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General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second
order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor
decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order
noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates.
This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a
complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner
distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates
paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous
results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum
optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
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I. INTRODUCTION

The Wigner distribution [1] of quantum mechanics is gener-
ically nonpositive. Hence, it cannot always be treated with
probabilistic sampling methods. These negative Wigner distri-
butions are caused dynamically by higher-order derivatives oc-
curring in their dynamical evolution equations [2]. As a result,
this issue is fundamentally related to the computational com-
plexity of quantum mechanics [3], Bell inequality violations,
and the problem of quantum simulation. It is one reason why
probabilistic sampling is nontrivial for quantum dynamics.

Positive extensions of the Wigner function are known to
exist [4–7]. These use dimension-doubled phase-space meth-
ods similar to the normally ordered positive-P distribution in
quantum optics [8,9]. This paper investigates the fundamental
question: Can one simulate these positive Wigner functions
probabilistically?

To answer this question, a theory of higher-order stochastic
differential equations (HSDE) equivalent to arbitrary multi-
variate partial differential equations is derived. This makes
use of fundamental results in tensor decomposition theory.
It extends previous work [10–14] by allowing the inclusion
of arbitrary cross-derivative terms and complex variables.
Methods for generating such higher-order noise are obtained.
These results provide a dynamical basis for the positive Wigner
function. The work unifies previous theoretical analyses in the
physics literature, including earlier results for one-dimensional
equations with higher-order polar noise [10,15] and Gaussian
product noise [11–13].

These results are a step towards developing stochastic
methods for Wigner functions. This would enable first-
principles Wigner quantum field simulations using proba-
bilistic sampling. Wigner representation methods have been
applied to physical problems [16,17] with the high-order
derivative terms truncated. This can cause errors [18,19],
because the resulting theory is of a hidden variable type,
closely related to stochastic electrodynamics. Proposals exist
for adding weighted random corrections [20,21], but these
can have sign problems with large numbers of modes. Other
alternative phase-space methods for comparison purposes
include the positive-P [9] and Gaussian [22] representations.

As a proof of principle, the HSDE method is applied
to the problem of nonlinear parametric downconversion.
This is used experimentally in quantum optics to generate
squeezed states [23] and Bell violations [24]. The higher-order
stochastic terms eliminate paradoxical results obtained when
the Wigner dynamics is truncated. The new higher-order
terms cancel unphysical vacuum depletion and third-order
correlation effects [19,25–28]. These are known errors caused
by Wigner truncation. Correct dynamical evolution is obtained
when higher-order noise is included, as is demonstrated here
with numerical simulations of coupled nonlinear parametric
systems.

The positive Wigner distribution [4–7] is part of a larger
class of Gaussian phase-space representations [22,29,30].
All such techniques may require higher-order derivatives,
depending on the Hamiltonian and dissipative terms in
nonlinear master equations, used for representing nonlinear
loss in Bose-Einstein-condensate (BEC) systems [31]. HSDEs
are therefore applicable to a variety of nonlinear physical
problems. While this paper studies the fundamental properties
of these equations, optimal numerical algorithms are still an
open question. Important issues include noise optimization and
stochastic gauge techniques that regularize instabilities in the
extended phase-space equations [32]. The ungauged results
obtained here are exact for constant coefficients but can only
give results for short times with nonlinear coefficients.

The paper is organized as follows. In Sec. II the multidimen-
sional Kramers-Moyal equation is introduced, together with its
stochastic equivalent. In Sec. III, the stochastic identities are
proved, together with a preliminary explanation of numerical
algorithms. In Sec. IV, techniques for generating higher-order
noise are explained. In Sec. V the positive Wigner function
is defined, together with numerical examples in physics.
Section VI gives a summary of the results.

II. MULTIVARIATE HIGHER-ORDER
STOCHASTIC EQUATIONS

The Wigner function of quantum mechanics [1,2] is an
example of a physical distribution equation that satisfies an
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equation of motion with derivatives of arbitrarily high order,
known as a Kramers-Moyal equation (KME) [33]. These
equations occur widely in quantum and atom optics. Similar
equations are found in many areas of physics and in other disci-
plines. Here a general KME is treated with cross derivatives of
arbitrary order. It will be shown that there are complex stochas-
tic processes that are equivalent to the KME solution in d real
or complex space dimensions. The advantage of stochastic
methods is that they are scalable to large numbers of modes.

A. Higher-order stochastic equations

This section will summarize the main results of the paper,
for the reader who wishes to see where the derivations are
heading. A diagonal case of a KME was treated in an earlier
article [14]. Here a general partial differential equation having
arbitrary spatial derivatives in d dimensions is treated. These
generalize the Fokker-Planck equation [34,35] to give an nth-
order tensor coefficient D

(n)
j [2,33], so that

∂f

∂t
=

nmax∑
n=1

(−1)n

n!

∑
j

⎡
⎣ n∏

μ=1

∂

∂xjμ

⎤
⎦D

(n)
j (x)f . (2.1)

The vector x is a d-dimensional real or complex coordinate,
and f = f (x,t) is the distribution function, which is in general
nonpositive. The total order of each derivative term is n, and the
sum over j = j1, . . . jn is a sum over all possible n-dimensional
vectors of indices. For complex coordinates, ∂/∂x and ∂/∂x∗
are treated as being independent, using Wirtinger calculus [36].

