above demonstrates that it is
related to the cumulant generating function via a Legendre
transformation

− lnPρ[Nθ �N0]�A(N0) :=sup
λ

λN0−J CGF
N (λ). (3.26)

We thus see that for a fixed N0 our complexity functional
guarantees a minimal accuracy with which a given quantum
state can be represented in a d-dimensional subspace of the
overall state space, where d is the number of eigenvalues
λk of N such that λk < N0. This is visualized in Fig. 9.
Conversely, assuming that A(N0) is one to one, for any desired
accuracy there exists a specific truncation level N0 at which
the Chernoff bound is tightest, making it the most efficient
truncation level to achieve a certified accuracy. We will refer
to this family of nonlinear excitation minimization schemes as
CGF minimization.

IV. INFORMATION-THEORETIC INTERPRETATION

In this section we demonstrate that expectation mini-
mization can also be interpreted as minimizing the quantum
relative entropy between ρ and a transformed canonical Gibbs
state χθ,β := UθχβU

†
θ , where χβ := Z(β)−1e−βM and Z(β) =

Tr(e−βM ), which is itself the canonical Gibbs state associated
with the transformed penalty operator

χθ,β = Z(β)−1 exp

⎛
⎜⎝−β UθMU

†
θ︸ ︷︷ ︸

=:Mθ

⎞
⎟⎠ . (4.1)

To see this, note that the quantum relative entropy between ρ

and χθ,β is given by

S(ρ‖χθ,β ) = Tr(ρ[ln ρ − ln χθ,β ]) (4.2)

= −H (ρ) − 〈ln χθ,β〉ρ (4.3)

= −H (ρ) + ln Z(β) + β〈Mθ 〉ρ. (4.4)

Here the first and second terms −H (ρ) + ln Z(β) do not
depend on θ and therefore minimizing the quantum relative
entropy over all possible coordinates θ is equivalent to
excitation minimization as discussed above. We may also
minimize (4.4) over β to derive an optimal Gibbs weight β∗ for
a given quantum state ρ and the associated optimal coordinates
θ∗. By the construction of the Gibbs state, this is equivalent
to ρ and χθ,β∗ having equal expectation values of the penalty
operator, i.e.,

〈M〉σ = −∂β ln Z(β)|β∗ = 〈M〉χβ∗ (4.5)

⇔ 〈Mθ∗ 〉ρ = 〈Mθ∗ 〉χθ∗,β∗ . (4.6)

This then affords a very nice interpretation of expectation
minimization: It finds the transformation coordinates that
minimize the quantum relative entropy between the actual
state and a manifold of generalized Gibbs states. These form
the set of maximum von Neumann entropy states constrained
to have a specific expectation of the penalty operator. In this
sense, given a penalty operator M , they form the least biased
manifold of states to compare a given state with.

When β = β∗ the minimum relative entropy is given by
the difference in entropies of the actual state and the nearest
thermal state

S(ρ||χθ,β∗ ) = H (χθ∗,β∗ ) − H (ρ) (4.7)

= H (χβ∗) − H (σ ). (4.8)

Note that for a pure state ρt = |ψt 〉〈ψt | the second term
vanishes, whereas the positivity of S(ρ||χ ) � 0 (with equality
if and only if ρ = χ ) implies that χθ∗,β∗ really is the maximum
(over all states) von Neumann entropy state with minimum
(over all parameters) expected penalty 〈Mθ∗ 〉ρ = 〈Mθ∗ 〉χθ∗,β∗ .
By its definition, the von Neumann entropy only depends on
the spectrum of the density matrix, which is invariant under
unitary transforms. This allows us to compute it in either the
original or the moving basis H (ρt ) = H (σt ).

In the specific case of collective oscillator states with
M = N (β) = β1N1 + · · · + βeNe, i.e., multimode counting
operators, the minimal quantum relative entropy between a
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given state and a generalized Gaussian state has been employed
as a measure of non-Gaussianity [36,37]. If we take Uθ to
allow for all Gaussianity preserving transformation (coherent
displacements and unitary and more generally symplectic
transformations) then excitation minimization corresponds
exactly to finding the nearest Gaussian state. Often, however,
we may restrict the transformation to a submanifold of the
full set of Gaussian transformations to avoid a large decrease
of the sparsity of the operators generating the moving basis
dynamics. More generally, for any composite penalty oper-
ator M = M(β) = β1M1 + · · · + βeMe the quantum relative
entropy splits into a sum

S(ρ‖χθ,β ) = −H (ρ) + ln Z(β) +
e∑

k=1

βk〈Mk,θ 〉ρ, (4.9)

where Z(β) = Tr[exp(−∑e
k=1 βkMk)] and Mk,θ = UθMkU

†
θ .

This information geometric interpretation then affords us
a method for optimally composing penalty operators: We
demand that the relative entropy be minimized not only over
the transformation coordinates θ but also over the complexity
weights β.

A special situation arises when the penalty operators act on
different degrees of freedom, in which case we can decompose
the partition function

ln Z(β) =
e∑

k=1

ln Trk[exp(−βkMk)]︸ ︷︷ ︸
Zk(βk )

. (4.10)

Additionally, in certain cases the group transformation may be
decomposable into single-degree transformations

Uθ = U1,θ1 ⊗ U2,θ2 ⊗ · · · ⊗ Ue,θe
(4.11)

such that each factor Uk,θk
is a particular unitary operator

parametrized by its own disjoint set of coordinates θk =
(θ1

k , . . . ,θ
nk

k ) and acting nontrivially only on the degree of
freedom labeled k. In this case we have

Mk,θ = UθMkU
†
θ = Uk,θk

MkU
†
k,θk

, (4.12)

which implies that the optimization can be carried out
independently for the coordinates θk for each k = 1,2, . . . ,e

and also prior to optimizing over the complexity weights βk .

Quadratic expansion of the relative entropy

Any choice of parametrized quantum state family combined
with a quantitative measure of distances between quantum
states induces a local distance metric for the parameters θ and
β. For small coordinate displacements δθ and δβ the quantum
relative entropy can be expanded to second order, which yields

δS(ρ‖χθ,β ) =
e∑

k=1

zkδβ
k +

n∑
j=1

yj δθ
j

+ 1

2

n∑
j=1

n∑
l=1

hjlδθ
j δθ l + 1

2

e∑
k=1

n∑
j=1

ykj δβ
kδθj

+ 1

2

e∑
k=1

e∑
m=1

gkmδβkδβm + O(δ3), (4.13)

where the coefficients are

zk := Z(β)−1 ∂Z(β)

∂βk︸ ︷︷ ︸
−〈Mk,θ 〉χθ,β

+〈Mk,θ 〉ρ, (4.14)

ykj :=
〈
∂Mk,θ

∂θj

〉
ρ

, (4.15)

yj :=
e∑

k=1

βkykj , (4.16)

hjl :=
e∑

k=1

βk

〈
∂2Mk,θ

∂θj ∂θ l

〉
ρ

, (4.17)

gkm := ∂2 ln Z(β)

