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Stable and metastable freezing of classical correlations in qutrits
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We study the dynamics of quantum and classical correlations in a two-qutrit system coupled to independent
reservoirs. In particular, we address the differences in the dynamics of Markovian and non-Markovian regimes
and show that for specific initial states, classical correlations exhibit abrupt changes along the dynamics. A
particular sudden change occurs when the classical correlations freeze to a certain value at a given time, revealing
the apparition of a pointer-state basis. After this given time, the decoherence only affects quantum correlations.
Here we identify two regimes in the decoherence dynamics: a mixed regime when both classical and quantum
correlations decay and a quantum regime when only quantum correlations decay. We show that the freezing of
classical correlations can be stable or metastable depending on the system-reservoir parameters. In the long-time
limit, we find analytical expressions for the pointer-state basis the system settles in and consequently for classical
and quantum correlations.
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I. INTRODUCTION

Quantum to classical transition has been an interesting
subject since the beginning of quantum theory [1]. This
transition can be described as a flow of correlations from the
quantum system to its surroundings [2–4]. Because of that, all
correlations that can be shared by two parts cannot be preserved
and begin to be lost as time goes by. Recently, characterization
of when a quantum system has begun to lose its quantum
component has regained the attention of researchers [5–9]. On
the other hand, the complexity in the maximization procedure
to obtain any correlation shared by the subsystems is well
known when the dimension of the Hilbert space is increased
more than 2 in each of them. This is a hard task. Indeed,
there exist a few cases where analytical expressions have
been found; to name the most relevant we have entanglement
in (2 ⊗ 2)-dimensional systems [10], some families of states
[11,12], and classical and quantum correlations [13–20]. If we
consider the total quantum system made of two parts, then
all correlations, both classical and quantum, can be defined
as entropic quantities [21]. In what follows, we will define
the total correlations by means of measures on one of the
subsystems.

A bipartite quantum system ρ̂AB can feature both quantum
and classical correlations. Total correlations can be character-
ized by the quantum mutual information [21–25]

I (ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB), (1)

where S(ρ̂) = −Tr[ρ̂ log2(ρ̂)] is the von Neumann entropy.
Based on this expression, it is commonly believed that the
correlations can be separated according to their classical and
quantum natures, respectively [21]. In this way, the quantum
discord has been introduced as

D(ρ̂AB) = I (ρ̂AB) − C(ρ̂AB), (2)

where C(ρ̂AB) are the classical correlations [21,22] defined by
the following maximization procedure. A complete set of pro-
jector operators {�̂k} must be constructed for the subsystem B.

Then the quantity

C(ρ̂AB) = max
{�̂k}

[S(ρ̂A) − S(ρ̂AB |{�̂k})] (3)

must be maximized with respect to variation of the set of
{�̂k}, where S(ρ̂AB |{�̂k}) = ∑

k pkS(ρ̂k), pk = Tr(ρ̂AB�̂k),
and ρ̂k = TrB(�̂kρ̂AB�̂k)/pk .

In this paper, we investigate the dynamical evolution of
classical correlations, using models for decoherence in the
Markovian and non-Markovian regimes. Our main focus is to
study the evolution of classical and quantum correlations in the
case of a bipartite system, where each part is represented by
a subsystem of dimension 3 or so-called qutrit. In Sec. II, we
begin by introducing a general decoherence model from which
the two regimes mentioned above can be obtained. These
regimes can be implemented simply by making assumptions
about the time given by the inverse of decay rates and
correlation time of the reservoir. Also, we define the initial state
for two qutrits using the discrete quantum Fourier transform.
In Sec. III, we present a general basis in the qutrit Hilbert
space where the maximization procedure can be carried out.
Although its form is simple, it is worth mentioning that in the
actual case the maximization procedure must be performed
in a Bloch hypersphere defined by four angles. We specialize
our analysis by studying three cases of interest: the Markovian
case (Sec. III A), the non-Markovian case (Sec. III B), and the
limit of long times (Sec. III C). We present analytic results
for classical correlations, showing the apparition of stable and
metastable pointer states. In Sec. IV, we present a summary.