The stochastic process that corresponds to this equation
relies on an expansion of the tensor coefficients D

(n)
j into sums

of products of unary forms. A tensor can always be expanded
as a sum of outer products [37]:

D(n)(x) =
R∑

k=1

Mk∏
m=1

[b(n)(k,x)]⊗nm(k), (2.2)

where R is the number of different terms in the nth-order
expansion. Given an nth-order tensor, its rank r is the minimal
value of R. Here k = (k,m), and each vector b(k,x) enters
the expansion with an integer power nm(k) � 0. Since D(n) is
an nth-order tensor, it follows that

∑
m nm(k) = n for each

term in the expansion. Determining the tensor rank r for
large dimension d is an NP hard problem [38]. However,
the results obtained here do not require the rank. Nonminimal
decompositions are given in the following section.

The corresponding stochastic process is a sum over complex
random noises dw

(n)
k in the direction of each vector b.

In general, each noise is a vector and has a vector order
n = (n1, . . . nMk

). The stochastic process exists on a complex
extended space, z = x + iy, or a complex space with double
the dimension if it was originally complex, provided the
distribution over z has analytic moments. It is a sum over
n,k,m, with a different term for each n:

dz =
∑
n,k

b(n)(k,z)dw
(nk)
k , (2.3)

where b(n)(k,z) is an analytic continuation of b(n)(k,x).
The vector noises of different k and n indices are indepen-

dent. For the kth index there are M = Mk vector noise compo-

nents dw(n)
m with indices m = 1 . . . M , that are correlated. The

kth vector order, nk = n(k) = [n1(k), . . . nM (k)], identifies
the type of nth-order noise, dw(nk)

m . For integer powers p � 0,
the only nonvanishing analytic correlations of nth-order noise
are 〈

M∏
m=1

[
dw(n)

m

]pnm

〉
= dtp

(n!)pp!

M∏
m=1

(pnm)! . (2.4)

The most elementary noise of this type has n = (1, . . . 1),
which will be termed multicomponent first-order noise. Algo-
rithms that generate any dimension and order of these noises
are provided in Sec. IV.

B. Elementary examples

1. Drift

The most obvious case is for nmax = 1, when
D

(1)
j (x) = Aj (x) is called the drift vector. The decomposition

has one term with n = 1, so dw(1) = dt . This gives the
standard equation for characteristic solutions of a first-order
partial differential equation:

dz = Adt. (2.5)

2. Diffusion

The case with nmax = 2 corresponds to a normal Ito
stochastic differential equation [39,40]. One writes such
equations by taking a matrix square root. This factorizes the
diffusion matrix as D

(2)
ij (x) = ∑R

k=1 Bik(x)Bjk(x). This gives
the form of Eq (2.2) if one defines Mk = 1, n = n1 = 2, and
b

(2)
i (k) ≡ Bik(x). The noise is the usual Gaussian noise with

〈dwkdwk′ 〉 = dtδkk′, where dw ≡ dw(2), and hence,

dz = Adt + Bdw. (2.6)

If there is negative diffusion, one obtains a complex matrix B
[41]. In such dimension-doubled cases the equation may need
to be regularized using stochastic gauges to prevent power-law
distribution tails [42].

C. Higher-order stochastic equations

To give an understanding of higher-order stochastic meth-
ods, the approach will be illustrated with two different
tensor decompositions, where the coefficients are assumed
homogeneous.

1. Diagonal case

The first case considered is a generalization of the usual
matrix square root method used in stochastic differential
equations. Any diffusion tensor can always be made symmetric
and then expanded in diagonal form, as a sum of tensor powers
of rank-1 vectors:

D(n) =
R∑

k=1

b(n)(k)⊗n . (2.7)

Here, R � ranks(D(n)), which is the symmetric rank of D(n),
and may be greater than the full rank. This approach is
not always minimal [43] but it is simpler than the general
decomposition. In this case Mk = 1, as there is just one
vector in each decomposition, and n = n. Defining the
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matrix B(n) = [b(n)(1), . . . b(n)(R)] and the nth-order noise

vector dw(n) = (dw
(n)
1 , . . . dw

(n)
R )

T
, the following nth-order

stochastic equation is obtained:

dz =
∑

n

B(n) · dw(n) . (2.8)

Here the sum over decompositions k is treated as a matrix prod-
uct. The noise terms dw

(n)
k are independent nth-order noise

terms whose only nonvanishing correlations were obtained in
earlier work [10–14]:〈[

dw
(n)
k

]pn〉 = dtp(pn)!

(n!)pp!
. (2.9)

For third-order diffusion, this generalizes the Ito calculus
form of a stochastic equation [41] to give a third-order noise
equation in a complex extension of the real phase-space:

dz = Adt + B · dw + C · dv, (2.10)

Here, C ≡ B(3) = (b(3)(1),b(3)(2) . . .), while dv = dw(3) is a
diagonal third-order noise, and the diffusion tensor is expanded
as

D(3) =
R∑

k=1

[b(3)(k)]⊗3. (2.11)

The fundamental property of diagonal third-order noise [41]
is that

〈dvidvjdvk〉 = dtδikδij . (2.12)

While this allows a formal definition, taking the limit of dt →
0 is not as simple as it is for second-order noise. This issue
will be treated in later sections, with examples.

2. Off-diagonal case

An alternative expansion always exists even if a diagonal
factorization is not known. Terms of the same coordinate
derivative can be grouped together to give a diffusion tensor
that is not symmetric. This is also generally not a minimal
expansion, but it is simple to construct. For notational reasons,
powers with 0 � nm � n are allowed. Noises dw(n)

m with index
nm = 0 are set to zero, and it is assumed that 00 = 1.