∂βk∂βm
= Cov[Mk,θ ,Mm,θ ]χθ,β

. (4.18)

Near a minimum the linear contributions vanish and in the
vicinity of such minima we thus have a quadratic form in the
coordinate displacements which can be interpreted as a local
distance measure. We will use this expansion later on when we
derive effective dynamics for the complexity weights. When ρ

is itself a member of the parametrized manifold ρ = χθ∗,β∗ ,
then for (θ,β) = (θ∗ + δθ,β∗ + δβ) the linear contribution
to the above expansion clearly vanishes and the quadratic
coefficients are given by the Kubo-Mori quantum Fisher infor-
mation metric [38]. The operator derivatives appearing in these
definitions can be transformed to the moving bases where they
can be expressed in terms of the transformation generators as〈

∂Mk,θ

∂θj

〉
ρ

= 〈i[Mk,F
>
j (θ )]〉σ , (4.19)

〈
∂2Mk,θ

∂θj ∂θ l

〉
ρ

= 〈[F>
j (θ ),[Mk,F

>
l (θ )]]〉σ

+
〈
i

[
Mk,

∂F>
l (θ )

∂θj

]〉
σ

. (4.20)

The derivatives of the partition function will generally depend
on the particular choice of penalty operators, but we point
out that the gradient of the relative entropy with respect to β

vanishes if and only if

0 = Z(β)−1 ∂Z(β)

∂βk
+ 〈Mk,θ 〉ρ, k = 1,2, . . . ,e. (4.21)

As in the case of a single penalty operator, these conditions
are equivalent to fixing each βk such that the expected penalty
agrees between the Gibbs state and the actual state ρ:

〈Mk,θ 〉ρ = 〈Mk,θ 〉χθ,β∗ , k = 1,2, . . . ,e. (4.22)

This then answers our previous question from Sec. III B of
how to optimally choose the weights β. The joint minimization
of the quantum relative entropy over both β and θ can also be
understood as fitting a generalized Gibbs state parametrized
by (β,θ ) to ρ.

V. DYNAMICS IN A MOVING BASIS

In this section we describe how to derive coupled equations
of motion for the transformation coordinates and the low-
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complexity quantum state such that the coordinates rapidly
converge either exactly or approximately to an optimal value.

A. Pure state dynamics

We will start by discussing the case of pure state evolution,
induced by a (stochastic) Schrödinger equation

|dψt 〉 = −idGt |ψt 〉. (5.1)

The generator for a closed system and deterministic dynamics
is simply dG = h̄−1Hdt , whereas for an open system evolving
according to an unnormalized SSE we might have

dG
(het)
t =

[
h̄−1H − i

2

f∑
k=1

L
†
kLk

]
dt + i

f∑
k=1

dMk∗
t Lk, (5.2)

where the {Lk,k = 1,2, . . . ,f } are the Lindblad collapse
operators. This particular complex diffusive stochastic un-
raveling of the open system dynamics can be interpreted
as a system whose output modes are all measured using
heterodyne detection with perfect fidelity. The associated
complex heterodyne measurement processes are given by
dMk

t = 〈Lk〉ψt
dt + dWk,t , with complex Wiener processes

satisfying

E[�Wk(t0,t1)�Wl(t0,t1)] = 0, (5.3)

E[�W ∗
k (t0,t1)�Wl(t0,t1)] = δkl|t1 − t0|, (5.4)

where

Wk(t) :=
∫ t

0
dWk,t ′ , (5.5)

�Wk(t0,t1) := Wk(t1) − Wk(t0) =
∫ t1

t0

dWk,t ′ . (5.6)

Instead of the complex-valued measurement process we could
also consider single-quadrature homodyne measurements.
This yields

dG
(hom)
t =

[
h̄−1H − i

2

f∑
k=1

(
L
†
kLk + L2

k

)]
dt

+ i

f∑
k=1

dM
(hom),k
t Lk. (5.7)

Here the measurement processes are real valued dM
(hom),k
t =

〈Lk + L
†
k〉ψt

dt + dYk,t with real Wiener increments satisfying

E[�Yk(t0,t1)�Yl(t0,t1)] = δkl|t1 − t0|, (5.8)

where analogously we have introduced

Yk(t) :=
∫ t

0
dYk,t ′ , (5.9)

�Yk(t0,t1) := Yk(t1) − Yk(t0) =
∫ t1

t0

dYk,t ′ . (5.10)

In either case, it is essential to represent the SSE in the
Stratonovich picture as this enables us to carry out stochastic
projections [39]. Contrary to the usual notation we will always
take XdY to indicate a Stratonovich stochastic differential

as opposed to an Itô differential. We could also consider
situations where some output channels are measured via
homodyne and some via heterodyne measurements and we
can even generalize to dynamics with discrete jumps such as
the quantum jump trajectories encountered when modeling
direct photon detection.

As outlined above, the state vector |ψt 〉 in the fixed basis is
related to the reduced complexity state vector |φt 〉 via

|ψt 〉 = Uθt
|φt 〉 ⇔ |φt 〉 = U

†
θt
|ψt 〉 . (5.11)

It then follows that the transformed state evolves according to
a modified SSE

|dφt 〉 = −idKt,θt
|φt 〉, (5.12)

with effective generator

dKt,θt
:= U

†
θt
dGtUθt︸ ︷︷ ︸

=:dGt,θt

−
n∑

j=1

F>
j (θt )dθ

j
t . (5.13)

We see that the transformed state has dynamics generated
not only by the transformed SSE generator dGt,θt

but also
by the explicit time dependence of the unitary mapping
−∑n

j=1 F>
j (θt )dθ

j
t . Note that the coordinate dynamics will

in general be stochastic. If we were working in the Itô picture,
dKt,θt

would have to include terms induced by second-order
stochastic differentials dθjdθk (and even dθkdMj∗) for which
the Itô table is a priori unknown. Thus, working in the
Stratonovich picture is essential as it allows us to manipulate
the processes with the product and chain rules of ordinary
calculus. As of yet, we have not specified dθ

j
t . In Sec. V C

we will derive a family of dynamics that constrains the
moving basis state exactly or approximately to a minimum
of a complexity functional as discussed in Sec. III.

For pure states the expectation of any Hermitian observable
X = X† evaluated according to the moving basis state φt

evolves as

d〈X〉φt
= −2 Im[σ (dKt,θt

,X)φt
] (5.14)

= −2 Im[σ (dGt,θt
,X)φt

]

− i

n∑
j=1

〈[F>
j (θt ),X]〉φt

dθj . (5.15)

In deriving this, it was taken into account that (5.12) does
not preserve the norm. Note that when X explicitly depends
on time or θt one needs to add additional partial derivatives
accordingly. We have used Percival’s notation [8] for the
quantum correlation

σ (A,B)φt
:= 〈A†B〉φt

− 〈A〉∗φt
〈B〉φt

,

which defines a semidefinite inner product on the space of
operators (cf. Appendix B).

