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The quantum master equation is an important tool in the study of quantum open systems. It is often derived
under a set of approximations, chief among them the Born (factorization) and Markov (neglect of memory
effects) approximations. In this article we study the paradigmatic model of quantum Brownian motion of a
harmonic oscillator coupled to a bath of oscillators with a Drude-Ohmic spectral density. We obtain analytically
the exact solution of the Heisenberg-Langevin equations, with which we study correlation functions in the
asymptotic stationary state. We compare the exact correlation functions to those obtained in the asymptotic
long time limit with the quantum master equation in the Born approximation with and without the Markov
approximation. In the latter case we implement a systematic derivative expansion that yields the exact asymptotic
limit under the factorization approximation only. We find discrepancies that could be significant when the
bandwidth of the bath � is much larger than the typical scales of the system. We study the exact interaction
energy as a proxy for the correlations missed by the Born approximation and find that its dependence on �

is similar to the discrepancy between the exact solution and that of the quantum master equation in the Born
approximation. We quantify the regime of validity of the quantum master equation in the Born approximation
with or without the Markov approximation in terms of the system’s relaxation rate γ , its unrenormalized natural
frequency � and �: γ /� � 1 and also γ�/�2 � 1. The reliability of the Born approximation is discussed
within the context of recent experimental settings and more general environments.
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I. INTRODUCTION

The interaction between a quantum mechanical system
and a large number of environmental degrees of freedom
typically leads to dissipative dynamics of the system’s degrees
of freedom along with decoherence. The quantum system plus
environment form a closed dynamical system described by
a density matrix that evolves with unitary time evolution.
Tracing out the environmental degrees of freedom lead to the
description of the system’s dynamics as an open quantum
system [1–5]. The theory of open quantum systems plays
a fundamental role in quantum information and quantum
computing since the quantum mechanical degrees of freedom
exploited to implement quantum computing protocols are
unavoidably coupled to environmental degrees of freedom. Ex-
perimental progress in quantum optics, cavity electrodynamics
[6,7], and optomechanics [8–12] provide novel platforms and
architectures for quantum information and computing. The
possibility of engineering the properties of the environmental
bath [13–19] opens a new, experimentally accessible window
into the fundamental aspects of open quantum systems. A
recent experiment [20] has probed the spectral properties of
the environmental bath with an optomechanical resonator, and
experimental studies [21–23] have demonstrated the feasibility
of coupling various quantum systems to nonequilibrium baths.
The experimental possibility of engineering the couplings and
the environmental degrees of freedom provides a pathway to
controlling the dissipative and decoherence properties of the
bath paving the way for experimental control of entanglement
of the system’s degrees of freedom and could lead to novel
cooling techniques of optomechanical systems [18].
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Theoretical and experimental developments in quantum
open systems are also fueling the emerging field of quantum
thermodynamics [24–30].

An important, paradigmatic model of quantum open sys-
tems is that of quantum Brownian motion [1,2,31–40] that
considers the system to be a harmonic oscillator with linear
coupling to a bath of a large number of harmonic oscillators
with a continuum density of states. The properties of this bath
are determined by its spectral density. This simple model has
yielded a deep understanding of the role of an environmental
bath on decoherence and dissipation of quantum mechanical
degrees of freedom. Not only does this model provide a
window into the fundamental questions of decoherence and
dissipation, but has also been of fundamental experimental
relevance in the design of nanomechanical resonators that work
at the quantum limit [41,42].

A powerful tool to study the nonequilibrium dynamics in
quantum open systems is the quantum master equation [1,3,4].
Typically for generic quantum open systems the derivation of
the quantum master equation relies on various approximations.
Chief among them are (i) the Born approximation, which
assumes a factorization between the time-dependent reduced
density matrix and the time-independent density matrix of the
environment, usually taken to be in thermal equilibrium, and
(ii) the Markov approximation which neglects the memory of
the time evolution and yields a time-local master equation.
Often further approximations, such as the secular or rotating
wave approximation are invoked to yield a Lindblad quantum
master equation [1,3,4]. The model of quantum Brownian
motion provides a case in which the exact quantum master
equation is available, obtained via path integral techniques
[32,35,43–46], as well as a similar equation for its Wigner
transform [47]. The exact quantum master equation for
quantum Brownian motion is found to be time local, but is
given in terms of time-dependent coefficient functions that
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must be obtained from complicated differential equations
with memory kernels [35,43]. Besides the model of quantum
Brownian motion, there are a few other instances in which
an exact quantum master equation is available: the case of a
(fermionic or bosonic) system of N-independent single particle
energy levels linearly coupled to a reservoir of harmonic
bosonic modes [48], a two level-system (qubit) coupled to
a bosonic (harmonic) reservoir [49] (this latter model is
exactly solvable because of the total excitation number is
conserved). However, more generally such an exact solution
is not available and the Born-quantum master equation is
the tool of choice for studying the nonequilibrium dynamics
of quantum open systems. The Born-Markov approximation
to the quantum master equation often has shortcomings,
for example, violations of positivity of the density matrix
[1,50], and further approximations leading to a Lindblad
form are often invoked to overcome this problem. More
recently a Lindblad model of quantum Brownian motion has
been proposed [46,51] that introduces a time-local Lindblad
form for the quantum master equation for quantum Brownian
motion that bypasses the complicated time-dependent form of
the exact master equation and overcomes the shortcomings of
the Born-Markov approximations.

A. Motivation

The quantum master equation in the Born approximation,
often in Lindblad form [1,3,4], is widely used in theoretical
or experimental studies of nonequilibrium dynamics of open
quantum systems. The Born approximation assumes a factor-
ization between the (reduced) density matrix of the system
and that of the bath, which is assumed to retain its initial
value. This approximation neglects the build-up of correlations
between the system and the bath and is typically justified
for weak coupling, which under most circumstances implies
that the relaxation or damping rate(s) are much smaller than
the typical frequency of the system’s degrees of freedom.
However, for a given model of the environmental degrees
of freedom there are generally several other parameters that
characterize the spectral density of the bath, for example, the
bandwidth (cutoff). The precise manner in which these features
of the spectral density determine the regime of reliability of the
Born and Markov approximations is seldom discussed either
theoretically or experimentally.

Motivated by the timely importance of quantum master
equations to study the dynamics of quantum open systems and
by its relevance to the interpretation of experimental results,
in this article we focus on establishing a direct comparison
between the results for correlation functions obtained with
the quantum master equation in the Born approximation with
the exact results for the case of quantum Brownian motion.
To the best of our knowledge there has not yet been a
comparison between the exact dynamics and the predictions of
the Born quantum master equation (with or without the Markov
approximation) for systems with continuous variables.

B. Goals

Our main goal is to understand the regime of validity of
the quantum master equation in the Born approximation by
directly comparing its predictions with exact results available

in the case of quantum Brownian motion. Whereas the
exact quantum master equation for this case has been de-
rived previously and discussed extensively [32,35,43,45–47],
obtaining correlation functions requires the exact solution of
this equation. This is in general a daunting task because the
time-dependent coefficients of the quantum master equations
must be obtained from the solutions of differential equations
nonlocal in time. Furthermore, even when this quantum
master equation is solved, correlation functions at different
times involve the implementation of the quantum regression
theorem [1,3].

We proceed instead in a very different manner: We obtain
the exact solution of the Heisenberg-Langevin equations which
allow us to directly obtain any correlation function exactly at
different times and at all temperatures in terms of the spectral
density of the bath. We then focus on the case of an Ohmic bath
with a Drude spectral density [1,2] which offers the distinct
advantage of an exact analytic solution. Such exact analytic
treatment allows us to explicitly obtain the dependence of the
correlation functions on the various parameters: the bandwidth
(cutoff) of the bath �, the system’s relaxation rate γ , and
the unrenormalized system’s natural frequency �. A direct
comparison with the correlation functions obtained from the
quantum master equation in the Born approximation, with
or without the Markov approximation, leads to establishing
unambiguously the regime of validity of both approximations.

Furthermore, we study the system-bath correlations to
assess the correlations missed by the Born approximation. As
a proxy for these correlations we study the interaction energy
between the system and the bath, which is also interpreted as
the correlation between the system degrees of freedom and the
collective bath variable to which the system couples directly.

II. THE MODEL AND THE HEISENBERG-LANGEVIN
EQUATION OF MOTION

We consider an oscillator of unit mass coupled to a bath
of oscillators in equilibrium at temperature T . The total
Hamiltonian is

H = HS + HB + HSB, (2.1)

HS = p2

2
+ �2

2
q2, (2.2)

HB =
∑

k

1

2

[
P 2

k + W 2
k Q2

k

]
, (2.3)

with HB describing a bath of harmonic oscillators to be taken
in thermal equilibrium at temperature T . The system-bath
coupling is taken to be

HSB = −q
∑

k

Ck Qk, (2.4)

and the equations of motion are

q̈ + �2q =
∑

k

Ck Qk, (2.5)

Q̈k + W 2
k Qk = Ck q(t). (2.6)
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We will solve the dynamics as an initial condition problem,
setting up initial conditions at time t = 0. This allows us to
understand the transient evolution of correlation functions and
the approach to an asymptotic stationary state.

We proceed by solving the equations of motion for the
bath variables and inserting the solution into the equations of
motion for the system coordinate, namely

Qk(t) = Q
(0)
k (t) + Ck

∫ t

0

sin[Wk(t − t ′)]
Wk

q(t ′) dt ′, (2.7)

where

Q
(0)
k (t) = 1√

2 Wk

[ak e−iWkt + a
†
k eiWkt ] (2.8)

is the operator solution of the homogeneous equation in
terms of independent annihilation (ak) and creation (a†

k) bath
operators.

The bath is assumed to be in thermal equilibrium at
temperatures T , with statistical average (hereafter we set
h̄ = 1 ; kB = 1),

〈〈a†
kak〉〉 = 1

eWk/T − 1
, (2.9)

where 〈〈(· · · )〉〉 define the statistical averages over the bath
variables.