II. QUANTUM DYNAMICS

We consider the dynamics of a bipartite system of qutrits
under the onset of dephasing. In particular, each qutrit is
defined as a quantum electromagnetic field mode having zero,
one, or two excitations. That is, qutrits are defined in the terms
of the Fock states {|0〉A (B),|1〉A (B),|2〉A (B)}, where |k〉A (B) is
the Fock state with k excitations in the quantum field mode A

(B). Each field mode is be coupled to a different reservoir and
the interaction Hamiltonian will be given by Ĥ = ĤA + ĤB ,
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where ĤA (B) is the Hamiltonian describing the interaction of
the quantum field mode A (B) with the reservoir RA (RB). The
interactions have the form

ĤA =
∑

k

{
gA

k ĉkâ
†â + (

gA
k

)∗
ĉ
†
kâ

†â
}
, (4)

ĤB =
∑

k

{
gB

k d̂kb̂
†b̂ + (

gB
k

)∗
d̂
†
k b̂

†b̂
}
, (5)

where the operator â† (b̂†) creates a quantum of excitation
of the field mode A (B) and â (b̂) are the corresponding
annihilation operators. The operators ĉ

†
k (d̂†

k ) create an exci-
tation in the kth mode of the reservoir RA (RB), while ĉk

and d̂k annihilate the excitation in the same reservoir mode.
Coefficients gA

k (gB
k ) are the coupling strength between the

quantum field mode A (B) and the kth mode of the reservoir
RA (RB). The types of interactions described in Eqs. (4) and
(5) have been considered, for instance, to study the effects
of the interaction with reservoirs on quantum decoherence
[26]. The Hamiltonian Ĥ = ĤA + ĤB can be interpreted as
a scattering process, for example, the dynamics of a photon
scattering randomly as it travels through a waveguide, where
the energy eigenstates do not evolve but accumulate phase
instead. In this process, the information about relative phases
between the eigenstates is lost [27,28].

The evolution of the quantum field modes subsystem can
be obtained by solving the master equation

˙̂ρAB = QA(t)

2
[2â†âρ̂ABâ†â − (â†â)2ρ̂AB − ρ̂AB(â†â)2]

+ QB(t)

2
[2b̂†b̂ρ̂ABb̂†b̂ − (b̂†b̂)2ρ̂AB − ρ̂AB(b̂†b̂)2].

(6)

This master equation allows us to study two different regimes:
Markovian and non-Markovian. To do this, we consider
that the reservoirs present Ornstein-Uhlenbeck correlations,
where [29]

Qj (t) = �jγj

2

[
sin(ηj t)

ηj cos(ηj t) + (γj/2) sin(ηj t)

]
,

where 1/γi is the correlation time of the reservoirs, �i is the
decay rate of the qutrit subsystem, and η2

i = (�i − γi/2)γi/2.
This time-dependent coefficient in the master equation arises
if we consider, as developed in Ref. [29], a quasi-Lorentzian
model for the coupling strengths gA

k and gB
k . Solving the master

equation (6), we find that in the basis {|nm〉}, the density-
matrix elements 〈nk|ρ̂AB |ml〉 ≡ ρnk,ml are given by

ρnk,ml(t) = ρnk,ml(0)PA(t)|n−m|2PB(t)|k−l|2, (7)

where n,m,k,l = 0,1,2, . . . d − 1, with d the dimension of
each system and

Pj (t) = eβj t

(
cos (ηj t) − βj

ηj

sin (ηj t)

)
, (8)

with βj = −γj/2.
In order to study the evolution of quantum and classical

correlations in higher-dimensional bipartite systems, the elec-
tion of the initial state must ensure that the system is actually
occupying more than two dimensions of the Hilbert space.