B. Mixed state dynamics

Here we discuss the case of mixed quantum states and de-
terministic or stochastic Lindblad master equations which are
necessary when some of the output channels are unobserved or
some measurements have nonideal fidelity. Note that usually
imperfect measurement can be modeled by splitting the output
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channel on a beam splitter with transmissivity equal to the
fidelity and then observing the transmitted output with perfect
fidelity and the reflected output not at all.

The generalization to stochastic master equations is
straightforward. In general, the fixed basis state ρt may evolve
according to

dρt = −idGtρt + iρtdG
†
t +

f ′∑
j=1

[
cjρtc

†
j − 1

2
{c†j cj ,ρt }

]
dt,

(5.16)

where dGt is defined exactly as in the pure state case and
the additional Lindblad collapse operators {c1,c2, . . . ,cf ′ }
correspond to unobserved output channels. The moving basis
dynamics follow from a straightforward extension of the pure
state case

dσt = −idGt,θt
σt + iσtdG

†
t,θt

+ i

⎡
⎣ n∑

j=1

F>
j (θt )dθ

j
t ,σt

⎤
⎦dt

+
f ′∑

j=1

[
cj,θt

σt c
†
j,θt

− 1

2
{c†j,θt

cj,θt
,σt }

]
dt, (5.17)

where cj,θt
:= U

†
θt
cjUθt

. In the mixed state case, the expecta-
tions of Hermitian observables evolve as

d〈X〉σt
= −2 Im[σ (dGt,θt

,X)σt
] − i

n∑
j=1

〈[F>
j (θt ),X]〉σt

dθj

+
f ′∑

j=1

Re{〈[c†j,θt
,X]cj,θt

〉σt
}dt. (5.18)

Here we have overloaded the notation for the quantum
correlation [8] for mixed states in the natural way, i.e.,

σ (A,B)σt
:= 〈A†B〉σt

− 〈A〉∗σt
〈B〉σt

.

We thus find almost the same result as for pure states except
for an additional contribution Re{〈[c†j,θt

,X]cj,θt
〉σt

} for each
unobserved output channel.

C. Gradient flow coupled dynamics

Assume now that we have fixed a complexity functional
with Hessian hjk(θt ) and gradient yj (θt ) and that at a given
time t we are starting at optimal coordinates, i.e., we have
already solved for θt such that the complexity gradient yj (θt ) =
0, j = 1,2, . . . ,n. Then we can determine the coordinate
increments dθ

j
t by requiring yj (θt+dt ) = yj (θt ) + dyj (θt ) =

0. We may then derive the coordinate dynamics by computing
the differential change of the gradient coefficients dyj (θt )
as a function of |dψt 〉 and dθt and solve for dθt such that
dyj (θt ) = 0.

More generally, if we assume that we are not starting exactly
at optimal coordinates but close to the optimum, then we can

instead choose a decay parameter η > 0 and solve for dθ such
that

dyj (θt )
!= −η yj (θt )dt, j = 1,2, . . . ,n. (5.19)

This reduces to the above case when we are already at
the optimum coordinates, but for a good choice of η it
leads to increased robustness to slight deviations as they are
exponentially damped over time.

Inserting X = Y>
j (θ ) into (5.18) while accounting for its

explicit dependence on θ , we obtain

dyj (θt ) =
n∑

k=1

hjk(θt )dθk
t − dqj (θt ), (5.20)

where we have defined the bias flow

dqj (θt ) := 2 Im[σ (dGt,θt
Y>

j (θt ))σt
]

−
f ′∑
l=1

Re{〈[c†l,θt
,Y>

j (θt )]cl,θt
〉σt

}dt. (5.21)

The second contribution to the bias flow only arises for mixed
state dynamics with unobserved output channels.

Combining Eqs. (5.19) and (5.21), we find, for j =
1,2, . . . ,n,

n∑
k=1

hjk(θt )dθk
t = dqj − ηyj (θt )dt. (5.22)

Assuming a strictly convex complexity functional and thus a
positive-definite Hessian h(θt ) = [hjk(θt )]nj,k=1, this relation-
ship can be solved for the coordinate differentials

dθk
t =

n∑
j=1

[h(θt )
−1]kj [dqj − ηyj (θt )dt] (5.23)

for k = 1,2, . . . ,n. We point out that the bias flow is linear in
dGt,θt

and has a single contribution per cj,θt
which simplifies

its derivation.
We will briefly review the independent contributions of

Hamiltonian and dissipative deterministic contributions as
well as stochastic terms in dGt,θt

. For a Hamiltonian and thus
Hermitian contribution h̄−1Hdt = h̄−1H †dt we find

dqH,j = −i〈[h̄−1H,Y>
j (θt )]〉σt

dt. (5.24)

For an anti-Hermitian dissipative drift term V dt = 1
2i

L†Ldt

we find

dqV,j = 2 Im

[
σ

(
1

2i
L†LY>

j (θt )

)
σt

]
dt (5.25)

= Re[σ (L†L,Y>
j (θt ))σt

]dt (5.26)

= cov((L†L,Y>
j (θt ))σt

dt. (5.27)

Finally, each complex diffusion term dQ = idM∗L con-
tributes

dqdQ,j = 2 Im
[
σ (idM∗LY>

j (θt ))σt

]
(5.28)

= −2 Re
[
σ (dM∗LY>

j (θt ))σt

]
. (5.29)
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Considered as a function of σt and θt , this can be used to derive
the corresponding Itô stochastic differential equations (SDEs),
which, however, are in general quite complicated.

D. Gradient coupled fiducial state dynamics

If the system state remains localized near a semiclassical
manifold of generalized Gibbs states Uθ�U

†
θ , then it may

be advantageous to evaluate the Hessian hjk(θt ) and the bias
flow (dqj ) not in the actual moving basis state σt but in a
reference state � = Z(β)−1 exp(−∑e

l=1 βlMl) instead. In this
case, Eq. (5.23) becomes

dθk =
n∑

j=1

[h(�)(θt )
−1]kj

[
dq

(�)
j − ηyj (θt )dt

]
(5.30)

for k = 1,2, . . . ,n. The advantage of this is that [h(�)(θt )−1]kj

and dq
(�)
j are purely functions of θ and other scalar model

parameters. Thus, (5.30) can be understood as semiclassical
equations of motion for the coordinates coupled to the true
quantum state via the gradient ηyj (θt )dt .

E. Information projected fiducial state dynamics

It turns out that for an expectation minimization functional
the quantum state independent contributions to the dynamics
dθk,sc := ∑n

j=1[m(�)(θt )−1]kj dq
(�)
j are fully equivalent to the

manifold projection method proposed in [40] except that the
metric on the tangent space is taken to be the Kubo-Mori metric
[41] that naturally arises as a generalized quantum Fisher
information metric associated with differential increases in
quantum relative entropy [38]. In fact, in this setting one may
assume the complexity weights β to be time dependent and
derive coupled dynamics for them as well. We discuss a special
case of this in the following.