Inserting the solutions (2.7) into (2.5) we find a Heisenberg-
Langevin equation of motion for the system coordinate,

q̈(t) + �2q(t) +
∫ t

0
�(t − t ′) q(t ′)dt ′ = ξ (t), (2.10)

where the self-energy kernel is given by

�(t − t ′) = −
∑

k

C2
k

Wk

sin[Wk(t − t ′)]

≡ i

π

∫ ∞

−∞
σ (ω′) eiω′(t−t ′) dω′, (2.11)

and the spectral density of the bath is

σ (ω′) =
∑

k

π C2
k

2 Wk

[δ(ω′ − Wk) − δ(ω′ + Wk)]. (2.12)

Note also that σ (ω) = −σ (−ω), and that the noise term is

ξ (t) =
∑

k

Ck Q
(0)
k (t). (2.13)

A homogeneous version of the Heisenbeg-Langevin equa-
tion (2.10) (without the noise term and with the lower limit
in the nonlocal integral taken to −∞) has been considered in
Refs. [52,53] to study dynamical susceptibilities.

The Heisenberg-Langevin equation of motion (2.10) is
solved by Laplace transform, for which one introduces

q̃(s) =
∫ ∞

0
e−st q(t) dt ; �̃(s) =

∫ ∞

0
e−st �(t) dt ;

ξ̃ (s) =
∫ ∞

0
e−st ξ (t) dt. (2.14)

From the spectral representation of the self-energy (2.11) we
find

�̃(s) = − 1

π

∫ ∞

−∞

σ (ω′)
ω′ + i s

dω′, (2.15)

and the solution in Laplace is

q̃(s) = g(s)[q̇(0) + s q(0) + ξ̃ (s)], (2.16)

where

g(s) = 1

[s2 + �2 + �̃(s)]
. (2.17)

The solution of Eq. (2.10) can be written,

q(t) = G(t) q̇(0) + Ġ(t) q(0) +
∫ t

0
G(t − t ′)ξ (t ′) dt ′,

(2.18)
where

G(t) =
∫
C

ds

2πi
g(s) est (2.19)

is the solution of (2.10) for ξ (t) = 0 with initial conditions
G(0) = 0,Ġ(0) = 1, and C stands for the Bromwich contour,
parallel to the imaginary axis and to the right of all the
singularities of the function g(s) in the complex s plane.

We write the exact solution (2.18) as

q(t) = q0(t) + qξ (t); q0(t) = G(t) q̇(0) + Ġ(t) q(0);

qξ (t) =
∫ t

0
G(t − t ′)ξ (t ′) dt ′ (2.20)

to highlight the two different contributions: from the initial
value [q0(t)] and the noise term [qξ (t)].

In the Heisenberg picture the operators depend on time
but states do not. Correlation functions of operators are
obtained by taking expectation values of the time-evolved,
Heisenberg operators in the initial total density matrix ρSB(0).
For example, the total average,

〈q(t)q(t ′)〉 ≡ TrSBq(t)q(t ′)ρSB(0). (2.21)

The exact solution to the Heisenberg-Langevin equation
allows one to obtain the correlation functions for any arbitrary
initial state. However, our goal is to compare to the correlations
obtained from the quantum master equation which is usually
obtained under the assumption of an initially factorized state.
Therefore we take the initial density matrix for system plus
bath to be of the factorized form,

ρSB (0) = ρS(0) ⊗ ρB(0); ρB(0) = e−HB/T

TrBe−HB/T
. (2.22)

This is the usual choice for the initial density matrix in the
quantum master equation approach [1,3], furthermore, in the
Born approximation, such factorization is assumed to hold at
all times. While, as discussed in Ref. [54] such factorization
may not yield a correct description of decoherence, we
emphasize that our main goal is to compare the exact results
from the Heisenberg-Langevin approach to those obtained
from the quantum master equation obtained under the usual
assumption of factorization.
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Therefore, correlation functions of the system’s Heisenberg
operators require two different averages:

(i) Average over the initial conditions, denoted by
〈q(t)q(t ′) · · · 〉S , correspond to averaging with the initial
density matrix of the system ρS(0). We define averages with
ρS(0) as

〈O 〉S ≡ TrρS(0)O. (2.23)

(ii) Averages over the noise terms ξ correspond to averaging
over the bath variables with the statistical distribution of the
bath and we define

〈〈 (· · · ) 〉〉 ≡ TrρB(0)(· · · ). (2.24)

With ξ (t) given by Eq. (2.13) and using (2.8) and (2.9) and
the fact that the spectral density satisfies σ (ω) = −σ (−ω), we
find

〈〈ξ (t)〉〉 = 0, (2.25)

and noise correlator,

〈〈ξ (t1)ξ (t2)〉〉 = 1

π

∫ ∞

−∞
dωσ (ω)n(ω)eiω(t1−t2);

n(ω) = 1

eω/T − 1
. (2.26)

Because the theory is Gaussian, only the one- and two-
point correlation functions must be obtained; higher order
correlation functions can be obtained from Wick’s theorem.

These definitions and (2.25) yield

〈q(t)q(t ′)〉
= G(t)G(t ′)〈p2(0)〉S + Ġ(t)Ġ(t ′)〈q2(0)〉S

+G(t)Ġ(t ′)〈p(0)q(0)〉S + G(t ′)Ġ(t)〈q(0)p(0)〉S

+
∫ t

0
dt1

∫ t ′

0
dt2G(t − t1) G(t ′ − t2) 〈〈ξ (t1)ξ (t2)〉〉,

(2.27)

where p(0) = q̇(0). Other correlation functions are obtained
in a similar manner. These results are exact and general; it
remains to specify the spectral density of the bath. We consider
an Ohmic bath with a Drude spectral density, namely,

σ (ω) = γω
�2

�2 + ω2
; γ > 0, (2.28)

where � determines the bandwidth of the bath (cutoff). We
will consider � 
 �,γ without condition on the ratio �/T

in order to study the cases � 
 T ,� � T in detail. For this
spectral density, the symmetrized noise correlation function
is given by (B10) in Appendix B and the self-energy (2.11)
becomes

�(τ ) = −γ�2 e−�|τ | sgn(τ ). (2.29)

We note that

�(τ )−−−−→
�→∞γ

d

dτ
δ(τ ), (2.30)

and its Laplace transform is given by

�̃(s) = − γ�2

� + s
. (2.31)

Taking the large � limit g(s) in (2.17) simplifies to

g(s) = 1

s2 + �2
R + γ s

, (2.32)

where the renormalized frequency is

�2
R = �2 − γ�. (2.33)

In this limit we find

G(t) = e−γ t/2 sin Wt

W
; W =

√
�2

R − γ 2

4
. (2.34)

In Appendix A we analyze g(s) and G(t) including the full
expression (2.31) for �̃(s) and confirm the validity of (2.34)
for W/� � 1,γ /� � 1.

At this point we note that the renormalization condition
(2.33) restricts the possible values of γ�. Since �2 > 0, (as
physically expected from an uncoupled oscillator), if γ� >

�2 it follows that �2
R < 0, implying an instability due to the

fact that in this case W is purely imaginary, leading to one
growing and one decaying mode after coupling to the bath.
The existence of a growing solution precludes an asymptotic
stationary regime; this can be seen clearly in the correlation
function (2.27) which would grow without bound as a function
of time if �2

R < 0. Therefore, an asymptotically well-defined
equilibrium or stationary state requires that �2

R > 0, leading
to the stability condition,

γ�

�2
< 1. (2.35)

For t,t ′ 
 1/γ only the last term of (2.27) survives, and a
straightforward calculation in this limit yields

〈q(t)q(t ′)〉 = 1

π

∫ ∞

−∞
dω

σ (ω)n(ω)[(
ω2 − �2

R

)2 + (ωγ )2
]eiω(t−t ′).

(2.36)
This correlation function indicates the emergence of a sta-
tionary limit for t,t ′ 
 1/γ . With p(t) = dq(t)/dt , it is
straightforward to obtain in this long time limit,

〈p(t)p(t ′)〉 = 1

π

∫ ∞

−∞
dω

ω2 σ (ω)n(ω)[(
ω2 − �2

R

)2 + (ωγ )2
]eiω(t−t ′),

(2.37)
and

〈(p(t)q(t) + q(t)p(t))〉 =
[

d

dt
+ d

dt ′

]
〈q(t)q(t ′)〉

∣∣∣
t=t ′

= 0.

(2.38)

We now focus on the coincidence limit t = t ′ 
 1/γ to
compare to the equal time correlation functions obtained with
the quantum master equation in the next section.

Because σ (ω) = −σ (−ω), it follows that for t = t ′ 
 1/γ ,

〈 q2(t) 〉 = 1

2π

∫ ∞

−∞
dω

σ (ω) coth[ ω
2T

][(
ω2 − �2

R

)2 + (ωγ )2
] , (2.39)

〈p2(t) 〉 = 1

2π

∫ ∞

−∞
dω

ω2 σ (ω) coth[ ω
2T

][(
ω2 − �2

R

)2 + (ωγ )2
] . (2.40)

Similar exact expressions have been obtained in Ref. [55].
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With the Drude spectral density (2.28) the integrals can
be performed by contour integration, and taking the limits
� 
 �R,γ yields (see Appendix B for details)

〈 q2 〉 = 1

4W

{
coth

[
W + iγ /2

2T

]
+ coth

[
W − iγ /2

2T

]}
+ γ

2�2
i coth

[
i�

2T

]
+ γ

T 2
F [�/T,�R/T ,γ /T ].