Here we consider an incoherent superposition of generalized
Bell states for qutrits as follows:

ρ̂AB(0) = p0|φ00〉〈φ00| + p1|φ01〉〈φ01| + p2|φ02〉〈φ02|. (9)

The generalized Bell states are defined as

|φjk〉 = X̂12F̂1|jk〉12, (10)

where X̂12 is the XOR gate and is defined through X̂12|j 〉|k〉 =
|j 〉|j � k〉, with j � k the difference between j and k

modulus d, with d being the dimension of each system.
The operator F̂ is the discrete quantum Fourier transform
and is defined acting on the state |j 〉, leading to F̂ |j 〉 =
(1/

√
d)

∑d−1
k=0 exp (i2πjk/d)|k〉. Notice that for d = 2, X̂12

is the controlled-NOT gate and the Fourier transform is the
Hadamard gate. These two operators acting on the two-qubit
basis {|00〉,|01〉,|10〉,|11〉} generate all four Bells states for
two-qubit systems. Now for qutrits (d = 3), from Eq. (10) we
have that

|φ00〉 = 1√
3

(|00〉 + |11〉 + |22〉),

|φ01〉 = 1√
3

(|02〉 + |10〉 + |21〉),

|φ02〉 = 1√
3

(|01〉 + |12〉 + |20〉).

III. QUANTUM AND CLASSICAL
CORRELATION DYNAMICS

To calculate the evolution of quantum and classical cor-
relations in our qutrit system, we have to choose a general
set of three orthogonal states. This set must be constructed
in such a way that the measurement projectors cover the
complete Bloch sphere. Furthermore, as measurements can
be performed on either qutrit, we must choose one of them.
Here, for instance, classical correlations will be calculated by
performing measurements on qutrit B. For that, we consider
the basis [30]

|V1〉 = eiχ1 sin θ cos φ|0〉 + eiχ2 sin θ sin φ|1〉 + cos θ |2〉,
|V2〉 = eiχ1 cos θ cos φ|0〉 + eiχ2 cos θ sin φ|1〉 − sin θ |2〉,
|V3〉 = −eiχ1 sin φ|0〉 + eiχ2 cos φ|1〉,

where the ranges for the angles are (0 � θ,φ � π/2) and (0 �
χ1,χ2 � 2π ). Using this basis, we can evaluate the expression
for classical correlations given in Eq. (3). Although it has been
argued that more general measurements should be considered
to calculate classical correlations, it has been shown that this
generates only minimal corrections to the calculations using
projective measurements [31].

In the following, we will study the quantum and classical
correlations in both Markovian and non-Markovian regimes.

A. Markovian regime

The Markovian regime is recovered when the reservoir
correlation time becomes much smaller than the system
decay time (�j 	 γj ). In this limit, it can be shown that
P (t)j ≈ e−�j t/2 and the density-matrix elements of Eq. (7)
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FIG. 1. Evolution of discord D(ρ̂AB ) (blue solid line) and clas-
sical correlations C(ρ̂AB ) (red dotted line) for the initial state of
Eq. (9) with the parameters (p0,p1,p2) with values (a) (0.3,0.1,0.6),
(b) (0,0.5,0.5), (c) (0,0,1), and (d) (1/3,1/3,1/3). For simplicity we
consider �1 = �2 = �.

reduce to

ρnk,ml(t) = ρnk,ml(0) exp
[− 1

2 (�1|n − m|2 + �2|k − l|2)t
]
.