F. Gibbs manifold projection

Here we briefly sketch how to use our framework to
obtain approximate low-dimensional dynamics that arise
when the state ρt is constrained to the Gibbs manifold
parametrized by the group transformation coordinates θt and
the complexity weights βt at all times. For a Gibbs state
χθ,β = Z(β)−1 exp(−∑e

k=1 βkMk,θ ) both the quantum rela-
tive entropy and its linear variation

∑e
k=1 zkδβ

k + ∑n
k=1 ykδθ

k

[cf. Eqs. (4.14) and (4.16)] with respect to θ and β vanish
because it is already on the Gibbs manifold we project to. We
can now apply the full procedure outlined in [40] to also project
the stochastic dynamics of ρt onto the manifold. Generally this
amounts to choosing dθ and dβ such that dy = (dy1, . . . ,dyn)
and (dz1, . . . ,dze) are orthogonal to the tangent space spanned
by dθ and dβ with respect to the Kubo-Mori associated with
the second-order variation of the quantum relative entropy.

In the interest of brevity we simply present the result of
that derivation. The coordinate increments dθ and dβ are the
implicit solutions of the linear system

n∑
l=1

hjldθ l
t +

e∑
k=1

ykjdβk = dqj , (5.31)

n∑
j=1

ykjdθj +
e∑

k=1

gkmdβm
t = dmk, (5.32)

with hjl , ykj , and gkm defined as in Eqs. (4.15)–(4.18) for
ρ ≡ χθ,β . The flow vectors dq = (dq1, . . . ,dqn) and dm =
(dm1, . . . ,dme) are given by

dqj := 2 Im
[
σ (dGt,θt

Y>
j (θt ))χβt

]
−

f ′∑
l=1

Re
{〈[c†l,θt

,Y>
j (θt )]cl,θt

〉χβt

}
dt, (5.33)

dmk := 2 Im
[
σ (dGt,θt

,Mk)χβt

]
−

f ′∑
l=1

Re
{〈[c†l,θt

,Mk]cl,θt
〉χβt

}
dt, (5.34)

both of which can be evaluated in the moving basis via the
diagonal Gibbs state χβ for which all off-diagonal operator
moments conveniently vanish. In many cases of interest
the above expressions can be evaluated analytically as all
operator moments become explicit functions of only β and
θ , yielding coupled, low-dimensional ordinary differential
equations or SDEs that approximately describe the original
quantum dynamics. We note that the transformation coor-
dinates θ can often be directly associated with classical or
semiclassical quantities such as generalized canonical position
and momentum variables, but the complexity weights β have
a purely statistical interpretation as they encapsulate the
uncertainty originally encoded in the exact quantum state.

VI. EXAMPLES OF MANIFOLDS

Here we present some examples of transformation groups,
penalty operators, and the corresponding generators and sen-
sitivity variables. A given transformation Uθ is characterized
by its differential form U

†
θt
dUθt

= −i
∑n

j=1 F>
j (θt )dθ

j
t , its

adjoint action on its own Lie algebra U
†
θt
XUθt

, and the
sensitivity operators whose expectations form the gradient and
Hessian of a particular expectation minimization problem. The
sensitivity operators can be derived for any given complexity
functional.

A. Coherent displacement

The simplest example is that of coherent displacements
θ = (Q,P ). Working in this representation, we have

Uθ = e−iQp+iP q, U
†
θ aUθ = a + Q + iP√

2
, (6.1)

where the generators and right generators are given by

q = a + a†
√

2
, p = a − a†

√
2i

, (6.2)

F>
1 (θt ) = p + P/2, F>

2 (θt ) = −q − Q/2. (6.3)

Coherent displacements of different modes commute and
therefore the extension to multiple oscillator modes follows
trivially.
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1. Linear excitation minimization

For the canonical penalty operator given simply by the
photon-number operator M = N := a†a the gradient and
Hessian operators are

Y>
1 (θt ) = −q, Y>

2 (θt ) = −p, (6.4)

H>(θt ) =
(

1 0
0 1

)
. (6.5)

We see that the Hessian is constant and strictly positive definite.
Since the domain of the coordinates is R2 and thus clearly
convex and closed, we always have a unique optimum.

2. Nonlinear excitation minimization

Assuming a nonlinearly transformed penalty operator M =
f (N ) the gradient operators are

Y>
1 (θt ) = i[f (N ),p] = [a†,f (N )] − [a,f (N )]√

2
(6.6)

= −a†�f (N ) + �f (N )a√
2

, (6.7)

Y>
2 (θt ) = i[q,f (N )] = −i

a†�f (N ) − �f (N )a√
2

, (6.8)

where we have introduced

�f (N ) := f (N + 1) − f (N ), (6.9)

which allows us to write down two useful (and equivalent)
rules

[a†,f (N )] = −a†�f (N ) ⇔ [a,f (N )] = �f (N )a. (6.10)

The Hessian operators are then given by

H>
11(θt ) = �f (N ) + a†�(2)

f (N )a

+ a†2�
(2)
f (N ) + �

(2)
f (N )a2

2
, (6.11)

H>
12(θt ) = H>

21(θt ) = −a†2�
(2)
f (N ) − �

(2)
f (N )a2

2i
, (6.12)

H>
22(θt ) = �f (N ) + a†�(2)

f (N )a

− a†2�
(2)
f (N ) + �

(2)
f (N )a2

2
. (6.13)

Here the second-order differences have been introduced:

�
(2)
f (N ) := �f (N + 1) − �f (N ) = ��f

(N ). (6.14)

To analyze under what conditions the Hessian may be positive,
observe first that the Hessian operator matrix H> := H>

jk(θt )
factors as

H> = V †H̃>V, (6.15)

where we have defined

H̃> :=
(

� �

�† �

)
, (6.16)

V := 1√
2

(
1 i

1 −i

)
= (V †)−1 (6.17)

via

� := �f (N ) + a†�(2)
f (N )a, (6.18)

� := �
(2)
f (N )a2. (6.19)

Here V may be interpreted as a linear transformation from
a real-valued quadrature representation of the displacement
δθ = (δQ,δP )T to complex amplitudes (α,α∗)T = V δθ . Since
V contains only scalars, the matrices h,h̃ of elementwise
expectations, i.e.,

hjk = 〈H>
jk(θt )〉σ , h̃jk = 〈H̃>

jk(θt )〉σ , (6.20)

are related by a similarity transform h = V †h̃V and therefore
have the same eigenvalues. Equipped with the above defini-
tions, we are thus able to formulate and prove the following.

Theorem. A sufficient condition for the positive semidefi-
niteness of the Hessian h is that the following operators are
non-negative:

0 � �
(2)
f (N − 1), (6.21)

0 � � − �, (6.22)

0 � �, (6.23)

where � is defined as above and

� := a†[�(2)
f (N+1)+�

(2)
f (N−1)

]
a+�

(2)
f (N )

2
. (6.24)

Proof. See Appendix C.
This theorem is helpful because the operators appearing in

its conditions are all diagonal in the eigenbasis of N , which
implies that we can verify the positivity simply by evaluating
the inequalities for each eigenstate of N . Note furthermore
that the non-negativity of � is also a necessary condition and
that when � − � > 0 is strictly positive, the Hessian is strictly
positive.