(2.41)

The first term (in brackets) is the contribution from the
resonant complex poles at ω = iγ /2 ± W in the limit � 

W,γ . The second term arises from the pole at ω = i� and
can be safely neglected for � 
 γ . The third contribution
arises from the Matsubara poles (from coth[ω/2T ]) at ω =
2πilT ; l = 1,2, . . . [see (B5)]; the function F remains finite
at all temperatures and � and is given by Eq. (B12) in
Appendix B. In the weak coupling limit, �R 
 γ , the first term
in (2.41) yields the result for a harmonic oscillator in thermal
equilibrium (quantum equipartition). In particular, in the high
temperature limit T 
 �R,γ and � 
 �R,γ we obtain

〈 q2 〉 = T

�2
R

+ · · · , (2.42)

where the dots stand for terms that are subleading for T 
 �R

and � 
 �R,γ .
Implementing the same method we find

〈p2 〉 = W

4

{(
1 + iγ /2W

)2
coth

[
W + iγ /2

2T

]
+ (1 − iγ /2W )2 coth

[
W − iγ /2

2T

]}
+ γ I (�/T,�R/T ,γ /T ) , (2.43)

where the function I (�/T,�R/T ,γ /T ) is given by Eq. (B13)
in Appendix B. As a consequence of the extra term ω2 in the
integrand in (2.40), for � 
 T ,�R,γ the dimensionless func-
tion I features a logarithmic dependence with the bandwidth;
in this limit we find [56]

γ I [�/T,�R/T ,γ /T ] = γ

π
ln

[
�

2πT

]
+ · · · , (2.44)

where the dots stand for terms that remain finite in the limit
� → ∞ [56]. In the opposite limit T 
 �,�R,γ this function
remains small of the order of the respective ratios displayed in
the argument. In the high temperature limit with T 
 �,�R,γ

(2.43) yields

〈p2 〉 = T + · · · , (2.45)

while for � 
 T 
 �R,γ we find

〈p2 〉 = T

(
1 + γ

πT
ln

[
�

2πT

])
+ · · · . (2.46)

The logarithmic dependence on the bandwidth survives in the
zero temperature limit, where it yields a correction to 〈p2〉 of
the form γ /π ln[�/W ] [56].

The results obtained above are exact under the main
assumptions � 
 �,γ , with the constraint �2 > γ� which is
necessary to ensure that �2

R > 0. This latter constraint implies

that the Green’s function G(t) (2.34) is damped, which leads
to an asymptotic stationary state. The results presented above
are general for a Drude-Ohmic model without restrictions on
the ratio γ /�. The contributions that are proportional to �

(frequency renormalization) and ln[�] for � 
 T , are not a
consequence of the Drude form of the Ohmic spectral density,
but a direct consequence of the large separation of scales when
� 
 �,γ (the logarithmic correction emerging for � 
 T ).
For example, it is straightforward to find that an exponential
cutoff,

σ (ω) = γω e−|ω|/�, (2.47)

instead of the Drude form (2.28) yields a similar frequency
renormalization (∝ γ�) and logarithmic contribution to 〈p2〉
for � 
 T ,�R,γ although the finite temperature integrals are
more cumbersome.

We emphasize that the above results depend on �R and
not directly on the unrenormalized (bare) frequency �. This
aspect will become an important distinction with the results
from the quantum master equation studied below.

The logarithmic divergence with � of 〈p2〉 merits discus-
sion. To understand its origin let us consider the correlation
function (2.37) for t − t ′ = τ > 0 with Wτ � 1,γ τ � 1 and
� 
 T 
 �R,γ . The frequency integral can be done by
residues by closing the contour in the upper half ω plane.
The contribution from (complex) zeros in the denominator
in (2.37) yield the first term (in brackets) in (2.43). The
contribution from the poles at ω = i� arising from σ (ω)
lead to

−i
γ

2
coth

[
i�

2T

]
e−�τ ,

which is finite and vanishes rapidly for �τ 
 1. The most
important contribution arises from the poles corresponding
to the Matsubara frequencies ωl = i2πT l with l = 0,1,2 . . ..
These yield the contribution,

γ

π

∞∑
l=1

1

l

[
(�/2πT )2

(�/2πT )2 − l2

]
e−2πlT τ .

For T 
 � this contribution is ∝ γ (�/T )2 and negligible.
However, for � 
 T it can be very well approximated for
τ � 1/� by

γ

π

∞∑
l=1

1

l
e−2πlT τ = −γ

π
ln[1 − e−2πT τ ] −−→

τ→0

− γ

π
ln[2πT τ ]. (2.48)

Taking the shortest time scale to be that of the bath τ 

1/� yields the logarithmic divergence (2.44) for T � �.
Therefore, it is clear that the divergence is a consequence
of measuring correlations with a time difference shorter
than the typical time scale of the bath, which is determined
by the bandwidth �. For τ � 1/� the correlation function
probes frequencies of the order of the bandwidth of the bath.
Measuring the correlation on time differences τ � 1/� cuts
off the divergence with the bandwidth. A similar conclusion
was reached in Ref. [56] within a different context and for a
strictly Ohmic bath.
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This analysis suggests that the bandwidth dependence of
correlation functions will be stronger for super-ohmic spectral
densities when T/� � 1 (see discussion in Sec. V).

III. QUANTUM MASTER EQUATION

In this section we study the dynamics within the framework
of the quantum master equation. For the model of quantum
Brownian motion under consideration there is a body of work
on the exact quantum master equation [32,35,43,45–47]. This
exact form is obtained from the path integral representation
of the time evolution of the total density matrix after tracing
over the bath degrees of freedom, which yields an “influence
action” [31] for the system’s degrees of freedom. The exact
master equation so derived is local in time, but involves
complicated functions of time that are obtained from the
solution of differential equations with memory. Obviously
the exact master equation yields the same information as
the exact solution of the Heisenberg-Langevin equation.
While obtaining correlation functions at different times from
the solution of the Heisenberg-Langevin equation is fairly
straightforward, as shown in the previous section, in the
master equation approach obtaining correlation functions at
nonequal times requires implementing the quantum regression
theorem [1,3].

Our focus here is to compare the exact results obtained
above from the solution to the Heisenberg-Langevin equation
to the quantum master equation often used for open quantum
systems that relies on the Born-Markov approximation valid
for weak coupling.

Within the context of the model studied here, the weak
coupling condition is equivalent to the condition,

γ /�R � 1, (3.1)

namely, the damping rate is much smaller than the (renor-
malized) oscillation frequency. As a result of Eq. (2.34) this
condition is equivalent to W 
 γ . Furthermore, consistently
with the previous section, we also assume � 
 �R,γ .

We obtain the quantum master equation in the interaction
picture, wherein the full density matrix ρI (t) obeys

ρ̇I (t) = −i[HI (t),ρI (t)], (3.2)

with HI (t) = HSB (t) and HSB is given by Eq. (2.4). The time
evolution is in the interaction picture of HS + HB , namely q(t)
and Qk(t) evolve in time with the free Hamiltonian. Therefore

HSB(t) = −q(t) ξ (t), (3.3)

where

q(t) = q(0) cos(�t) + p(0)

�
sin(�t); p(0) = q̇(0), (3.4)

and ξ (t) is given by Eq. (2.13) with Q
(0)
k (t), the free bath

coordinates, given by (2.8).
The formal solution is

ρI (t) = ρSB (0) − i

∫ t

0
dt1[HI (t1),ρI (t1)], (3.5)

where ρSB (0) is given by Eq. (2.22). Inserting this solution
back into (3.2) yields

ρ̇I (t) = −i[HI (t),ρSB(0)] −
∫ t

0
dt1[HI (t),[HI (t1),ρI (t1)]].

(3.6)
The reduced density matrix for the system variables is obtained
by tracing over the bath variables, namely,

ρr (t) = TrBρI (t), (3.7)

and since 〈〈ξ (t)〉〉 = 0, the first term in (3.6) does not contribute
to the quantum master equation for the reduced density matrix.
Therefore,

ρ̇r (t) = −TrB

∫ t

0
dt1[HI (t),[HI (t1),ρI (t1)]]. (3.8)

In order to obtain the time evolution of expectation values
of operators associated with the system’s variables in the
interaction picture, one would need to solve Eq. (3.8) exactly,
usually a very difficult task. Instead one obtains evolution
equations for the expectation values,

d

dt
〈O 〉(t) = 〈 Ȯ 〉(t) + TrO(t)ρ̇r (t), (3.9)

where

〈O 〉(t) ≡ TrS O(t) ρr (t), (3.10)

and O(t) is an operator associated with the system’s variables
in the interaction picture. Correlation functions at different
times may be obtained from the quantum regression theorem
[1,3].

Although Eq. (3.8) is exact but difficult to solve, several
approximations are usually invoked.

(1) Born (factorization)
A factorization,

ρI (t) = ρr (t) ⊗ ρB(0), (3.11)

is employed; under this approximation the trace over the bath
degrees of freedom can be carried out and yields

ρ̇r (t) = −
∫ t

0
dt1{g>(t − t1)[q(t)q(t1)ρr (t1)

− q(t1)ρr (t1)q(t)] + g<(t − t1)[ρr (t1)q(t1)q(t)

− q(t)ρr (t1)q(t1)]},
(3.12)

where q(t) is given by (3.4). Furthermore, in terms of the noise
variable ξ (t), we find [see Eq. (2.26)]

g>(t − t1) = TrB ξ (t) ξ (t1)ρB(0)

= 1

π

∫ ∞

−∞
dωσ (ω)n(ω)eiω(t−t1);

n(ω) = 1

eω/T − 1
, (3.13)

g<(t − t1) = TrB ξ (t1) ξ (t) ρB(0)

= 1

π

∫ ∞

−∞
dω σ (ω) (1 + n(ω)) eiω(t−t1). (3.14)
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We note the following identities:

g>(t − t1) = 1

2π

∫ ∞

−∞
dω σ (ω) coth

[
ω

2T

]
eiω(t−t1)

+ i

2
�(t − t1), (3.15)

g<(t − t1) = 1

2π

∫ ∞

−∞
dω σ (ω) coth

[
ω

2T

]
eiω(t−t1)

− i

2
�(t − t1), (3.16)

where �(t − t ′) is the self-energy given by Eqs. (2.11) and
(2.29) for the Drude-Ohmic case. The symmetrized noise
correlation function is given by [g>(t − t1) + g<(t − t1)]; its
explicit form for the Drude-Ohmic case is given by (B10) in
Appendix B.