The composite order of each derivative term is n = ∑
m nm,

where n = (n1, . . . nd ) describes the vectorial order of each
derivative. With this approach, each distinct vectorial order
gives a different tensor decomposition. Each vectorial order
then corresponds to a distinct term with different derivatives,
each labeled k = 1, . . . R in the tensor decomposition of
Eq. (2.2).

The vectors b(n)(k) = b
(n)
k x̂m are proportional to unit

vectors x̂m in the mth coordinate direction, and b
(n)
k = (Dj)1/n,

where j is the index of the kth nonvanishing tensor component.
As an example, if the only term is D

(3)
111, the corresponding

decomposition is such that the noise is of order n = 3, and

D(3) = D111 x̂⊗3 . (2.13)

This example shows the nonuniqueness of the decomposition.
This example could also be treated as three first-order
terms with a vector order n = (1,1,1), but the corresponding
stochastic equation is likely to be sampled less efficiently.

As another example, if the only term is D
(3)
112, there are

two correlated noises of vector order n = (2,1), with a
decomposition into orthogonal vectors of

D(3) = D112 x̂⊗2 ŷ . (2.14)

The KME now has a form in which derivatives are grouped
and summed over all R available derivative terms:

∂f

∂t
=

∑
n,k

1

n!

[
d∏

m=1

(
− ∂

∂xm

)nm

](
b

(n)
k

)n
f . (2.15)

In this case there is a corresponding higher-order stochastic
process with an equation of motion given explicitly by

dz =
∑
n,k

b(n)(k)dw
(nk )
k . (2.16)

In this approach, the noise type nk ≡ n(k) depends on the term
index k in the tensor expansion. It is notationally convenient
to introduce one noise term per coordinate direction, with the
convention that dwk,m = 0 in any direction such that nm = 0,
which means that the noise-type vector n can be read off
directly from the powers of the derivative terms in Eq. (2.15).

III. CHARACTERISTIC GREEN’S FUNCTION

To prove the higher-order stochastic differential equation
(HSDE) results given in Eq. (2.3), characteristic functions for
the KME and the corresponding stochastic process are equated.
This results in a path-integral solution, following standard
techniques first introduced by Wiener [44] and generalized
by many other workers [45–48] in applications to diffusion
processes.

A Green’s function g(x,�t |x′) in the original phase-space is
defined to satisfy Eq. (2.1), with a δ-function initial condition
of δd (x − x′), assuming constant or slowly varying diffusion
terms. Inserting the general decomposition expansion of
Eq. (2.2),

∂g

∂�t
=

∑
n,k,j

(−1)n

n!

⎡
⎣ n∏

μ=1

∂

∂xjμ

⎤
⎦{∏

m

[b(n)(k,x)]⊗nm

}
j

g .

(3.1)

The characteristic function for this is defined in the usual
way as an expectation of a Fourier transform with respect to
the difference coordinate, �xj = xj − x ′

j , so that if dx is a
d-dimensional volume element,

g̃(q,�t |x′) =
∫

dxg(x,�t |x′)eiq·�x . (3.2)

Two-dimensional example. As a simple example, consider
a two-dimensional homogeneous case. A single term of this
type might be

∂g

∂�t
= 1

2

∂

∂x1

∂

∂x2
b1b2g. (3.3)

After Fourier transforming, the resulting time-evolution
equation for the characteristic Green’s function in this simple
case is therefore

∂g̃

∂�t
= 1

2

∫
d2xeiq·�x ∂

∂x1

∂

∂x2
b1b2g . (3.4)
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Next, on partial integration, with the assumption of vanish-
ing boundary terms,

∂g̃

∂�t
= 1

2

∫
d2xb1b2g

∂

∂x1

∂

∂x2
eiq·�x

= 1

2

∫
d2xb1b2g(−q1q2)eiq·�x

= 1

2
(iq1b1)(iq2b2)g̃. (3.5)

A. Real-space path integrals

Having seen the technique in this simple case, the gen-
eralization to d dimensions is straightforward. For solutions
localized near x = x′

∂

∂�t
g̃ =

∑
n,k

(
1

n!

∏
m

[iq · b(n)(k)]nm

)
g̃ . (3.6)

The solution is given in the limit of �t → 0, by

g̃ =
∏
n,k

g̃(n,k)(q,�t |x′)

=
∏
n,k

exp

[
�t

n!

∏
m

[iq · b(n)(k)]nm

]
. (3.7)

By convolving successive Green’s functions, one can obtain
in principle a path-integral solution [45–48] in the original
phase-space, thus using a technique that is well known for
diffusion problems. Here we employ the simplest method
of integrating over initial values which gives an Ito type
of stochastic calculus [39], rather than more sophisticated
techniques that are used to obtain path integrals invariant under
coordinate transformations [48].

One can verify on differentiation that the finite-time
solution in the original space after time t = N�t is a path
integral over a set of multidimensional paths x(t), which are
discretized as (x(0), . . . x(N)) with x(t) = x(N), and

d[x] =
N−1∏
�=0

dx(�), (3.8)

so that, for an initial condition f (x(0)),

f (x,t) = lim
�t→0

∫
d[x]

(
N−1∏
�=0

g(x(�+1),�t |x(�))

)
f (x(0)) .