Sometimes we only wish to determine whether the Hessian
is positive when the states σ = �σ� are restricted to a
subspace of the full state space characterized by a projection
operator �. In this case the operator inequalities must only
hold for the projected operators ���, ��, and ��.

Applying the above theorem to some interesting test cases,
we find that f (n) = n2 leads to a convex objective, as this
leads to �

(2)
f (N − 1) � 0, � = 1 + 4N , and � = 1 + 2n. For

f (n) = eλn with λ > 0, which is relevant for CGF mini-
mization, we find that � − � is not positive everywhere, but
for small enough λ there exists an n∗ = �(3x2 − x3)/(−1 +
x)3�|x=eλ such that at least on the subspace of number states
lower than n∗ the condition holds: �N�n∗ (� − �) � 0. This
upper bound on N becomes arbitrarily large as λ goes
to zero.

B. Squeezing and displacement

Our next example will be a mixture of squeezing and
displacement, albeit each only parametrized by a single
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variable θ = (Q,R), which does not allow us to realize the
most general pure Gaussian state

Uθ = e−iQpeiRs, U
†
θ aUθ = Q√

2
+ cosh Ra − sinh Ra†,

(6.25)

with generators

p = a − a†
√

2i
, s = a2 − a†2

2i
, (6.26)

F>
1 (θt ) = eRp, F>

2 (θt ) = −s. (6.27)

For the canonical complexity functional N = a†a the sensitiv-
ity operators are

Y>
1 (θt ) = −eRq, Y>

2 (θt ) = 2r = a2 + a†2, (6.28)

H>
jk(θt ) =

(
e2R −eRq

−eRq 2 + 4a†a

)
. (6.29)

This still leads to a positive-definite Hessian, but it is now
dependent on the coordinates and the state. It is straightforward
to derive the more general case of arbitrary displacements and
squeezing, but the expressions become more tedious. They are
implemented in our software package QMANIFOLD [27].

C. Spin coherent displacement

Our final example here is for angular momentum states
and a single irreducible representation labeled by J such that
J2 = J (J + 1) and the spectrum of Jz is given by −J, − J +
1, . . . ,J − 1,J . The commutator relationships are [Jz,J±] =
±J± and [J+,J−] = 2Jz. The ladder operators can also be
represented in terms of the x−y generators J± = Jx ± iJy .
We can then define a unitary Lie group explicitly via

Uθ = e−μJ+e− ln(1+|μ|2)Jzeμ∗J− , (6.30)

U
†
θ J−Uθ = J− − μ2J+ − 2μJz

1 + |μ|2 , (6.31)

U
†
θ JzUθ = μ∗J− + μJ+ + (1 − |μ|2)Jz

1 + |μ|2 , (6.32)

where

μ = θ1 + iθ2, (6.33)

F>
1 (θt ) = −iJ− + iJ+ − 2θ2Jz

1 + |μ|2 , (6.34)

F>
2 (θt ) = −J− − J+ + 2θ1Jz

1 + |μ|2 . (6.35)

The action of this unitary on a fixed reference state, e.g.,
Uθ |jz = −J 〉, can be identified with the spin coherent states
as introduced by Radcliffe [42]. For the canonical spin
complexity functional N = Jz the sensitivity operators are

Y>
1 (θt ) = −J− − J+

1 + |μ|2 , Y>
2 (θt ) = iJ− − iJ+

1 + |μ|2 , (6.36)

H>
jk(θt ) = 4

1 + |μ|2
(

Re[μJ−] − Jz Im[μJ−]
Im[μJ−] −Re[μJ−] − Jz

)
,

(6.37)

where Re[μJ−] = (μJ− + μ∗J+)/2 and Im[μJ−] = (μJ− −
μ∗J+)/2i. This does not generally lead to a positive-definite
Hessian, e.g., consider the jz = +J eigenstate of Jz for which
the expected Hessian is clearly negative definite. For any given
state the eigenvalues of 〈H>

jk(θt )〉σ are given by

λ± = 4

1 + |μ|2
[−〈Jz〉σ ± |μ|

√
〈Jx〉2

σ + 〈Jy〉2
σ

]
. (6.38)

Assuming that 〈Jz〉σ < 0, these are non-negative if and only if

|μ|2[〈Jx〉2
σ + 〈Jy〉2

σ

]
� 〈Jz〉2

σ . (6.39)

Two sufficient but not necessary conditions for this are given
by

|μ|2 <
〈Jz〉2

σ

J (J + 1) − 〈
J 2

z

〉
σ

(6.40)

and a more restrictive version that depends only on 〈Jz〉2
σ ,

|μ|2 <
〈Jz〉2

σ

J (J + 1) − 〈Jz〉2
σ

. (6.41)

This follows directly from 〈Jk〉2
σ � 〈J 2

k 〉σ for k = x,y,z and
from

∑
k∈{x,y,z} J 2

k = J2 = J (J + 1).

VII. COORDINATE-FREE METHOD

The methods we have introduced in the preceding section
are quite appealing in that they can allow us to simulate
significantly larger open quantum systems than is possible
with static bases. They can also yield analytic insight into
semiclassical dynamics and provide more intuition. With the
analytic results presented in Sec. VI one can construct commut-
ing product transformations for fairly complex systems, but
they are unlikely to work well when considering nonfactoring
group manifolds of coordinate dimensions beyond O(10)
as it becomes very difficult to obtain a fully exponentiated
parametrized transform from which we can derive the right
generators {F>

j (θt )}. These, however, are essential to the
derivation of most other important quantities. Moreover,
having an explicit coordinate based representation of the
unitary Uθ is useful for transforming states from the static
to the moving basis. There are, however, examples of groups
that can at least in principle be employed without ever having
to derive an explicit parametrization of Uθ . Here we sketch
how this can be achieved in principle.