(2) Born-Markov approximation
In this approximation ρr (t1) → ρr (t) in (3.12), and the

upper limit of the integral is taken to t → ∞. We will consider
the Born-Markov approximation while keeping the upper limit
at finite time t .

Usually the rotating wave (or secular) approximation is
invoked to yield the quantum master equation in Lindblad
form [1], but we will not pursue this further approximation
here. With (3.9) and (3.10) we find

d

dt
〈 q 〉(t) = 〈p〉(t), (3.17)

d

dt
〈p 〉(t) = −�2 〈 q 〉(t) + TrS p(t) ρ̇r (t), (3.18)

where

TrS p(t) ρ̇r (t) = i

∫ t

0
[g>(t − t1) − g<(t − t1)]TrS q(t1) ρr (t).

(3.19)

In the trace in the last expression we need to write the
interaction picture operator q(t1) in terms of operators at time
t to identify the last term as an expectation value at time t .
This is achieved by inverting the relation (3.4) for q(0),p(0)
to obtain1

q(t1) = q(t) cos[�(t − t1)] − p(t)

�
sin[�(t − t1)], (3.20)

p(t1) = p(t) cos[�(t − t1)] + �q(t) sin[�(t − t1)], (3.21)

leading to

TrS p(t) ρ̇r (t) = 〈 q 〉(t) α(t) − 〈p 〉(t) β(t), (3.22)

with the functions α(t),β(t) given by (see Appendix B)

α(t) = γ�2Re

{
1 − e−�t ei�t

� − i�

}
, (3.23)

1Using the identity (3.20) the quantum master equation in the Born-
Markov approximation can be written in a manifestly time-local form.
However, the nonlocal form is more compact to calculate correlators.

β(t) = γ�2

�
Im

{
1 − e−�t ei�t

� − i�

}
. (3.24)

Taking another time derivative of (3.17), using (3.18) along
with the above results, we obtain

d2

dt2
〈 q 〉(t) + (�2 − α(t))〈 q 〉(t) + β(t)

d

dt
〈 q 〉(t) = 0.

(3.25)

Although this differential equation is difficult to solve for all
times, for �t 
 1 and � 
 � it follows from (3.23) and
(3.24) that

α(t) −−−→
�t
1 γ�

�2

�2 + �2
−−−→
�
�

γ�, (3.26)

β(t) −−−→
�t
1 γ

�2

�2 + �2
−−−→
�
�

γ. (3.27)

Therefore in this limit the equation of motion (3.25) becomes

d2

dt2
〈 q 〉(t) + �2

R 〈 q 〉(t) + γ
d

dt
〈 q 〉(t) = 0. (3.28)

It is straightforward to confirm that the solution of this equation
for �t 
 1 is the expectation value of Eq. (2.18) with the
Green’s function (2.34) and vanishing noise expectation value.
In the quantum master equation approach one must find the
solution of the quantum master equation for ρr (t) from which
the correlation functions are obtained by taking the appropriate
averages, and the quantum regression theorem yields correla-
tion functions at different times. Instead we obtain differential
equations for equal time correlation functions, which will
be compared to the equal time limit (t → t ′) of the exact
correlation functions (2.39) and (2.40) in the asymptotic long
time limit t 
 1/γ . We find

d

dt
〈 q2 〉(t) = 〈 (pq + qp) 〉(t), (3.29)

d

dt
[〈 (pq + qp) 〉(t)] = 2〈p2 〉(t) − 2(�2 − α(t))〈 q2 〉(t)

−β(t)〈 (pq + qp) 〉(t) + f (t),

(3.30)

d

dt
〈p2 〉(t) = −(�2 − α(t))〈 (pq + qp) 〉(t)

− 2β(t)〈p2 〉(t) + h(t), (3.31)

where α(t),β(t) are given by (3.23) and (3.24), respectively,
and

f (t) =
∫ t

0
dτ [g>(τ ) + g<(τ )]

sin(�τ )

�
, (3.32)

h(t) =
∫ t

0
dτ [g>(τ ) + g<(τ )]cos(�τ ). (3.33)

The explicit form of the integrals for f (t),h(t) are given in
Appendix B.

Solving the set of coupled differential equations (3.29)–
(3.31) is a very difficult task, however, we can extract the
asymptotic long time limit under the assumption that such a
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limit describes a stationary state. In this limit the left-hand side
of these equations can be set to vanish and using the asymptotic
limits (3.26) and (3.27) and the results of Appendix B [see
Eqs. (B8) and (B9)], we find

〈p2 〉(∞) = h(∞)

2β(∞)
= �

2
coth

[
�

2T

]
, (3.34)

and

〈q2〉(∞) = �

2�2
R

coth

[
�

2T

]
+ f (∞)

2�2
R

= �

2�2
R

coth

[
�

2T

]
+ γ

�2
R

{
−T

�
− 1

π
Re

[
�

(
�

2πT

)
− �

(
i�

2πT

)]}
.

(3.35)

The di-Gamma (�) function has the following limits:

�(z) −−→
z→0 − 1

z
+ O(1); �(z) −−−→

z→∞ ln(z) + O(1/z), (3.36)

therefore, in the high temperature classical limit T 
 � 

�,γ we find

〈p2 〉(∞) = T + · · · , (3.37)

〈 q2 〉(∞) = T

�2
R

(
1 + γ

�

)
+ · · · , (3.38)

where the dots stand for subleading contributions. Hence, we
find that for � 
 γ we recover classical equipartition in the
high temperature limit when T 
 � 
 �,γ . However, in the
limit � 
 T 
 �,γ we find

〈p2 〉(∞) = T + · · · , (3.39)

〈 q2 〉(∞) = T

�2
R

(
1 − γ

πT
ln

[
�

2πT

])
+ · · · . (3.40)

Compare these results to the exact ones (2.42) and (2.46).
The difference is striking: In the results (3.39) and (3.40) the
logarithmic dependence on � appears in 〈 q2 〉(∞) instead of
〈p2 〉(∞) as in the exact results. Although the discrepancy
is perturbatively small ∝ γ /T , it is enhanced by the large
logarithm of the bandwidth.

We find that in the Born-Markov approximation, although
the differences from the exact results are suppressed by the
perturbative ratio γ /T , these are enhanced by ln[�/T ], which
could be a substantial enhancement for large bandwidth and
low temperature. The logarithmic enhancement appears in
〈 q2 〉(∞) whereas the exact solution features this enhancement
in 〈p2 〉(∞) only.

Another important difference emerges when writing the
asymptotic correlation functions in terms of the renormalized
frequency in order to compare to the exact results (2.39) and
(2.40) in the equal time limit. For example, compare (3.34)
and the first term in (3.35) with the exact expressions (2.41) and
(2.43) (neglecting the term proportional to γ in both cases);
even neglecting terms of order γ 2/�2

R in the arguments of
the coth[(· · · )] in (2.41), the two expressions differ in the
frequency dependence, the exact solution depending solely
on the renormalized frequency �R whereas the solution in
the Born-Markov approximation depends both on the bare

and renormalized frequencies. In weak coupling, the Born-
Markov approximation coincides with the exact result only in
the classical limit T 
 �,�R,γ .

(3) Non-Markovian evolution: keeping the memory. The
quantum master equation after the Born (factorization) ap-
proximation but without the Markov approximation is given
by Eq. (3.12). We now consider this equation keeping the
memory, namely, with ρr (t1) in the integral. Using Eq. (3.9)
we find

d

dt
〈q〉(t) = 〈p〉(t), (3.41)

and

d

dt
〈p〉(t) = −�2 〈q〉(t) + i

×
∫ t

0
[g>(t − t1) − g<(t − t1)] 〈q〉(t1) dt1.

(3.42)

Taking another time derivative of (3.41), using Eq. (3.42) and
the definitions (3.13)–(3.16) we find

d2

dt2
〈q〉(t) + �2〈q〉(t) +

∫ t

0
�(t − t1) 〈q〉(t1)dt1 = 0.

(3.43)
This is precisely the expectation value of the Heisenberg-
Langevin equation (2.10), because the expectation value of
the noise term vanishes.

In the non-Markovian master equation (3.12) the reduced
density matrix appears evaluated at time t1 the expectation
values of operators as defined by Eq. (3.10) require the
operators in the interaction picture to be evaluated at the
(integrated) time t1. To obtain the equations of motion for
the equal time correlation functions we need the following
identities for interaction picture operators:

q(t) = q(t1) cos[�(t − t1)] + p(t1)
sin[�(t − t1)]

�
, (3.44)

p(t) = p(t1) cos[�(t − t1)] − q(t1)� sin[�(t − t1)]. (3.45)

Using these identities it is straightforward to obtain the
following hierarchy of coupled equations,

d

dt
[〈q〉(t)] = 〈(pq + qp)〉(t), (3.46)

d

dt
[〈(pq + qp)〉(t)] = 2〈p2〉(t) − 2�2 〈q2〉(t)

+
∫ t

0

[
2C(t − t1) 〈q2〉(t1) + S(t − t1)

×〈(pq + qp)〉(t1)]dt1 + f (t), (3.47)

d

dt
[〈p2〉(t)] = −�2〈(pq + qp)〉(t)

+
∫ t

0
[C(t − t1) 〈(pq + qp)〉(t1)

− 2�2 S(t − t1) 〈q2〉(t1)]dt1 + h(t), (3.48)
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where

C(t − t1) = i[g>(t − t1) − g<(t − t1)] cos[�(t − t1)], (3.49)

S(t − t1) = i[g>(t − t1) − g<(t − t1)]
sin[�(t − t1)]