(3.9)

To sample this multidimensional integral using proba-
bilistic sampling is not generally possible in the original
space, irrespective of whether this limit actually exists or not.
The Green’s functions inside the integral, g(x,�t |x′), cannot
in general have a positive, probabilistic solution owing to
Pawula’s theorem [49]. Accordingly, x(t) is not a stochastic
path in the original d-dimensional space, since g is not
generally positive. Other methods can be used to define
higher-order paths [20,21], but these are not well understood
in arbitrary space dimensions.

B. Complex space path-integrals

The alternative that is utilized in this paper is to define
an equivalent complex space path-integral in a 2d (real)
dimensional space coordinate z, with volume measure dz. If
the original space had d real dimensions, it becomes complex
with d complex dimensions. If it was originally complex,
it is transformed to twice the original complex dimension.
A complex valued path integral may be used as another
alternative, although it is the positive, probabilistic case that is
treated here.

The path-integral equivalence is based on having equal
characteristic functions, so consequently, the doubled space
Green’s functions must have the same Fourier transforms in q
as the original Green’s functions. In the Wirtinger case, where
the space is originally complex, the two quasi-independent
Wirtinger variables [x,x∗] are mapped into two independent
complex paths, treated as single complex vector z of twice the
original complex dimension.

The finite-time complex path-integral solution is con-
structed using a positive initial distribution F0(z(0)), whose
moments are equal to the KME initial condition, f0(x):

F (z,t) =
∫ N−1∏

�=0

[dz(�)G(z(�+1),�t |z(�))]F0(z(0)) . (3.10)

The Fourier transform at each step is then

G̃(q,�t |z′) ≡
∫

eiq·(z−z′)G(z,�t |z′)dz , (3.11)

and this can be factorized to give the form

G̃(q,�t |z′) =
∏
n,k

G̃(n,k)(q,�t |z′) . (3.12)

From Eq. (3.7), the overall multidimensional characteristic
Green’s function is a product of terms g̃(n,k)(q,�t |x′). Each of
these can now be equated to a complex space Green’s char-
acteristic function G̃(n,k)(q,�t |z′) in d complex dimensions,
which is a Fourier transform of a complex propagator:

G̃(n,k)(q,�t |z′) ≡
∫

eiq·(z−z′)G(n,k)(z,�t |z′)dz . (3.13)

Each diffusion coefficient must therefore be analytically
continued into the complex plane in the case of variable
coefficients in order to have a path-integral solution that
equates the two moments at each point in time, while still
satisfying the characteristic function time-evolution equations.
This generates a positive, dimension-doubled distribution
with equivalent analytic moments to the original Wigner
distribution, provided the solution converges.

C. Stochastic noise moments

For an HSDE to be equivalent to the Kramers-Moyal
equation, the stochastic increments �z in a finite-time interval
must generate the same Green’s function after ensemble
averaging. From Eq. (3.11), this means that at each step one
must prove that, as �t → 0,

f̃ (q,t + �t) =
∫

G̃(q,�t |z′)eiq·z′
d z′f̃ (q,t)

=
∫

g̃(q,�t |x′)eiq·x′
dx′f̃ (q,t). (3.14)
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From Eq. (3.7), the complex characteristic Green’s function
G̃(q,dt |z′) is a product of independent Green’s-function terms
G̃(n,k)(q,�t |z′). In Eq. (2.3), the equivalent stochastic process
over this interval is postulated to be a sum of terms, one
for each (n,k) value in the tensor decomposition, so that
�z = ∑

n,k �z(n,k). A particular value of (n,k) is now treated in
order to define the stochastic increment �z(n,k) whose average
Fourier transform will generate the Green’s function. The two
approaches must generate the same characteristic function.
From Eq. (3.14), this means that the characteristic Green’s
functions must have equal Fourier transforms and hence equal
analytic moments in x′ and z′ respectively. Provided the
coefficients are analytic, and the relevant moments exist, this
means that for an initial location z′:

G̃(n,k)(q,�t |z′) = exp

[
�t

n!

∏
m

(iq · b(k,z′))nm

]

≡ 〈exp[iq · �z(n,k)]〉 . (3.15)

If each �z(n,k) is independent, then adding many stochastic
increments with different (n,k) values will generate a product
of Green’s functions, as required. The proof then proceeds as
follows. Both the Green’s function and the expectation value of
the stochastic increment are expanded as multinomials. Next,
a noise ansatz is proposed for the stochastic increment, �z(n,k).
Finally, this is inserted in the multinomial expansion so that it
can be checked to correspond to the required Green’s-function
value.

As the first step, the Green’s function after expansion has
the form

G̃(n,k)(q,�t) =
∞∑

p=0

1

p!

[
�t

n!

]p ∏
m

(iq · b(k,z′))pnm . (3.16)

Here p is an integer power from the expansion of an expo-
nential. The vector index k is defined as k ≡ (k,m), where k

identifies an independent additive term in the tensor expansion
of D

(n)
j , while m indexes multiplicative terms occurring in the

same tensor product. For ease of notation, let n = n(k), so nm

is the power of each term. From now on, the indices (n,k) are
understood implicitly where it helps to simplify the notation.

The stochastic increment �z = �z(n,k) is now assumed to
have the following properties as �t → 0, which will be shown
to give the required Green’s function:

(1)

�z(n,k) =
∑
m

�z(n,k,m) =
∑
m

b(k,z′)�w
(nk)
k,m,

(2) 〈∏
m

[
�w

(nk)
k

]pnm

〉
= �tp

(n!)pp!