Consider a Lie group and a state space and dynamics for
which (i) the model operators that generate the dynamics H ,
L, and c can be represented as polynomials of elements of a
group’s finite-dimensional Lie algebra and (ii) a full Hilbert
space basis can be generated by repeated action of some raising
operators {Ak,+} that are inside the Lie algebra starting from a
unique reference state |�〉, which is itself fully characterized as
the unique zero-eigenvalue eigenstate of an operator M|�〉 =
0, where M is also either inside the group’s Lie algebra
or a polynomial of Lie algebra elements. In this case we
may use the adjoint representation of the group transform
itself as the parametrization, i.e., if {Y1,Y2, . . . ,Yq} ⊂ g is a
Hermitian basis of the Lie algebra, then if a group element g

is unitarily represented on the Hilbert space as U (g) there also
exists a corresponding element in the adjoint representation of
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the group S(g) such that U (g)YkU (g)† = ∑q

j=1 S
j

k (g)Yj . This
adjoint representation will typically require only a polynomial
number of parameters in the system size. In some cases where
a part of the Lie algebra can be expressed as polynomials
of some other basis elements, further reduction is possible,
e.g., consider two bosonic modes a and b and a Lie algebra
that also contains a†b or ab. In this case, if we know how a

and b transform under U , then we also know how a†b or ab

transform.
If we start at t = 0 with the identity g = e and S

j

k (e) = δ
j

k ,
then at each time step we can consider arbitrary elements from
the Lie algebra and write U (g)†δU (g) = −i

∑q

j=1 δμjYj .
This implies that

δ[U (g)YkU (g)†] = U (g)U (g)†δU (g)YkU (g)†

+U (g)YkδU (g)†U (g)U (g)† (7.1)

= −i

q∑
j=1

δμjU (g)[Yj ,Yk]U (g)† (7.2)

= −i

q∑
j,l=1

δμjcl
jkU (g)YlU (g)† (7.3)

= −i

q∑
j,l,m=1

δμjcl
jkS

m
l (g)Ym (7.4)

=
q∑

m=1

δSm
k (g)Ym. (7.5)

Here we have used the convention for the structure constants
given in Eq. (A3) and the final two lines allow us to read off
the differential change of the adjoint transformation

δSm
k (g) = −i

q∑
j,l=1

δμjcl
jkS

m
l (g). (7.6)

Armed with this, we can now reformulate the complexity
reduction problem. Assume that we wish to find a transform
U∗ such that it minimizes a function JM (U ) = 〈UMU †〉ρ , i.e.,

U∗ = arg minUJM (U ). (7.7)

Expanding this to second order in a a perturbation δU =
−iδμjYj , we find

JM (U + δU ) = 〈UMU †〉ρ +
q∑

j=1

〈
U

[Yj ,M]

i
U †

〉
ρ︸ ︷︷ ︸

yj

δμj

+ 1

2

q∑
j,k=1

〈U [Y{k,[M,Yj}]]U †〉ρ︸ ︷︷ ︸
hkj

δμj δμk

+ O(δμ3). (7.8)

Here we have used the notation [Y{k,[M,Yj}]] to indicate
that the expression is symmetrized over k and j , i.e.,
[Y{k,[M,Yj}]] ≡ 1

2 {[Yk,[M,Yj ]] + [Yj ,[M,Yk]]}. As above,
the gradient and Hessian coefficients can be more efficiently
evaluated in the current lowest complexity state σ = U †ρU .
Assuming that hjk is positive semidefinite at all steps, we can

use Newton’s method or a similar technique to identify good
coordinate updates δμ and update our adjoint representation
S → S + δS as specified in (7.6) as well as the transformed
state σ = U †ρU according to

σ → σ + i

q∑
j=1

[Yj ,σ ]δμ. (7.9)

As above, we may also combine this complexity reduction with
dynamics of ρ or σ , respectively. The results of our previous
sections carry over with little modification. Although the lack
of a fixed parametrization of U may cause us to worry about
what the specific meaning of σ really is, our initial assumptions
guarantee that the adjoint representation matrix S uniquely
fixes how our Hamiltonian and all other relevant operators
are transformed to the low-complexity basis and furthermore
guarantees that a representation in terms of the original basis
states can at least in principle be recovered in the new basis
by transforming MU := UMU † using S and then solving for
the unique eigenvector |�U 〉 = U |�〉 with zero eigenvalue of
MU . All other basis states can then be recovered by acting
on |�U 〉 with the transformed raising operators {UAk,+U †}.
This prescription should work straightforwardly for more
complicated groups such as the SU(n) symmetry groups
of multiple bosonic or fermionic modes or the symplectic
group Sp(2n) for an ensemble of oscillators or distinguishable
particles.

VIII. SUMMARY OF OUR METHODS

In this work we have presented analytical and computa-
tional methods that allow us to simulate closed and open
quantum systems assuming deterministic (unitary or ensemble
averaged) or stochastic dynamics affecting either pure or
mixed states.

Given a particular dynamical quantum system to be
simulated, we suggest the following steps to apply our
methods. We assume the most general case of mixed states
and stochastic evolution as described in Eq. (5.16) defined by
a generator dG and a set of unobserved dissipation operators
{cj ,j = 1,2, . . . ,f ′}.

(i) Based on intuition or prior simulations, identify the
degrees of freedom that are most likely to localize.

(ii) Define a joint penalty operator M = ∑e
k=1 βkMk �

0 and choose a set of transformation generators {Xj, j =
1,2, . . . ,n} that are elements of a finite-dimensional Lie
algebra and use the methods outlined in the Appendixes to
obtain an exponentiated form of the parametrization Uθ and
consequently the right generators {F>

j (θt ) = iU
†
θt

∂Uθt

∂θj , j =
1,2, . . . ,n′ � n}. This generally requires explicit exponenti-
ation of matrices in the adjoint representation and can be done
using a computer algebra system. In Sec. VI we have provided a
number of examples that can be combined to handle composite
systems.

(iii) Derive the explicitly transformed generators dKt,θt
as

defined in Eq. (5.13) and the transformed dissipation operators
for the unobserved channels cj,θt

= U
†
θt
cjUθt

. This can most
easily be done by writing these operators as polynomials of
the transformation generators and then applying the explicitly
obtained adjoint representation to transform them.
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(iv) Simulate the joint equations of motion for the reduced
complexity state σt and the coordinates θt defined as

dσt = −idGt,θt
σt + iσtdG

†
t,θt

+ i

⎡
⎣ n∑

j=1

F>
j (θt )dθ

j
t ,σt

⎤
⎦dt

+
f ′∑

j=1

[
cj,θt

σt c
†
j,θt

− 1

2
{c†j,θt

cj,θt
,σt }

]
dt, (8.1)

dθt = h−1
t [dqt − η ytdt], (8.2)

where the expected gradient yt and Hessian ht are defined in
Eq. (3.14) and the bias flow dqt has been defined in Eq. (5.21).
The gain parameter η � 0 can be freely chosen. A reasonable
heuristic to picking a good value is to linearize the equation of
motion as a function of θt and choose η � min{−Re[λ],λ ∈
spec(J )}, where J is the Jacobian of that linearization. The
special case of pure state simulations is handled equivalently.

(v) The resulting simulated trajectory for the reduced
complexity state σt can be used to test whether further
improvements can be achieved by allowing more general
transformations. On the other hand, if an inspection of the
coordinate trajectory θt reveals that some parameters are
nearly constant or more generally the coordinate trajectory
is itself confined to some lower-dimensional set, then it may
be possible to remove some degrees of freedom from the
transformation via an embedding transformation θ̃ �→ θ where
θ̃ has fewer coordinates. In general, it can be useful to iterate
the above steps a few times to identify a good parametrization.