�
, (3.50)

with f (t) and h(t) given by Eqs. (3.32) and (3.33), respectively.
The set of integro-differential coupled equations, Eqs. (3.46)–
(3.48), can be turned into an algebraic system of three
inhomogeneous coupled equations with three unknowns by
Laplace transform. The time evolution of the individual
expectation values is then obtained by performing the inverse
transform. If a stationary state emerges asymptotically, the
equal time correlation functions become independent of time,
therefore in the asymptotic long time limit the inverse Laplace
transform of the equal time correlation functions is dominated
by an isolated pole at s = 02 (Laplace variable). Obtaining the
Laplace transforms and solving the resulting inhomogeneous
algebraic system is straightforward. However, finding the
poles, and in particular the isolated pole at s = 0 that yields
the asymptotic long time behavior is not. Instead, we propose a
method that systematically yields a derivative expansion and,
as argued below, under the assumption that asymptotically
there emerges a stationary state, it gives the exact asymptotic
behavior of the equal time correlators. Consider the following
generic term in the memory integrals in the above expressions,

I (t) =
∫ t

0
K0(t ; t1)〈O 〉(t1)dt1, (3.51)

and write

K0(t ; t1) = d

dt1
K1(t ; t1); K1(t ; t1)

≡
∫ t1

0
K0(t ; t2) dt2; K1(t ; 0) = 0. (3.52)

Then

I (t) = K1(t ; t) 〈O 〉(t)

−
∫ t

0
K1(t ; t1)

d

dt1
[〈O 〉(t1)] dt1. (3.53)

Repeating the procedure and writing,

K1(t ; t1) = d

dt1
K2(t ; t1); K2(t ; t1)

≡
∫ t1

0
K1(t ; t2) dt2; K2(t ; 0) = 0, (3.54)

the integral in (3.53) is again performed by integration by parts
with the result,

I (t) = K1(t ; t) 〈O 〉(t) − K2(t ; t)
d

dt
[〈O 〉(t)]

+
∫ t

0
K2(t ; t1)

d2

dt2
1

[〈O 〉(t1)]dt1. (3.55)

Iterating this procedure one finds

I (t) = K1(t ; t) 〈O 〉(t) − K2(t ; t)
d

dt
[〈O 〉(t)]

+K3(t ; t)
d2

dt2
[〈O 〉(t)] + · · · , (3.56)

with

K1(t ; t) =
∫ t

0
K0(t ; t1) dt1, (3.57)

K2(t ; t) =
∫ t

0
dt1

∫ t1

0
K0(t ; t2) dt2, (3.58)

K3(t ; t) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
K0(t ; t3) dt3, (3.59)

... = .... (3.60)

In order to understand the physical nature of this expansion,
consider the kernel,

K0(t ; t1) = i[g>(t − t1) − g<(t − t1)] ei�(t−t1), (3.61)

whose real and imaginary parts yield C(t − t1) and S(t − t1)
in Eqs. (3.49) and (3.50), respectively, which enter in the
hierarchy of Eqs. (3.47) and (3.48). With the result (B1) in
Appendix B we find

K1(t ; t) = γ �2

(� − i�)
[1 − e−�t ei�t ], (3.62)

K2(t ; t) = γ �2

2(� − i�)2
[1 − e−�t ei�t (1 + (� − i�)t)].

(3.63)

Therefore, it is clear that for t 
 1/�, the kernels
K2(t ; t),K3(t ; t) · · · that multiply the derivatives involve
higher powers of 1/�, namely, the time scale of relaxation of
the bath degrees of freedom. Using these results for C(t − t1)
and S(t − t1), we now write (3.47) and (3.48) in the derivative
expansion,

d

dt
[〈(pq + qp)〉(t)] = 2〈p2〉(t) − 2(�2 − C1(t ; t)) 〈q2〉(t) + S1(t ; t) 〈(pq + qp)〉(t) + f (t) + 2 C2(t ; t)

d

dt
[〈q2〉(t)]

+ S2(t ; t)
d

dt
[〈(pq + qp)〉(t)] + · · · , (3.64)

d

dt
[〈p2〉(t)] = −(�2 − C1(t ; t))〈(pq + qp)〉(t) − 2�2 S1(t ; t) 〈q2〉(t) + h(t) + C2(t ; t)

d

dt
[〈(pq + qp)〉(t)]

− 2�2 S2(t ; t)
d

dt
[〈q2〉(t)] + · · · , (3.65)

2If a singularity at s = 0 is not isolated but is the end point of a branch cut, the correlations will vanish asymptotically with long time tails.
The exact solution of Sec. II shows the emergence of an asymptotic stationary state exponentially.
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C1(t ; t) = α(t); S1(t ; t) = β(t), (3.66)

where α(t) and β(t) are given by (3.23) and (3.24), respectively. For �t 
 1; � 
 � we find

C1(t ; t)−−−−−−−−→
�t
1,�
�

γ�; C2(t ; t) −−−−−−−−→
�t
1,�
�

γ ; S1(t ; t) −−−−−−−−→
�t
1,�
�

γ ; S2(t ; t) −−−−−−−−→
�t
1,�
�

γ

�
, (3.67)

and the dots stand for (higher) derivative terms. Under the assumption that at asymptotically long times the reduced density
matrix describes a stationary state with equal time correlation functions independent of time, all derivative terms in the above
equations vanish asymptotically, and the derivative expansion yields the exact relation between the asymptotic values beyond
the Markov approximation with the Born approximation only, namely factorization. Therefore, any discrepancies with the exact
results must be identified as being a consequence of the Born approximation.

The equal time correlation functions in the asymptotic stationary state are obtained by setting to zero all derivatives in (3.46),
(3.64), and (3.65) leading to

〈(pq + qp)〉(∞) = 0, (3.68)

〈q2〉(∞) = h(∞)

2β(∞)�2
= 1

2�
coth

[
�

2T

]
, (3.69)

〈p2〉(∞) = �2
R 〈q2〉(∞) − f (∞)

2
= �2

R

2�
coth

[
�

2T

]
+ γ

{
T

�
+ 1

π
Re

[
�

(
�

2πT

)
− �

(
i�

2πT

)]}
. (3.70)

In the high temperature classical limit T 
 � 
 �R,γ , we
find

〈p2 〉(∞) = T

[
1 − γ�

�2
+ · · ·

]
, (3.71)

〈 q2 〉(∞) = T

�2
[1 + · · · ] = T

�2
R

[
1 − γ�

�2
+ · · ·

]
, (3.72)

where the relation (2.33) has been used. In the limit � 
 T 

�,γ the result (3.70) becomes

〈p2〉(∞) = T
[
1 − γ�

�2
+ γ

πT
ln

[ �

2πT

]
+ · · ·

]
, (3.73)

where the dots stand for subleading contributions, and we
have used the relation (2.33) between the renormalized and
bare frequencies. We emphasize that we are considering the
full non-Markovian evolution of the reduced density matrix;
the only approximation is the Born (or factorization) approx-
imation, but the evolution keeps the memory in the quantum
master equation. Comparison of the above results to the exact
ones in the high temperature limit, (2.42) and (2.45) reveals
important differences. We first note that in agreement with
the exact result (2.45), now the logarithmic enhancement is in
〈p2〉; the main discrepancies in the high temperature limit can
be seen comparing (2.42) with (3.72) in the high temperature
limit and the first two terms in the bracket in (3.73) compared
to those in Eq. (2.46). It is clear that the results obtained with
the exact Heisenberg-Langevin equations agree with those
obtained with the Born–non-Markov quantum master equation
when γ /�R � 1 and γ�/�2 � 1. We note also that whereas
the exact result (2.41) depends solely on the renormalized
frequency, the Born–non-Markov result (3.69) depends on the
bare frequency. The differences between the exact results and
those obtained with the Born–non-Markov quantum master
equation can only originate in the system-bath correlations
that are missed by the Born approximation (factorization). The
analysis above shows that these correlations yield corrections

of order γ�/�2. These can be substantial when �/� 
 1
even in the weak coupling limit γ /� � 1.

A. Comparison: Exact vs Born-Markov, vs Born–Non-Markov

We now summarize the comparison between the exact
solution and those obtained from the quantum master equation
with the Born approximation with and without the Markov
approximation.

B. Equation of motion

The equation of motion for the expectation value 〈q〉(t)
obtained in the Born–Non-Markov case (3.43) coincides with
the expectation value in the initial density matrix of the exact
solution of the Heisenberg-Langevin Eq. (2.10) because the
average of the noise term vanishes. For the Markovian case
the equation of motion (3.25) differs from the exact and non-
Markovian versions at early time, but its solution for �t 
 1
coincides with that of the exact and non-Markovian cases.

C. Equal time correlation functions

Comparing the equal time correlation functions obtained
from the quantum master equation in the Born approximation
in the asymptotic stationary state we find remarkable differ-
ences between the Markov and non-Markov approximation
that originate in the memory in the non-Markov case. Consider
〈q2〉(∞) and 〈p2〉(∞): The results with the Markov approx-
imation are given by (3.35) and (3.34), respectively, whereas
the results obtained by keeping the memory (non-Markovian)
are given by (3.69) and (3.70), respectively.

The difference between the Markovian (M) and the non-
Markovian (NM) asymptotic results yield a quantitative
measure of the memory effects. In the high temperature regime
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for T 
 � 
 �,γ we find

〈p2〉NM(∞) − 〈p2〉M (∞) = −T

[
γ�

�2
+ · · ·

]
, (3.74)

〈q2〉NM(∞) − 〈q2〉M (∞) = − T

�2
R

[
γ�

�2
+ · · ·

]
, (3.75)

while for � 
 T 
 �,γ we find

〈p2〉NM(∞) − 〈p2〉M (∞)

= −T

(
γ�

�2

) [
1 − �2

πT �
ln

[
�

2πT

]
+ · · ·

]
, (3.76)

〈q2〉NM(∞) − 〈q2〉M (∞)

= − T

�2
R

(
γ�

�2

)[
1 − �2

πT �
ln

[
�

2πT

]
+ · · ·

]
. (3.77)

In the expressions above the dots stand for terms O(γ 2). The
coefficients of the logarithmic terms are very small in the range
considered.