(11)

The evolution of quantum and classical correlations for
this density matrix are shown in Fig. 1 for the initial state of
Eq. (9), for four different sets of parameters p0, p1, and p2.
Figure 1(a) corresponds to the case with different values of the
parameters (p0 = 0.3, p1 = 0.1, and p2 = 0.6). Interestingly,
we observe in this case that, until a given (finite) time �t , the
classical correlations decay. Then it freezes to an stationary
value while quantum discord decays asymptotically to zero.
In previous works [5,7,9], similar behavior was found in the
two-qubit scenario where the classical correlation also exhibits
a sudden change in its dynamics accompanied by a sudden
change in the discord dynamics. However, this is no longer
true in our case since the quantum discord decay at all times.
This can be interpreted as the decoherence dynamics exhibiting
two regimes: a mixed one, where decoherence has a quantum
and a classical contribution, i.e., both correlations decay, and
a second regime where the decoherence has only quantum
character. In the latter regime, only the quantum correlations
decay.

Although the evolution of correlations is similar, in Fig. 1(b)
we observe that for a different set of parameters (p0 = 0,
p1 = 0.5, and p2 = 0.5) the stationary value of the classical
correlations is considerably higher compared to the case in
Fig. 1(a). This becomes more apparent when we consider an
initial state with parameters p0 = p1 = 0 and p2 = 1. This
particular state corresponds to a pure initial state whose quan-
tum and classical correlations evolve as shown in Fig. 1(c).
Interestingly, the classical correlations for this state are not

FIG. 2. Evolution of discord D(ρ̂AB ) (blue solid line) and classi-
cal correlations C(ρ̂AB ) (red dotted line) for the initial state of Eq. (9)
with (p0,p1,p2) = (0.3,0.1,0.6) for different values of γ /�.

affected by decoherence and stay constant along the dynamics,
while the quantum discord decays asymptotically to zero as
expected.

The sudden change in the classical correlations depicted in
Figs. 1(a) and 1(b) reveals the apparition of a pointer state
associated with the system being measured as have been
encountered in previous works [7,9]. The stationary value
reached by the classical correlations tells us that, by measuring
on the system B, we will obtain the same information about the
A at all times and the measurement operators are defined on
the basis of classical states that are not affected by decoherence
[7]. In other words, we observe that after a finite time, the
system settles on a stable pointer-state basis.

On the other hand, in Fig. 1(d) we show the case with p0 =
p1 = p2 = 1/3. Interestingly, for equal parameters in the
initial state, the classical correlations show a different behavior
compared to the previous ones: It decays asymptotically to
zero as well as the quantum discord. That is, for a balanced
incoherent superposition in the initial state (9), the systems
does not reach a pointer state. Numerically we have observed
that whichever the combination of pj ’s is, we always found
a nonzero stationary value for classical correlations with the
only exception of p0 = p1 = p2 = 1/3.

B. Non-Markovian regime

In this regime we consider the cases when � ∼ γ and
� � γ . This relation between coherence times for reservoirs
and qutrits allows the quantum system to exhibit a richer
dynamics and, in consequence, quantum and classical correla-
tions show features that cannot be observed under the Markov
approximation. For example, in Fig. 2 we show the evolution
of quantum and classical correlations considering the initial
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state (9) with p0 = 0.3, p1 = 0.1, and p2 = 0.6 for different
values of γ .

When γ = �, we observe in the figure that the dynamics is
similar to that found in the Markovian case shown in Fig. 1(a).
However, at short times the characteristic nonexponential
behavior of the non-Markovian regime is present. In this case, a
pointer state also emerges, as evidenced by the frozen classical
correlations.

As the value of γ decreases in relation to �, the non-
Markovian behavior becomes more evident: For γ = 0.1�,
on one hand, we observe that quantum discord decays
asymptotically to zero and after a given time, a revival is
observed, followed again by an asymptotic decay. On the
other hand, the classical correlations show similar behavior
in Figs. 1(a) and 1(b). This reveals an interesting regime
where quantum correlations exhibit non-Markovian dynamics
[32] while classical correlations evolve within a Markovian
frame. Now, when γ = 0.01� this mixed non-Markovian and
Markovian behavior of quantum and classical correlations is
still present with the only difference that quantum correlations
exhibit more revivals before disappearing completely.