∏
m=1

(pnm)! ,

(3) 〈∏
m

[
�w

(nk)
k

]Pm

〉
= 0 if Pm 
= pnm.

Defining Gs≡〈exp[iq · �z(n,k)]〉=〈∏m exp[iq ·
�z(n,k,m)]〉 and exchanging orders of product and

sum, where P = P1 . . . PM is a vector of powers in the M

exponential expansions, one has

Gs =
∑

p

〈∏
m

[iq · �z(k)]Pm

Pm!

〉
. (3.17)

Next, expanding using the first ansatz given above gives

[iq · �z(k)]Pm = [iq · b(k,z′)]Pm × [
�w

(nk)
k,m

]Pm
. (3.18)

This allows a separation of the stochastic and nonstochastic
elements, giving

Gs =
∑

p

{[∏
m

[iq · b(k,z′)]Pm

Pm!

]〈∏
m

[
�w

(nk)
k

]Pm

〉}
.

(3.19)

The stochastic expectation value of the ansatz is now
evaluated to determine if it matches the required solution for
a characteristic function. From the noise ansatz, only indices
such that Pm = pnm can give a nonzero moment. The result is
therefore a sum over integer powers p such that

Gs =
∑

p

{[∏
m

[iq · b(k)]pnm

(pnm)!

]
× �tp

(n!)pp!

∏
m

(pnm)!

}

=
∑

p

�tp

(n!)pp!

∏
m

[iq · b(k)]pnm. (3.20)

This shows that Gs = G̃(n,k)(q,�t), as required. The higher-
order stochastic noise generates the required characteristic
function after averaging, provided the relevant stochastic
moment equations are satisfied, and the analytic moments of
the distributions are well-defined.

D. Simulating Kramers-Moyal equations

Returning to the original KME problem of Eq. (2.1),
the results in the previous section show that the stochastic
moments do not depend on the type of tensor factorization for
an infinite averaging ensemble. The same third-order diffusion
could generate either a scalar n =(3) noise, a binary n =(2,1)
noise, or a ternary n =(1,1,1) noise vector, all with the same
b vectors. Provided each noise is generated with the correct
moments, the final ensemble average is independent of the
choice of tensor decomposition.

Nevertheless, for any finite ensemble, there will be nonzero
sampling errors, which are proportional to the distribution
variance. As a result, it is always more efficient to choose
the noise that generates the most compact distribution. This
optimization problem is closely related to the general problem
of determining a tensor rank, which also gives a minimal
decomposition. Compactness issues are examined next, in
Sec. IV.

Assuming that the expansion coefficients D(n)(x) are all
polynomials in x, then the problem of propagating a solution
to this equation reduces to a stochastic difference equation that
iterates a series of finite steps in time. For example, in the case
of a one-dimensional equation, one has

dz =
∑
n>0

[D(n)(z)] 1/ndw(n) . (3.21)
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With third-order noise in one space dimension, this reduces to

dz = D(1)(z)dt + [D(2)(z)]1/2dw(2) + [D(3)(z)]1/3dw(3) .

(3.22)

If the equations only have up to second-order terms, the
Kramers-Moyal equation is a generalized diffusion equation.
The above result then replicates an Ito stochastic equation,
including dimension doubling for cases of nonpositive-definite
diffusion. Dimension doubling can require further regulariza-
tion even with second-order noise due to power-law tails that
may occur in extended spaces, as described elsewhere [42].

Higher-order noise terms develop a larger variance as
�t → 0. On the other hand, lower-order terms involve more
nonlinearities. Given this situation, one useful strategy may be
to use a hierarchy of step sizes. If the lowest-order terms are
integrated with smaller step sizes than the higher-order terms,
this may reduce sampling error while still permitting a reduced
discretization error for the nonlinear terms.

As a result, while these methods are exact for con-
stant coefficients, the algorithms may need optimization for
nonlinear coefficients. An additional issue that occurs in
these cases is that the small time step limit of �t → 0 is
generally accompanied by an increased sampling error, so
that these limits do not commute. However, our purpose here
is to understand the fundamental properties of higher-order
complex noise in this general case.

The numerical examples given later show no convergence
problems over the range of step sizes used.

IV. HIGHER-ORDER NOISE GENERATION

In order to simulate these equations, one must generate
noises with the correct correlations. In this section, higher-
order noises of arbitrary vector order are shown to always exist.
From Eq. (2.4), each higher-order noise �w(n) is a vector of
M terms, with a corresponding order vector n, such that the
total order is

n =
M∑

m=1

nm . (4.1)

The noise increment can be written in terms of a dimensionless
random variate ζ (n), as

�w(n) = ζ (n)

[
�t

n!

]1/n

. (4.2)

The higher-order noise variate ζ (n) is defined as having
nonvanishing moments of〈∏

m

[
ζ (n)
m

]pnm

〉
= 1

p!

∏
m

(pnm)! . (4.3)

After scaling, these higher-order noise moments depend only
on the order vector n.

For order n > 2 the higher-order noises are nonunique.
Two different approaches are given here for multicomponent
higher-order noise: polar phase angle expansions and powers
of Gaussians. These methods provide direct ways to generate
the required random variables. However, noise of any compos-

ite order is always obtainable from multicomponent first-order
noise, although this may not be optimal.