We conclude that in the high temperature limit the
main discrepancies in the correlation functions between the
non-Markovian and Markovian cases arising from memory
effects are (i) frequency renormalization since γ�/�2 =
1 − �2

R/�2, (ii) the logarithmic term ∝ ln[�/2πT ], although
this term is subleading because it is suppressed by γ /T � 1
compared to the first term.

The origin of the discrepancies between the Markov (M)
and non-Markov (NM) results in the asymptotic long time limit
within the Born approximation can be traced to the difference
between Eq. (3.31) and the first line in Eq. (3.65). In the
Markov approximation the density matrix ρr is evaluated at
time t and the averages are defined with this time argument.
Therefore the relations (3.20) and (3.21) must be used to
express the interaction picture operators with argument t1 in
terms of those with arguments at time t . In the non-Markov
case ρr is at time t1, therefore the operators at time t must be
related to those at time t1 by the relations (3.44) and (3.45).
This also explains the change in sign in the term proportional
to 〈(pq + qp)〉 in Eqs. (3.30) and (3.64).

We have argued above that within the Born approximation
in the non-Markov case, the equal time correlation functions
in the asymptotic stationary state are exact. Therefore any
differences with the exact results obtained from the solution
of the Heisenberg-Langevin equation are a consequence of the
Born approximation.

Comparing the results of the non-Markov (NM) case
[(3.69) and (3.70)] with the exact (E) results in the high
temperature limit [(2.42), (2.45), and (2.46)] also shows
important discrepancies, in both cases T 
 � 
 �,γ and
� 
 T 
 �,γ ,

〈p2〉E(∞) − 〈p2〉NM(∞) = T
[γ�

�2
+ · · ·

]
, (3.78)

〈q2〉E(∞) − 〈q2〉NM(∞) = T

�2
R

[γ�

�2
+ · · ·

]
. (3.79)

Therefore the reliability of the Born approximation in the
high temperature limit requires the following two conditions,

γ

�
� 1 and

γ�

�2
� 1. (3.80)

The first is the usual weak coupling condition, the second
is a new condition; it is equivalent to |�2

R − �2| � �2 and
is much more restrictive since a “coarse grained” effective
description of the system requires a wide separation of scales,
with �/� 
 1. This analysis shows that the discrepancies
between the exact correlations and those obtained in the Born
approximation are ∝ γ�/�2 and (γ /T ) ln [�/2πT ], leading
to the central conclusion that the system-bath correlations
that are missed in the Born approximation contain these
�-dependent terms.

This analysis is confirmed by a numerical study of the
Markovian and non-Markovian correlations displayed in
Figs. 1 and 2, respectively. These figures display the ratios
of the correlations to the exact results in the stationary
limit as a function of the bandwidth for various values of
temperature, both in units of �R , for γ /�R = 0.001; 0.005 as
representatives of the weak coupling regime. For example,
in Ref. [20] the Q factor is Q ≡ �R/γ ≈ 215. Weaker
couplings yield smaller corrections both in the Markovian
and non-Markovian cases. We confirm numerically that the
largest contribution to the discrepancies with the exact results
arise from the frequency renormalization (2.33) whereas the
logarithmic corrections are subleading for weak couplings in
the range of bandwidths and temperatures that are physically
relevant for the experimental settings with large Q factors.
The explicit comparison between the ratios in the Markovian
and non-Markovian cases confirms the results (3.74)–(3.77)
which, for weak couplings are dominated by the first terms in
the brackets, namely frequency renormalization.

D. Counterterms?

Within a renormalized perturbative approach the term
�2 q2/2 in the system’s Hamiltonian (2.2) is written as
�2

R q2/2 + δ�2 q2/2 where δ�2 = �2 − �2
R is a counterterm

included in the interaction Hamiltonian and is required to
cancel the � dependence of the self-energy systematically
in perturbation theory. In this approach, in the interaction
picture the system’s degrees of freedom evolve in time with
�R . Obviously this is not necessary in the exact treatment with
the Heisenberg equations of motion, where the full self-energy
combines with the bare frequency to yield the exact solution
solely in terms of the renormalized frequency. In the quantum
master equation approach, the interaction Hamiltonian in the
interaction picture is now

HI (t) = 1
2 δ�2 q2(t) − q(t) ξ (t), (3.81)

instead of (3.3), and q(t) is given by (3.4) with � → �R . The
relation (2.33) indicates that δ�2 = γ� is of second order in
the system-bath coupling.

Following the steps leading to Eq. (3.6) we immediately see
that including the counterterm into the interaction Hamiltonian
does not resolve the discrepancy: Taking the trace over the
bath degrees of freedom, the first term in Eq. (3.6) no
longer vanishes and yields a contribution that depends on the
initial value, as it manifestly depends on ρSB(0). Secondly,
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FIG. 1. Markovian case. The ratios 〈q2(∞)〉M
〈q2(∞)〉E ≡ Qm/Qe, and 〈p2(∞)〉M

〈p2(∞)〉E ≡ Pm/Pe, for γ = 0.001,0.005 vs � for various temperatures.
γ,�,T ,� are in units of �R . At high temperatures the ratios approach 1.

in perturbation theory the quadratic term in HI in (3.6)
would yield a term proportional to (δ�2)2 ∝ γ 2 whereas the
system-bath interaction yields a term ∝ γ . A term that is linear
in δ�2 must vanish because it originates in a cross term linear
in ξ which vanishes upon tracing over the bath degrees of
freedom. In conclusion, treating the difference between the
renormalized and bare frequencies in terms of a counterterm
Hamiltonian does not lead to a resolution of the discrepancies
between the exact results from the Heisenberg-Langevin
solution and those from the quantum master equation in the
Born approximation with or without the additional Markovian
assumption. Furthermore, such counterterm does not address
the issue of the system-bath correlations neglected in the Born
approximation. As discussed above, the Born–non-Markov
quantum master equation is exact within the factorization
approximation and discrepancies with the exact result must
originate in the factorization approximation. This is discussed
in detail below.

IV. SYSTEM-BATH CORRELATIONS

The Born–non-Markov quantum master equation with
memory only invokes the Born factorization, and, as shown
above, within the factorization approximation only the asymp-
totic long time limit yields the exact equal time correla-
tion functions under the assumption of a stationary state.
Therefore, any discrepancy between the results of the Born–

non-Markov quantum master equation and the exact solution
of the Heisenberg-Langevin equations of motion for the
asymptotic equal time correlation functions must originate
in the factorization approximation. The approximation (3.11)
neglects correlations between the system and the bath,
which is justified when the system-bath interaction is weak,
namely, γ /�R � 1. Therefore discrepancies between the
exact Heisenberg-Langevin and Born–non-Markov results are
expected to be of O(γ /�R). However, the analysis above
reveals that the corrections are indeed of this order but
enhanced by large factors �/� and ln[�/T ] for � 
 T 

�R,γ . These large enhancements suggest that the factorization
implied by the Born approximation is missing important and
large correlations between the system and the bath degrees of
freedom. Although it is difficult to identify systematically the
terms that are being neglected in the factorization (3.11), the
exact solution of the Heisenberg-Langevin Eq. (2.10) allows
us to quantify the reliability of the factorization by studying
the correlation between the system and bath variables.

The system’s coordinate couples to the collective degree of
freedom of the bath B = ∑

k CkQk; the correlation between
the system’s coordinate and this collective bath variable is
precisely the interaction energy (2.4). Therefore, we study the
system-bath correlation by focusing on

〈HSB(t)〉 = −〈 q(t)B(t) 〉; B(t) =
∑

k

CkQk(t), (4.1)
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FIG. 2. Non-Markovian case. The ratios 〈q2(∞)〉NM
〈q2(∞)〉E ≡ Qnm/Qe, and 〈p2(∞)〉NM

〈p2(∞)〉E ≡ Pnm/Pe, for γ = 0.001,0.005 vs � for various
temperatures. γ,�,T ,� are in units of �R .

where q(t) and Qk(t) are the exact Heisenberg operators which
are the solutions of Eqs. (2.5) and (2.6), namely. (2.18) and

B(t) = ξ (t) −
∫ t

0
�(t − t ′)q(t ′)dt ′. (4.2)

To obtain (4.2) we used Eqs. (2.7,2.13) and (2.11) and the fact
that the average in (4.1) is in the initial density matrix (2.22).
Since q(t) is given by (2.18), we write

q(t) = qξ (t) + q0(t); B(t) = Bξ (t) + B0(t), (4.3)

with

qξ (t) =
∫ t

0
G(t − t ′)ξ (t ′) dt ′, (4.4)

q0(t) = Ġ(t)q(0) + G(t)p(0), (4.5)

Bξ (t) = ξ (t) −
∫ t

0
�(t − t ′)

∫ t ′

0
G(t ′ − t ′′)ξ (t ′′)dt ′dt ′′,

(4.6)

and

B0(t) = −
∫ t

0
�(t − t ′)[Ġ(t ′)q(0) + G(t ′)p(0)] dt ′. (4.7)

Because 〈〈 ξ 〉〉 = 0, the cross terms in the correlation function
vanish, and we find

〈 q(t)B(t) 〉 = 〈 q0(t)B0(t) 〉 + 〈〈 qξ (t)Bξ (t) 〉〉. (4.8)

Since 〈〈ξξ 〉〉 ∝ γ and � ∝ γ clearly this correlation
function—the interaction energy—is proportional to γ .