IX. CONCLUSION AND OUTLOOK

As stated at the outset, we have presented a family of
methods that allow one to investigate the inherent complexity
of quantum states by attempting to reduce the total number
of variables required for their description. We provided an
information-theoretic interpretation of our method and several
alternate prescriptions for deriving exact coupled dynamics
of the semiclassical group coordinates θ and the reduced
complexity quantum state σ . Our method includes earlier
work by Schack et al. [23] as a special case, but provides a
substantially larger analytic framework that can also be applied
in cases where their method does not work. Further, we have
shown how our method connects to earlier model-reduction
work on nonlinear projection of quantum models [40]. Our
approach is extremely flexible and suited for arbitrary Lie
groups as long as their associated Lie algebras have finite
dimension. In practice, the explicit coordinate representations
will work best for low-dimensional Lie algebras, and we have
also outlined how to implement a method that does not rely on
an explicit coordinate parametrization.

This work has many promising future directions; some
key examples are the application of our simulation scheme
to quantum measurement and control problems. In particular,
our method is very nicely suited to model noisy dispersive
or high-power qubit readout of superconducting quantum
circuits [43] and it could be used for a more principled
approach to the quantum feedback model for autonomous

state preparation considered in [44]. It could also provide more
rigorous simulations of the quantum effects in coherent optical
Ising machines or coherent machine learning devices than
existing techniques based on quasiprobabilities [14,45,46].

By completely projecting the reduced complexity state
to the nearest Gibbs state, our method can also be used to
derive further reduced-order projected models such as the
Maxwell-Bloch-type model considered in [40] or a semiclas-
sical coupled-mode theory for nonlinear resonators similar
to the Wigner method proposed in [11]. It would be very
appealing to work out in more detail how our approach could
improve our understanding of quantum feedback networks
[5,6] by conceptually separating both the node systems and
the interconnecting fields into quasiclassical and quantum
components. A very promising framework for this avenue is
given by the recent work of Gough [47] on controlled flows.

It is also possible to extend the formalism to quantized
fields; in particular, it may be very useful to apply it to
traveling-wave fields inside quantum feedback networks with
time delays. In this scenario the reduced complexity state for
the bath modes could be modeled using matrix product states
as in [48] or by an approximate delay model [49]. Recent
and exciting work by Sarovar et al. [50] addresses a slightly
different question, i.e., that of which quantum models are
robustly solvable on an analog quantum simulator, but using
information-geometric techniques similar to our approach.
Ultimately, we expect the question of efficient representation
to be closely related to the question of robust representation.
Finally, we believe that it is worth investigating whether the
inherent complexity of the quantum states a system evolves
through can be related to its computational power. A formal
framework for classical dynamical input-output systems has
been introduced in [51].
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APPENDIX A: GENERAL CONSTRUCTION
OF THE COORDINATE TRANSFORMATION

In this appendix we outline how to construct complex
transformations and derive the right generators. The simplest
construction for the transformation is by chaining single
parameter transformations

Uη := V
(1)
η1 V

(2)
η2 · · · V (n)

ηn , (A1)
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FIG. 10. Optimal manifold coordinate Q(t) under CGF mini-
mization appears mostly monotonically but not linearly related to
the mode expectation Re[〈a〉ψt

].

where

V
(j )
ηj := exp(−ηjXj ), j = 1,2, . . . ,n. (A2)

Thus far we allow for complex coordinates {ηj } and arbitrary,
i.e., not necessarily Hermitian, generators {Xj }. We assume
that the generators Xj are elements of a finite-dimensional
Lie algebra g. Given a basis {Y1,Y2, . . . ,Yq} ⊂ g for the Lie
algebra with structure constants cl

jk implicitly defined via

[Yj ,Yk] =
q∑

l=1

cl
jkYl, (A3)

we represent each transformation generator in this basis
as Xj = ∑q

k=1 Rk
j Yk . Using the structure constants, it is

straightforward to compute the conjugation of any basis
element by a single-parameter transformation [52] to be

V
(j )−1
ηj YkV

(j )
ηj =

q∑
l=1

[
exp

(
A

(j )
ηj

)
︸ ︷︷ ︸

=:S(j )

ηj

]l

k
Yl, (A4)

with

[
A

(j )
ηj

]l

k
= ηj

q∑
h=1

Rh
j cl

hk. (A5)

FIG. 11. When the system state localizes near the “origin” i.e.,
Q = 0, the complexity increases, i.e., more basis levels are necessary
for accurate representation.

The matrices A
(j )
ηj are typically very sparse and can be

exponentiated symbolically using a tool such as Mathematica
[53] or the SYMPY package [54]. The resulting matrices
S

(j )
ηj ∈ Cn×n are elements of the adjoint representation of the

transformation group and can be used to directly transform the
generators. As they each depend on only a single coordinate,
they satisfy S

(j )
−ηj = (S(j )

ηj )−1. With this, it is straightforward to
see that

dUη = Uη

n∑
j=1

X>
j (η)dηj , (A6)

with

X>
j (η) := V

(n)−1
ηn · · · V (j+1)−1

ηj+1 XjV
(j+1)
ηj+1 · · ·V (n)

ηn (A7)

=
n∑

l=1

q∑
k=1

Rl
j

[
S

(j+1)
ηj+1 · · · S(n)

ηn

]k

l
Yk. (A8)

We see that by requiring this particular differential form of Uη,
i.e., with all generators on the right-hand side, each generator is
additionally transformed Xj → X>

j (η) by all single-parameter
transformations that appear to its right.

The differential transformation can be equivalently ex-
pressed with the differential generators on the left side of
Uηt

:

dUη =
⎡
⎣ n∑

j=1

X<
j (η)dηj

⎤
⎦Uη, (A9)

with

X<
j (η) = UηX

>
j (η)U−1

η (A10)

= V
(1)
η1 · · · V (j−1)

ηj−1 XjV
(j−1)−1
ηj−1 · · ·V (1)−1

η1 (A11)

=
n∑

k=1

[
S

(j−1)
−ηj−1 · · · S(1)

−η1

]k

j
Xk. (A12)

If we now assume that each generator is anti-Hermitian
Xj = iFj and if we restrict the coordinates to real values
ηj = θj ∈ R, then the resulting transformation is unitary. This
is desirable because observables evaluated in the transformed
frame 〈φt |M ′|φt 〉 = 〈ψt |U †

θt
MUθt

|ψt 〉 are actually simply the
conjugated observables M ′ = U−1

θt
MUθt

.
To transform any operator M from the basis associated

with |ψt 〉 to the moving basis |φt 〉 one first needs to ex-
press it exclusively in terms of functions of the generators
M = f (X1,X2, . . . ,Xn) where f : Cn → C is analytic in all
variables and typically f is a polynomial. We then have

M ′
θ := U

†
θ MUθ = f (X′

1(θ ),X′
2(θ ), . . . ,X′

n(θ )), (A13)

with

X′
j (θ ) :=

∑
k

[
S

(1)
θ1 · · · S(n)

θn︸ ︷︷ ︸
=:Sθ

]k

j
Xk. (A14)

We see that having the adjoint representation single-parameter
transformation matrices {S(j )

θj , j = 1,2, . . . ,n} allows us to
do all necessary computations. We remark that representing
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FIG. 12. Probability simplex spanned by the excitation probability of the first three basis levels. For the optimal CGF trajectory the
basis level populations remain nearly confined to this simplex, but diverge slightly from it, especially when the first and second excited
basis levels are nontrivially populated. The points are color coded according to their missing probability distance p′ from the simplex, i.e.,
p′ := 1 − 〈�0 + �1 + �2〉φt

.