A method of generating nth-order stochastic processes
using polar coordinates is obtained first. This requires random
variates with a γ distribution. An alternative is to use Gaussian
distributed variates. These may be faster to generate, as
Gaussian random variates have very efficient algorithms.

This section focuses on the case of multicomponent first-
order noise ζ (n1) with n1 = [1, . . . 1] so each component is of
first order, but M = n > 1. The overall order n is the sum of
the component orders, so this case includes higher-order noise
of arbitrary order. A more general vector noise of arbitrary
order is treated in the Appendix.

A. Multimode polar noise

The noise terms can be transformed into a random polar
angle θ (n)

m and a radial noise r (n)
m , so that

ζ (n)
m = r (n)

m exp
(
iθ (n)

m

)
. (4.4)

1. Angular noise

The random angles must have the property that for integer
powers P = (P1 . . . Pm):〈

M∏
m=1

exp
(
iPmθ (n)

m

) 〉 =
∑

p

δP,pn1 . (4.5)

The average is unity if P = pn1 for some power p, and zero
otherwise.

For the case of n1 = [1, . . . 1] the angular variables θm are
generated from n − 1 uniform random variates, 0 � um < 1:

θm = 2πum . (4.6)

The last term with m = n is then given by

θn = −
n−1∑
m=1

2πum , (4.7)

and hence one has
n∏

m=1

[
exp

(
iθ (n)

m

)]p = 1 . (4.8)

For any other moments with P 
= pn1, the expectation value
gives a complex circular average over the random noise term,
so that 〈

n∏
j=1

[
exp

(
iθ (n)

m

)]Pm

〉
= 0 . (4.9)

2. Multicomponent radial noise

The radial moment equations are〈
n∏

m=1

rp
m

〉
= (p!)n−1 . (4.10)

The γ distribution, γ (μ; α,β) = βαμα−1e−βμ/�(α), has nth
moments of

〈μn〉 = �(α + n)

βn�(α)
. (4.11)
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It reduces to the exponential distribution for α = 1, with
moments of n!/βn. In this special case the relevant γ dis-
tribution has unit shape and rate, which gives the exponential
distribution

γ (μi ; 1,1) = e−μi . (4.12)

The radial variables rm are fractional powers of products of
n − 1 exponentially distributed random variables:

rm = r =
[

n−1∏
i=1

μi

]1/n

. (4.13)

In this case, exponential distribution variates can be
efficiently calculated using the definition μ = − ln(u), where
u is uniformly distributed on (0,1). Recalling the familiar result
for exponential distributions, 〈μp〉 = p!, this gives the correct
radial moment result, since〈

M∏
m=1

rp
m

〉
=

〈
n−1∏
i=1

μ
p

i

〉
= (p!)n−1 . (4.14)

This means that for the M-dimensional first-derivative case,
there are 2(M − 1) uniform random variates required, with
M − 1 angular and M − 1 radial variates. In the n = 2 case this
construction is equivalent to generating a complex Gaussian
random variable and its conjugate. In this example, the noise
can be written as

ζ (1,1)
m = r (1,1)

m exp
(
iθ (1,1)

m

)
, (4.15)

where ζm is a complex Gaussian noise with unit variance and
correlations of 〈|ζ1,2|2p〉 = p!. It has an expansion of ζ1,2 =
(x ± iy)/

√
2. The random variables x,y are independent real

Gaussian noises with unit variance, x = √−2 ln(u′
1) cos (θ1)

and y = √−2 ln(u′
1) sin(θ1). This combination of two uniform

variates to generate a single complex Gaussian or two real
Gaussian random variates is the Box-Muller transformation
[50]. This is a known way to generate Gaussian variables in
pairs [51], used in numerical calculations.

B. Gaussian product noise

Next, Gaussian variates will be used to treat multimode
higher-order stochastic processes as an alternative to polar
decomposition. This method may be more convenient in that
it uses commonly available Gaussian random variables.

The case with n = (1, . . . 1) has nonvanishing indices that
correspond to products of single derivatives of different modes.
A model for nth-order noise generation is then

ζ (n1)
m = χ∗

mχm+1 [m � n], (4.16)

where χ1 = 1 = χn+1, and for 1 < i,j < n + 1, χi are inde-
pendent complex Gaussian noise variates such that 〈χiχ

∗
j 〉 =

δij . The lowest-order examples are as follows:
(1) One component: ζ (1) = 1.
(2) Two components: ζ

(1,1)
1 = χ , ζ

(1,1)
2 = χ∗.

(3) Three components: ζ
(1,1,1)
1 = χ2; ζ

(1,1,1)
2 = χ∗

2 χ3;
ζ

(1,1,1)
3 = χ∗

3 .
To have a nonvanishing moment requires the powers of all

noises to be equal, and also that all the noise terms must occur
in the overall moment, in order to obtain partnered terms like

〈[χ∗
i χi]

p〉 which are nonzero. Hence, the result matches the
radial moment requirements of Eq. (4.10), namely,〈

n∏
j=1

[
ζ (n1)
m

]p〉 =
n∏

j=2

〈[χ∗
mχm]p〉

= [p!]n−1 . (4.17)

C. Radial variance

As a point of comparison, it is useful to obtain a radial
variance of the noise distribution. This allows an estimate
of the sampling error, as more compact noise distributions
lead to a lower sampling error. This is highly dependent on
the vectorial order of the noise and on the method used to
generate the noise. In all cases investigated, the Gaussian and
polar methods lead to different radial variances for n > 2, with
lower radial variance for the polar method.