We are interested in the asymptotic limit t 
 1/γ ; in this
limit the first term in Eq. (4.8) vanishes since G(t) ∝ e−γ t/2,
and only the second term survives. Therefore, asymptotically,

〈 q(t)B(t) 〉 =
∫ t

0
dt ′ G(t − t ′)

[
〈〈 ξ (t ′)ξ (t) 〉〉

−
∫ t

0
�(t − t1)

∫ t1

0
G(t1 − t2)

×〈〈 ξ (t ′)ξ (t2) 〉〉dt1 dt2

]
. (4.9)

The evaluation of this expression is lengthy, but because we
want to understand the origin of the enhancement, we are only
focused on extracting the leading terms in the limit � 
 T 

�R,γ . We find that the leading contributions for � 
 T ,�R,γ

in the asymptotic limit yield

〈HSB (∞) 〉 = −〈 q(t)B(t) 〉 −−−→
t→∞

− γ

{
�

2W

[
coth

[
W + iγ /2

2T

]
+ coth

[
W − iγ /2

2T

]]
− 1

π
ln

[
�

2πT

]}
+ · · · ,

(4.10)
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where the dots refer to terms that are subdominant for
� 
 T ,�R,γ . For T 
 � 
 �R,γ the term ln(�/2πT ) is
replaced by ln(�/W ). Again we note that the exact expectation
value of the asymptotic interaction energy does not depend
directly on the bare frequency � but only on �R .

The expectation value of the interaction energy is propor-
tional to γ as expected but with proportionality factors that
become very large in the limit � 
 �R,γ . The leading and
next to leading order terms in the high temperature and weak
coupling limits T 
 �R 
 γ yield

〈HSB (∞) 〉 = −2T

(
γ

�R

) [
�

�R

]
×

{
1 − �2

R

2π T �
ln

[
�

2πT

]
· · ·

}
, (4.11)

where we highlighted the dependence on the two dimension-
less ratios: γ /�R that determines the weak coupling regime,
and γ�/�2

R along with the enhancement from the terms
�/�R and ln[�/T ].

Although we cannot establish a direct link between the in-
teraction energy and the corrections to the Born approximation
(factorization) in the time evolution of the density matrix, the
� dependence of the interaction energy suggests that these
correlations are responsible for the discrepancy between the
exact result for the equal time correlation functions from
the Heisenberg-Langevin equations and those from the Born
Markov and non-Markov quantum master equations.

A. Energy flow

The exact solution also allows us to study how energy
is transferred between the bath and the system upon time
evolution; the system plus bath form a closed composite
system, and energy is conserved. For the expectation value
of the Hamiltonian in the initial state (2.22), consider the case
ρS(0) = (|0〉〈0|)S so that

〈H 〉 = �

2
+

∑
k

Wk

2
coth

[
Wk

2T

]
; 〈HSB 〉 = 0. (4.12)

This expectation value is time independent therefore the
total change in the expectation value of HS(t) and HSB(t)
compensate for the total change in the bath internal energy.
Asymptotically, we find for changes in the system and
interaction energies,

�ES = 〈HS(∞) 〉 − 〈HS(0) 〉 = 1
2 〈p2〉 + 1

2

(
�2

R + γ�
) 〈q2〉

− 1
2

(
�2

R + γ�
)1/2

, (4.13)

�ESB = 〈HSB (∞) 〉, (4.14)

where 〈p2〉,〈q2〉,〈HS(∞) 〉 are given by Eqs. (2.43), (2.41),
and (4.10), respectively, and we have written the system’s
energy in terms of �R since the exact solution of the
Heisenberg-Langevin equation depends solely on the renor-
malized frequency.

We note that the contribution from 〈p2〉 [Eq. (2.43)]
includes the contribution ∝ γ ln[�/T ] and the term γ� 〈q2〉
includes a term ∝ γ�/W coth[(· · · )] from (2.41), these are
precisely the terms shown in (4.10).

Energy conservation entails that the change in the internal
energy of the bath is �EB = −(�ES + �ESB). The condition
that the bath remains in thermal equilibrium at a fixed
temperature implies that its internal energy EB 
 �EB ,
although a specific calculation requires a definite dispersion
relation for Wk . Consider the classical limit with equipartition
and EB = NT , with N being the number of degrees of
freedom of the bath. The condition for |�EB |/EB � 1 then
requires thatN 
 γ�/�2

R . On physical grounds it is expected
that � ∝ N hence for sufficiently weak coupling γ /�R � 1
this condition is likely to be always fulfilled and the bath
remains in thermal equilibrium. A firmer assessment requires
a model for the Wk of the bath oscillators.

B. Experimental settings

In experimental settings the strength of the coupling is
measured by the mechanical quality factor Q = �/γ , with a
weak coupling regime corresponding to Q 
 1. The stability
condition (2.35) implies that

�

�
< Q, (4.15)

whereas the conditions for the validity of the Born approxima-
tion (3.80) imply both Q 
 1 and

�

�
� Q. (4.16)

On the other hand, after renormalization an effective descrip-
tion of the dynamics of the system’s degrees of freedom
should be insensitive on the dynamics of the high frequency
components of the bath when � 
 �. Therefore a “coarse
grained” description of the dynamical evolution of the system’s
degrees of freedom consistent with the Born approximation
requires that

1 � �

�
� Q. (4.17)

Reference [20] studies the amplitude response of a mechanical
resonator to thermal driving. The response is determined by the
spectrum of the cavity output Eq. (4) in this reference, which is
identified with the frequency dependent integrand in Eq. (2.39)
in the high temperature limit with coth[ω/2T ] 
 2T/ω.
The experimental settings in the study of micromechanical
Brownian motion reported in Ref. [20] correspond to � =
2π × 914 kHz and Q 
 215 which implies a weak coupling
to the environment. Figure 2 in this reference shows the
response spectrum vs frequency and prominently displays a
resonance. Identifying the position of this resonance with �R

(�(∞) in Ref. [20]) in the weak coupling limit [see Eq. (4) in
[20]], inspection of the numerical value of the position of the
resonance suggests that in this experiment,

|�2 − �2
R|/�2 � 1. (4.18)

If the Drude-Ohmic model described this experiment, the
result (4.18) would immediately yield γ�/�2 � 1. However,
the main conclusion of this reference is that the spectrum of
the bath σ (ω) fit within a broad window around the resonance
yields σ (ω) ∝ ω−2.30±1.05. With the caveat that the measured
spectrum is not of the Drude-Ohmic form, at least within this
broad region of frequencies, it seems that the experimental
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values of the parameters in this experiment would justify using
a Born (and Markov) approximation, although in Ref. [20]
non-Markovianity is associated with a non-Ohmic (in this case
sub-Ohmic) spectral density near the resonance.

In Ref. [57] a micromechanical oscillator is coupled to a
microwave cavity to resolve the quantum vacuum fluctuations
of the oscillator degrees of freedom. In this setting � =
2π × 15.9 MHz and the mechanical Q factor is Q = 105. This
is a very weakly coupled system, and although Ref. [57] does
not include an experimental value for �, or the difference
between the bare and renormalized mechanical frequencies,
the constraint �/� � 105 yields � � 107 MHz leaving
ample room to satisfy the conditions of validity for the
Born approximation. Hence, the conditions for the validity
of the the quantum master equation (either Markovian or
non-Markovian) are likely fulfilled, and the Born quantum
master equation may be well suited to study the dynamics in
this case.

Recently Ref. [58] reported on novel designs for on-
chip mechanical resonators for quantum optomechanical
architectures with mechanical quality factors Q 
 108 which
are sufficiently large to enter the quantum optomechanical
regime at room temperature. This setting corresponds to the
micromechanical resonators being very weakly coupled to the
environment, with � 
 1 MHz, again allowing a large range
with �/� � Q for the validity of the Born approximation.

V. NON-OHMIC BATHS

Although we have focused on an Ohmic bath with a Drude
spectral density, which allows an exact analytic solution of the
Heisenberg-Langevin equations, the analysis presented above
allows us to extrapolate some of the results to more general
cases and draw more general conclusions. Following Ref. [2]
let us consider the general case,

σ (ω) = γω

∣∣∣∣ ω

ω0

∣∣∣∣k−1

f (|ω|/�), (5.1)

where ω0 is a reference frequency taken to be different from
the cutoff scale � (in Ref. [2] this latter scale is identified
with a typical phonon frequency), and the dimensionless cutoff
function f (x) fulfills

f (x) 
 1 for x � 1; f (x) → 0 for x 
 1. (5.2)

The cases k < 1,k = 1,k > 1 correspond to sub-Ohmic,
Ohmic, and super-Ohmic, respectively, and we assume that
� 
 �R,γ . The cases with k � −1 yield an infrared divergent
�̃(s) and 〈q2〉 so we will focus on k > −13.

From the expression for the Green’s function (in Laplace
variable) given by (2.17) the renormalization condition, which
yields a (complex) pole in weak coupling is

�2
R = �2 + �̃(s = i�R), (5.3)

3The numerical fit to the data in Ref. [20] was evidently performed
within a range of frequencies near the position of the resonance; it
does not include the region with ω 
 0.

where �̃(s) is given by the spectral representation (2.15).
Therefore we find that(

�2
R − �2)/�2 
 −γ�

�2

(
�

ω0

)k−1

. (5.4)

The contribution to 〈p2〉 that diverges with � is found to be

〈p2〉 ∝ γ

k − 1

(
�

ω0

)k−1

(5.5)

(with a logarithmic divergence as k → 1). Hence for super-
Ohmic spectral densities the sensitivity to the cutoff scale
is much stronger. This entails more stringent conditions for
the validity of the Born-Markov approximation beyond the
usual weak coupling assumption γ /� � 1; for example, the
condition (3.80) now becomes

γ�

�2

(
�

ω0

)k−1

� 1, (5.6)

which for � 
 ω0 requires a much weaker coupling and
correspondingly larger Q.