In the last case γ = 0.001� the amplitude of the quantum
discord revivals increases, but its behaviors remains similar
to previous cases. Interestingly, this is not true for classical
correlations whose evolution experiences significant differ-
ences from all previous cases (Markovian and non-Markovian)
considered. Although the system settles on a pointer-state
basis, this basis is no longer stable. Indeed, we observe the
emergence of metastable pointer states as previously found in
Ref. [9].

Up to this point, we have only considered discord as
a measure of quantum correlations and not, for example,
entanglement. The reason is that quantum entanglement,
quantified through the EOF, has no closed formula for general
mixed density matrices and its calculation is numerically
more challenging than for discord. However, there is a lower
bound of EOF that can be calculated directly [33] and also
the negativity N [34] can be considered as an estimator
of entanglement. The lower bound of EOF for a two-qutrit
bipartition is given by

E(ρ̂) �

⎧⎨
⎩

0 if � = 1
H2[γ (�)] + [1 − γ (�)] if � ∈ [1,8/3]
(� − 3) + log2(3) if � ∈ [8/3,3],

(12)

where γ (�) = [
√

� + √
2(3 − �)]2/9, with � =

max[‖ρ̂TA‖,‖R(ρ̂)‖] and H2(x) = −x log2(x) − (1 −
x) log2(1 − x). The trace norm ‖ · ‖ is defined as
‖G‖ = tr(GG†)1/2. The matrix ρTA is the partial transpose
with respect to the subsystem A, that is, ρ

TA

ik,j l = ρjk,il , and
the matrix R(ρ) is defined as R(ρ)ij,kl = ρik,j l . On the other
hand, the negativity [34] is given by N = (‖ρTA‖ − 1)/2.
Figure 3 shows a comparison among the lower bound of EOF,
the negativity N , discord, and classical correlations for the
non-Markovian case γ /� = 0.001. Although we observe that
both the lower bound of EOF (green line) and the negativity
(black-dashed line) evolve in a similar fashion than quantum
discord (blue line), they suffer periodical sudden deaths [35]
along its dynamics. Abrupt changes in the entanglement
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FIG. 3. Evolution of discord D(ρ̂AB ) (blue solid line), classical
correlations C(ρ̂AB ) (red dotted line), the lower bound of entan-
glement of formation (green squares) [33] and negativity N =
(‖ρT

A‖ − 1)/2 (black dashed line) for the initial state of Eq. (9) with
(p0,p1,p2) = (0.3,0.1,0.6) and γ /� = 0.001.

dynamics have also been found in initially mixed states of
qutrits in a dissipative dynamics [36].

C. Long-time limit

The optimization process required to calculate the classical
correlations defined in Eq. (3) makes the search for analytical
expressions of C(ρAB) a difficult task to realize in general.
For instance, in qutrits this has been made numerically only
[37]. However, in our physical system of two noninteracting
qutrits each under dephasing, the classical correlations can be
calculated analytically when t → ∞. After some calculations,
we find that

C(t → ∞) = max
[θ,φ]

f (θ,φ), (13)

where

f (θ,φ) = − log2 (1/3) + (1/3)
9∑

j=1

λj log2(λj ), (14)

with

λ1,2,3 = {x cos2(θ ) + sin2(θ )[y cos2(φ) + z sin2(φ)]},
λ4,5,6 = {x sin2(θ ) + cos2(θ )[y cos2(φ) + z sin2(φ)]},
λ7,8,9 = 1

2 [1 − x + (y − z) cos(2φ)],

where (x,y,z) is (p0,p1,p2), (p1,p2,p0), and (p2,p0,p1).
As we see from the expressions above, in the long-time

limit t → ∞, classical correlations depend only on the angles
θ and φ, rather than the four original parameters defined
by the orthonormal basis {|V1〉,|V2〉,|V3〉} previously defined.
Figure 4 shows the function f (θ,φ) from which the classical
correlations are calculated [Eq. (13)]. It is clear in Fig. 4 that the
maximum value of this function is found at four different sets
of angles (θ,φ). The four points correspond to the following
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FIG. 4. Function f (p0,p1) using the normalization constraint
p2 = 1 − (p0 + p1), which for each value of p0,p1 we have per-
formed the maximization over θ and φ.