M = f (X1,X2, . . . ,Xn) generally does not imply a unique
function f as some generators may themselves be polynomials
of the other generators.

Finally, note that there exist alternate ways [55] of
parametrizing groups and deriving partial derivatives that
may be useful in more complex cases. Our rules for chained
single-parameter transformations derived here can be straight-
forwardly generalized to chained multiparameter transfor-
mations. For very complex parametrizations, analytical or
symbolic methods may fail, but in that case it should still
be possible to work in a purely numerical representation
that stores and integrates both θ and elements of the adjoint
representation of Uθ .

APPENDIX B: PROPERTIES
OF THE QUANTUM CORRELATION

The quantum correlation is not a strictly positive-definite
inner product because the quantum self-correlation of an
operator A vanishes in any eigenstate

A|φt 〉 = λa|φt 〉 ⇔ σ (A,A)φt
= 0. (B1)

The sufficiency “⇒” of this condition is obvious; the necessity
“⇐” follows from the Cauchy-Schwarz inequality for the
regular Hilbert space inner product.

Restricted to Hermitian operators A† = A and B† = B,
the quantum correlation can be decomposed into its real and
imaginary parts as

σ (A,B)φt
= cov(A,B)φt

+ i

〈
[A,B]

2i

〉
φt

,

with the symmetrized covariance function

cov(A,B)φt
= 1

2 〈{A,B}〉φt
− 〈A〉φt

〈B〉φt
.

APPENDIX C: PROOF OF OUR THEOREM

Since � is non-negative, the trace of h̃ is non-negative:
Tr(h̃) = 2〈�〉σ � 0. Due to the Hermiticity of h̃, its eigen-
values must be real and it thus suffices to prove that its
determinant is non-negative. For any non-negative operator
A � 0 we must have 0 � 〈(a + a†)A(a + a†)〉σ for any state
σ . Inserting A = �

(2)
f (N − 1), which is positive by the first

condition of our theorem, this yields

0 � 2 Re
〈
�

(2)
f (N )a2︸ ︷︷ ︸

�

〉
σ

+ 〈
a†[�(2)

f (N + 1) + �
(2)
f (N − 1)

]
a + �

(2)
f (N )︸ ︷︷ ︸

�

〉
σ
.

(C1)

This inequality is satisfied not only for σ but also for any
unitarily rotated state σ (φ) := eiφNσe−iφN . The second expec-
tation value in (C1) is invariant under any such transformation,
whereas it imparts a complex phase on the first expectation
value

〈
�

(2)
f (N )a2︸ ︷︷ ︸

�

〉
σ (φ) = e2iφ

〈
�

(2)
f (N )a2︸ ︷︷ ︸

�

〉
σ
. (C2)
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Time [units of Time [units of

FIG. 13. Gradient coupled fiducial state dynamics (simulated with K = 30 basis levels) for varying coupling strength η ∈ [1,10,100,200].
(a) Comparison of the Q coordinate trajectories, which agree very well for large η and appear somewhat low passed for η = 1. (b) Mode
expectation values 〈a〉ψt

agree very well for all values of η. (c) Fubini-Study distance d2
FS between each trajectory and the η = 200 trajectory.

(d) Comparison of the Fubini-Study distance between a trajectory simulated with K = 40 moving basis levels to trajectories carried out with
K = 5,10,20. Unsurprisingly, a larger basis decreases the error, but the errors do not appear to accumulate over time. All simulations were
carried out with η = 10.

We can therefore always find a φ∗ such that the first expectation
is real valued and nonpositive

2 Re
[〈

�
(2)
f (N )a2︸ ︷︷ ︸

�

〉
σ (φ∗)

] = −2
∣∣〈�(2)

f (N )a2︸ ︷︷ ︸
�

〉
σ

∣∣.
We have thus shown that

|〈�〉σ | � 〈Xi〉σ . (C3)

Under the second condition to our theorem we have � −
� � 0, which implies 〈�〉σ � 〈�〉σ . We thus know that the
determinant of h̃ can be bounded from below as

Det(h̃) = 〈�〉2
σ − |〈�〉|2 � 〈�〉2

σ − 〈�〉2
σ � 0. (C4)

This proves our claim. �

APPENDIX D: FURTHER RESULTS FOR SIMULATING
UNDER CGF MINIMIZATION

Here we present some additional results obtained in
simulating the degenerate optical parametric oscillator system
in a basis that minimizes the CGF functional. In particular, we
investigate the relationship between the manifold coordinates
and the expectation of the oscillators’s mode operators. While
excitation minimization will always enforce 〈a〉φt

≡ 0 ⇔
〈a〉ψt

= α = Q+iP√
2

, CGF optimization generally does not lead

to such a linear relationship, as can be seen in Fig. 10. We
can also see that different regions in phase space lead to
different complexity as measured by the CGF (cf. Fig. 11).
This motivates using a simulation method in which even the
basis size is adapted to the inherent complexity of the current
dynamics. Finally, we note that even within the displaced basis
there appears to be yet lower-dimensional attractors for the
reduced complexity state |φt 〉. In Fig. 12 we have visualized
the distribution of the first three moving basis level populations
when transforming to the CGF optimal basis. In Fig. 13 we
have simulated the gradient coupled fiducial state dynamics
for the DPO system above threshold for different values of the
coupling gain η. All stochastic simulations were carried out
with the same random seed and thus the same realization of
the innovation process. Figure 13(c) shows some discrepancies
between states reconstructed from simulations with lower η

and η0 = 200. Specifically, we compute d2
FS(ψ (η),ψ (η0)), where

the fixed basis representation states are obtained from the
respective moving bases representation states via |ψ (η)(t)〉 =
Uθ (η) |φ(η)(t)〉 and the Fubini-Study distance is defined as

dFS(φ,φ′) := arccos (|〈φ|φ′〉|). (D1)

The errors decrease with increasing η, suggesting that a strong
gradient coupling gain η = O(100) is preferable. A more
systematic investigation of this is left for future work. We
note that the errors appear to stay constant over time, which is
encouraging. Furthermore, we have simulated our system with
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different sizes of the basis [cf. Fig. 13(d)] and evaluated the
error relative to the most accurate simulation. Surprisingly, we
find that the truncation error remains roughly constant, i.e.,

even for this randomly switching system, the low-dimensional
approximations to the system state track the actual system
state very well.
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