VI. CONCLUSIONS

The quantum master equation plays a fundamental role in
theoretical and experimental studies of quantum open systems.
Its derivation often invokes the Born and Markov approxima-
tions, the first corresponding to a factorization of the (reduced)
density matrix of the system and that of the bath, which is
assumed to always remain at the initial value. The second
neglects memory effects. Both approximations are usually
justified for weak system-environment couplings. Motivated
by the theoretical and experimental relevance of the quantum
master equation, in this article we have studied the reliability
of these approximations within the framework of quantum
Brownian motion described by one mechanical oscillator (the
system) linearly coupled to a bath of harmonic oscillators in
thermal equilibrium. This is an important model for quantum
open systems with definite experimental realizations in cavity
optomechanics and nano- or micromechanical resonators. We
solved exactly the Heisenberg-Langevin equations of motion
for the degrees of freedom of the system and obtained the
corresponding correlation functions. We considered a Drude-
Ohmic spectral density for the thermal bath which allows us
to analytically obtain the exact correlation functions in the
asymptotic stationary state as functions of temperature T , the
mechanical relaxation rate γ , bare � and renormalized �R

oscillator frequencies, and � the bandwidth (cutoff) of the
bath, assumed to satisfy � 
 �,γ . The correlation functions
depend on �R but not directly on �. Within the Drude-Ohmic
model, stability and the existence of an asymptotic steady state
requires the condition,

�2
R > 0 ⇒ �2 > γ�,

and an effective long time description of the system’s dynamics
requires a separation between the time scale of the bath and
that of the system, namely � 
 �R .

In the high temperature limit T 
 �R,γ we recognize two
different regimes: (i) T 
 � 
 �R,γ , which is the classical
regime where 〈q2〉 and 〈p2〉 obey classical equipartition (in
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terms of �R), and (ii) � 
 T 
 �R,γ , in this regime there
emerge corrections to 〈p2〉 ∝ γ ln [�/2πT ], which, while
perturbatively small for γ /�R � 1, are enhanced by the
logarithmic dependence on the bandwidth of the bath.

We then obtain the quantum master equation in the Born
approximation and derive the equations of motion for expecta-
tion values and correlation functions both in the Markovian
and non-Markovian case. In the latter case we introduce
a systematic derivative expansion which yields the exact
correlation functions in the asymptotic stationary state within
the Born approximation. Comparing the correlation functions
obtained with the exact solutions of the Heisenberg-Langevin
equation and those obtained in the Born approximation with
and without the Markov approximation, we infer the conditions
under which the Born approximation is reliable. We find that
at least for the Drude-Ohmic case there are two conditions:

γ

�
� 1;

γ�

�2
� 1.

The first is recognized as the usual weak coupling condition,
but the second is a more stringent condition because for an
effective description to emerge there must be wide separation
between the time scale of the bath degrees of freedom ∝ 1/�

and that of the system ∝ 1/�, namely, � 
 �. We have
argued that differences in the asymptotic correlation functions
between the exact results from the Heisenberg-Langevin
solution, and those obtained with the Born–non-Markov
(keeping the memory) quantum master equation must be a
consequence of system-bath correlations being missed by
the Born approximation. We studied the interaction energy
as a proxy for the system-bath correlations and found that
the contributions that diverge as the cutoff � → ∞ are
precisely the �-dependent terms in the difference between
the correlation functions.

We have analyzed the above constraints as they apply to
recent experimental settings and found that in these cases, the

experimental values of parameters are consistent with both
conditions being fulfilled, suggesting that the Born quantum
master equation describes accurately the nonequilibrium dy-
namics in these experiments.

The study of the Drude-Ohmic model allows us to draw
more general conclusions for the cases of super-Ohmic,
Ohmic, and sub-Ohmic spectral densities. In particular, we
find that the second constraint, involving the bandwidth of
the bath becomes much more stringent in the super-Ohmic
case, suggesting that non-Markovianity and system-bath cor-
relations will play very important roles in these cases, even for
weak coupling.

Our results indicate that the conditions for the validity of the
Born approximation with or without the Markov approxima-
tion, are more stringent than the usual condition on the quality
factor of the mechanical oscillators Q = �/γ 
 1, which
is equivalent to weak coupling. The reliability of the Born
quantum master equation as a tool to analyze experimental
results hinges crucially on the second condition γ�/�2 � 1
or, alternatively, �/� � Q. The fulfillment of this condition
requires a detailed assessment of the experimental setting in
each case.

Understanding the dynamics of decoherence is one of the
main motivations in quantum open systems; the Heisenberg-
Langevin approach being an exact method to study correla-
tions should yield insight into the validity of Born-Markov
quantum master equations usually implemented to extract
decoherence rates. We expect to report on such study in a future
article.
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APPENDIX A: GREEN’S FUNCTION

Including the full expression for �̃(s) given by Eq. (2.31),

g(s) = s + �

(s2 + �2)(s + �) − γ�2
. (A1)

We write the denominator in (A1) as

(s2 + �2)(s + �) − γ�2 = (s − s1)(s − s2)(s − s3), (A2)

where s1,2,3 are the complex poles of g(s), these obey the following conditions that can be read off the definition (A2), namely,

s1 + s2 + s3 = −�, (A3)

s1s2 + s3(s1 + s2) = �2 ≡ �2
R + γ�, (A4)

s1s2s3 = −��2
R (A5)

where �2
R given by (2.33) is the renormalized frequency. In the formal limit � → ∞ the function g(s) is given by Eq. (2.32) the

denominator of which can be written as

s2 + �2
R + γ s = (s − s+)(s − s−); s± = −γ

2
±

√(γ

2

)2
− �2

R. (A6)

062108-16



HEISENBERG-LANGEVIN VERSUS QUANTUM MASTER . . . PHYSICAL REVIEW A 96, 062108 (2017)

We find the roots s1,2,3 in the limit of � 
 �,γ by choosing

s1 = s+ + O(1/�) ; s2 = s− + O(1/�), (A7)

and inserting into the constraints (A3)–(A5) we find

s3 = −� + γ + O(1/�). (A8)

Neglecting subleading terms in the limit � 
 �R,γ we find the inverse Laplace transform,

G(t) = γ

�2
e−�t + e−γ t/2 sin Wt

W
+ O(�R/�2,γ /�2); W =

√
�2

R − γ 2

4
. (A9)

The first term in (A9) not only is subleading (γ /� � 1; W/� � 1) but can also be neglected after a very short time scale
t 
 1/� � 1/γ,1/W . Therefore the first term in (A9) can be safely neglected and G(t) coincides with the solution (2.34) valid
for � 
 �R,γ .

APPENDIX B: INTEGRALS

With the Drude spectral density (2.28) we find

i[g>(τ ) − g<(τ )] = − i

π

∫ ∞

−∞
σ (ω) eiωτ = γ�2e−�τ ; τ > 0. (B1)

α(t) =
∫ t

0
i[g>(τ ) − g<(τ )] cos(�τ ) = γ�2 Re

[
1 − e−�τ ei�τ

� − i�

]
, (B2)

β(t) =
∫ t

0
i[g>(τ ) − g<(τ )]

sin(�τ )

�
= γ�2

�
Im

[
1 − e−�τ ei�τ

� − i�

]
, (B3)

g>(τ ) + g<(τ ) = 1

π

∫ ∞

−∞
dω σ (ω) coth

[
ω

2T

]
eiωτ , (B4)

with (2.28) and

coth

[
ω

2T

]
= 2T

ω
+ 4T

∞∑
l=1

ω

ω2 + ν2
l

; νl = 2πl T ; l = 1,2, · · · (B5)

the integral in (B4) is carried out by residues closing the contour in the upper half plane. We find

g>(τ ) + g<(τ ) = iγ�2 coth

[
i�

2T

]
e−�τ − 4γ�2 T

∞∑
l=1

νl

�2 − ν2
l

e−νlτ . (B6)

The integral,∫ t

0
dτ (g>(τ ) + g<(τ )) ei�τ = γ�2

{
i coth

[
i�

2T

]
[1 − e−�t ei�t ]

�2 + �2
(� + i�) − 4T

∞∑
l=1

νl

�2 − ν2
l

[1 − e−νl t ei�t ]

ν2
l + �2

(νl + i�)

}
.

(B7)
In the asymptotic long time limit we find

f (∞) =
∫ ∞

0
(g>(τ ) + g<(τ ))

sin(�τ )

�
= 2γ

{
− T

�
− 1

π
Re

[
�

(
�

2πT

)
− �

(
i�

2πT

)]}
, (B8)

where � is the di-Gamma function, and for � 
 � we find

h(∞) =
∫ ∞

0
(g>(τ ) + g<(τ )) cos(�τ ) = γ� coth

[
�

2T

]
. (B9)

Using the result (B6) we find for the symmetrized correlation function,

1

2
〈〈(ξ (t1)ξ (t2) + ξ (t2)ξ (t1))〉〉 = γ�2

[
i

2
coth

[
i�

2T

]
e−�|t1−t2| − 1

π

∞∑
l=1

l e−2πl T |t1−t2|(
�

2πT

)2 − l2

]
. (B10)

In the classical limit T 
 � this correlation function becomes

γ T � e−�|t1−t2| − 1

π
γ�2 ln[1 − e−2π T |t1−t2|]. (B11)
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For |t1 − t2| 
 1/2πT the second term can be neglected and in the formal limit � → ∞ the first term,

→ γ T δ(t1 − t2),

which is the usual form for the classical correlation function white noise.
The functions F (�/T,�R/T ,γ /T ) in Eq. (2.41) and I (�/T,�R/T ,γ /T ) in Eq. (2.43) are given by

F (�/T,�R/T ,γ /T ) = 1

4π3

(
�

2πT

) ∞∑
l=1

[
l

l2 − (
�

2πT

)2

1
(
l2 + (

�R

2πT

)2)2 − l2
(

γ

2πT

)2

]
. (B12)

I (�/T,�R/T ,γ /T ) = − 1

π

(
�

2πT

)2 ∞∑
l=1

[
l

l2 − (
�

2πT

)2

l3

(
l2 + (

�R

2πT

)2)2 − l2
(

γ

2πT

)2

]
− i

2
coth

[
i�

2T

]
. (B13)
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