sets of angles: (θ = 0,φ = 0), (θ = π/2,φ = 0), (θ = 0,φ =
π/2), and (θ = π/2,φ = π/2). Therefore, using these results,
we can reconstruct the basis from which classical correlations
are obtained. For instance, from the set (θ = 0,φ = 0) we have

|V1〉 = |2〉,
|V2〉 = eiχ1 |0〉, (15)

|V3〉 = eiχ2 |1〉.
Notice that the angles χ1 and χ2 may take any value in the
interval (0 � χ1,χ2 � 2π ) without changing the value for
the classical correlations. This result allows us to calculate
analytically the classical correlations in the long-time limit, as

FIG. 5. Stationary classical correlations C(ρ̂AB ) in the long-time
limit as a function of (p0,p1).
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FIG. 6. Classical correlations calculated using the general form of
Eq. (3) (red solid line) and considering the measurement on the second
qutrit performed in the basis analytically found in Eq. (15) (green
dashed line) in the (a) Markovian regime and (b) non-Markovian
case with γ /� = 0.001. Initial states correspond to Eq. (9) with
(p0,p1,p2) = (0.3,0.6,0.1).

a function of the initial-state parameters (p0,p1,p2), as shown
in Fig. 5. The stationary behavior of classical correlations
shown in Fig. 5 is in agreement with the previous findings
shown in Fig. 1. For example, the maximum stationary values
of classical correlations found, p0, p1, or p2, are equal to
1, that is, a pure initial state, as shown in Fig. 1(c). On the
other hand, minimum values for frozen classical correlations
are observed for a balanced superposition in the initial state
p0 = p1 = p2 = 1/3, whose dynamics is shown in Fig. 1(d).

Although Markovian and non-Markovian regimes show
important differences in the quantum dynamics of the system,
as well as in the behavior of quantum and classical correlations,
we found from our calculations that the settling of the system
on the pointer-state basis does not depend on the relation
between the coherence times of the reservoir and the decay
rate of the qutrits. In the Markovian regime, we see in Fig. 6(a)
the classical correlations calculated using the general form
of Eq. (3) together with the classical correlations obtained
analytically. This figure shows us that the system settles on the
pointer-state basis found in the long-time limit, long before
this limit is actually reached. This is also the case when the
non-Markovian regime is considered [Fig. 6(b)]; even though
the settling might be unstable, at the end it reaches the same
expected pointer-state basis. Interestingly, the set of vectors
defining the pointer-state basis consists of the eigenvectors of
the observable Ŝz with spin s = 1. This analytical result is
in agreement with what was observed in previous works that
showed that eigenvectors of Ŝz with spin s = 1/2 maximize
classical correlations for qubits [7,9,18].

IV. CONCLUSION

In summary, we have studied the dynamics of quantum
and classical correlations in a two-qutrit system under the
onset of dephasing. In the Markovian regime, we observed that
the decoherence process can be characterized by considering
two different regimes: one where both classical and quantum
correlations are affected by the decoherence and another where
only quantum correlations decay while classical correlations
remain constant. This can be understood as the measurement
basis projecting the measured qutrit into classical states
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(pointer states) that are not affected by decoherence. We
showed in the long-time limit that this observable corresponds
to the spin operator Ŝz with spin s = 1, consistent with previous
similar results for the two-qubit case where the same operator
but with spin s = 1/2 was found. On the other hand, we found
more varied results as a function of the ratio γ /�. For example,
we found for γ /� 	 1 that the non-Markovianity is reflected

in the classical correlations by the apparition of metastable
pointer states.
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