The radial variance of a given noise component is defined
as

σ 2 = 〈∣∣ζ 2
m

∣∣〉 . (4.18)

This is not an analytic moment, since it involves both ζm

and ζ ∗
m. As a consequence, it is not constrained by the

original moment equations, which only depend on the analytic
moments, and varies with the noise generation algorithm.

1. Polar method

For the scalar noise z(n), this result is known [14], and the
radius is a decreasing function of n:

σ 2
P (n) = 2

�(1 + 2/n)
. (4.19)

In the case of first-order multicomponent noise with n =
(1,1, . . .), one has that

ζm =
[

n∏
i=2

μi

]1/n

exp(iθm) . (4.20)

Defining the polar transformation variance as σ 2
P (n) = 〈|ζ 2

m|〉
gives the result that

σ 2
P (n) =

n∏
i=2

〈
μ

2/n

i

〉
= [�(1 + 2/n)]n−1. (4.21)

As an example, consider the strategy of generating nth-
order scalar noise from adding up n vector noise components.
If this algorithm is used, then since the noise variances add,

σ 2
1P (n) = n[�(1 + 2/n)]n−1 . (4.22)

For n > 2, this strategy is less compact than using the nth-order
scalar noise generated directly with a γ -function method, as
described in the Appendix.

2. Gaussian product method

In this case, each Gaussian in the product has an equal
variance. Therefore, the Gaussian product generation method
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TABLE I. Table of radial variances for polar noise [σ 2
P (n)] versus

Gaussian product (σ 2
G) generation of multidimensional higher-order

noise ζ (n) of order n, with vectorial order n = (1, . . . 1). For n > 2 the
polar noise distribution is more compact, which gives lower sampling
errors.

n 2 3 4 5 6

σ 2
P (n) 1 0.8149491 0.696041 0.6197422 0.5678158

σ 2
G 1 1 1 1 1

for higher-order noise gives a variance of

σ 2
G = 〈|ri |2〉 = 〈|χi |2〉〈|χi+1|2〉 = 1 . (4.23)

This result is compared with the polar method in Table I.
The most compact distribution is obtained using polar noise
methods. The table shows that for second-order noise, the
distribution radial variances are identical, as expected. How-
ever, polar third-order noise gives approximately 20% reduced
radial variance, and therefore a lower sampling error. This
difference is further increased when going to higher orders.

V. POSITIVE WIGNER FUNCTIONS

The Wigner function [1] has many applications in physics
and in other disciplines. It also has a well-known drawback:
It is not a positive probability, which led to a famous
correspondence involving Dirac, who was concerned about
the lack of positivity, and Moyal [52], who developed the
dynamical equations for the Wigner function. Indeed, Moyal
had hoped that this method would have a direct statistical
interpretation, although this is not the case.

A truncated version of the Moyal time-evolution equations
was introduced by Graham [53] and has been used in many
applications. This is generally positive and restricted to the
original phase-space. However, it is not equivalent to quantum
mechanics, because the truncated Wigner (TW) representation
is an approximate theory where the highest-order derivative
terms are truncated by using a 1/N expansion for N bosons
per mode.

Quantum field dynamical simulations [16,54] have been
carried out using this technique. These are in excellent
agreement with experimental measurements of quantum po-
larization squeezing using optical fibers [55], as well as with
nontruncated positive-P representation simulations [56,57].
This is due to the large mode occupation numbers used. While
TW simulations of Bose-Einstein condensates [16,58–62]
can be very useful, with low mode occupations and long
time-evolution, unphysical results including vacuum mode
depletion can occur [19,28].

There are many other recent applications of Wigner
function techniques, including recent work on the theory of
optomechanics [63,64], which allows accurate simulation of
these nonlinear coupled systems in regimes where quantum
effects are large. However, as all such quantum technologies
improve, there is increased interest in regimes of even greater
nonclassicality where the usual Wigner function is no longer
positive.

As a result, it would be useful to have a stochastic technique
for the Wigner function without truncating higher-order terms.
This requires a Wigner function that is complete and positive.
The existence of such a positive distribution is known from
studies that treated arbitrary s-ordered [65] positive represen-
tations [4–7], thus extending earlier work on the positive-P
function. These quantum operator representations are all
members of more general classes of Gaussian phase-space
representations [30].

Here, the properties of the positive Wigner function are
summarized. This is a symmetrically ordered phase-space
representation that is also a genuine probability for any
quantum state. This is only possible due to an extension of
its phase space to complex variables.

A. Definition

A positive Wigner distribution always exists on continuing
this phase space into a space of double dimension [4], using
similar techniques to those that prove a positive-P distribution
always exists [9]. The positive Wigner function P (x) is defined
by an expansion of the quantum density matrix using a
nonorthogonal operator basis:

ρ̂ =
∫

PW (x,p)�̂(x,p)d2xd2p . (5.1)

Here, (x,p) ≡ �x are independent complex variables. For
definiteness, this could be the Wigner function of a bosonic
quantum field, but our present arguments only require that
there is a set of d pairs of canonical operators x̂, p̂ with
commutators:

[x̂i ,p̂m] = ih̄δij . (5.2)

The volume measure on the resulting 2d-dimensional complex
phase-space variables is d2Mxd2Mp ≡ d �x. By contrast, in the
case of the usual Wigner function x,p are real, the volume
measure is restricted to a real phase-space, and the distribution
is generally not positive valued.

The basis function �̂(x,p) is a complete operator basis [30].
It is normalized such that

Tr[�̂(�x)] = 1 . (5.3)

If Tr[ρ̂] = 1, clearly the distribution is normalized and has the
interpretation of a probability density:∫

P (�x)d �x = 1 . (5.4)

The operational definition of P (�x) is through its character-
istic function

χ (�k) = Tr[ρ̂ei�k· �̂x] =
∫

PW (�x)ei�k·�xd �x. (5.5)

This allows us to obtain the basis element �̂(�x) through the
definition

�̂(�x) = 1

(2π )M

∫
d�kei�k·( �̂x−�x) . (5.6)

In order to understand how to obtain this, raising and lowering
operators â†,â, where â = (â1, . . . âd ), can be introduced. The
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commutators are

[âi ,â†j ] = δij ,

[âi ,âj ] = 0 . (5.7)

If one defines

â = λx + i(2h̄λ†)−1p , (5.8)

where λ is symmetric and invertible, the required conditions
are automatically satisfied. As a result, it is always possible
to express a Wigner distribution using raising and lowering
operators which correspond to a complex phase-space.

B. Complex equations

Kramers-Moyal equations are frequently expressed in terms
of vector complex variables α and their conjugates α∗. In
such cases, the derivation proceeds with essentially no change,
except that the derivatives with respect to α and α∗ are treated
as independent variables. The complex derivatives are written
(∂α1, . . . ∂α2M ) in the KME equation, where αM+i ≡ α∗

i , and
the K-M equation can be written as

∂f

∂t
=

∑
n

(−1)n

n!

∑
j

⎡
⎣ n∏

μ=1

∂

∂αjμ

⎤
⎦D

(n)
j (x)f . (5.9)

It is convenient to denote the corresponding stochastic complex
coordinates as (α1, . . . α2M ), except that αM+i 
= α∗

i . With
this notation, the above algorithm is directly applicable, with
the convention that the coordinate indices i now range from
1, . . . 2M:

dα =
∑
n,k

b(n)(k)dw
(nk)
k . (5.10)

This means that one must map the original complex
variables (α,α∗) to a dimension-doubled phase space labeled
�α = (α,β), where (α,β) are now two independent complex
variables, with equivalences of〈{

ân1
1

ân2
2

. . . â
†n̄1
1 â

†n̄2
2 . . .

}
SYM

〉 = 〈
αn1

1
αn2

2
. . . β

n̄1
1 β

n̄2
2 . . .

〉
.

(5.11)

Here the notation {}SYM refers to a symmetrically ordered
operator product.

C. Parametric downconversion

As a simple example, consider the problem of nonde-
generate parametric downconversion in a cavity. This is an
instructive dynamical problem of general interest. It is exactly
soluble in a special case treated here, as well as being a simple
prototype of more complex quantum wave-mixing problems.
The corresponding experimental method is now the standard
technique for generating correlated photon pairs in quantum
information.

This has been used in Bell inequality violation experiments
[24], quantum Einstein-Podolsky-Rosen paradoxes [66,67]
and entanglement. Thus, the problem is not without experi-
mental applications. Here, the simple case of a vacuum initial
condition is treated. This state must stay rigorously unchanged,
as the state is an eigenstate of the Hamiltonian. The vacuum

case is therefore an exactly soluble test for third-order noise.
Adding other terms or initial conditions is straightforward.

This is a case where the truncation of the third-order term in
the Wigner equation is known to predict highly unphysical and
paradoxical behavior. The resulting equations are equivalent
to stochastic electrodynamics (SED). This theory is a hidden
variable theory, sometimes proposed as an alternative to
quantum electrodynamics. The equations are known to predict
negative occupation numbers and an anomalous third-order
correlation.

The truncated result is, of course, incorrect, although this
approximation is still common and useful at large occupation
numbers. The full quantum equations, or other quantum
phase-space methods without truncation, do not predict any
vacuum depletion. Instead, they correctly and physically
predict that the occupation numbers and correlations remain
zero at all times. This is a sensitive test case for theories of
higher-order multidimensional noise.

What is the prediction of the time-evolved Wigner distri-
bution using third-order noise methods? How does it compare
with the truncated Wigner approximation?

The full quantum problem typically involves a master equa-
tion with decoherence, including pumping and loss terms. Here
unitary time-evolution is treated using the fundamental three-
wave-mixing Hamiltonian. This describes two low-frequency
modes, the signal (â1) and idler (â2), driven by a high-
frequency pump (â3). In an interaction picture, the dynamics
is completely described by the interaction Hamiltonian:

Ĥ = ih̄g[â†
1â

†
2â3 − â1â2â

†
3] . (5.12)

Using an effective time scale of τ = gt , the time evolution
of the Wigner function is described by the following Kramers-
Moyal equation:

∂W

∂τ
=

[
− ∂

∂α1
α∗

2α3 − ∂

∂α2
α∗

1α3 + ∂

∂α3
α1α2

+ 1

4

∂3

∂α1∂α2∂α∗
3

+ H.c.

]
W . (5.13)

Defining a third-order noise strength b = [−3/2]1/3, the
corresponding stochastic equations for the positive Wigner
function, with third-order noise, exists on a six-dimensional
complex or twelve-dimensional real space. The equations are

dα1 = β2α3dτ + bdw1

dα2 = β1α3dτ + bdw2

dα3 = −α1α2dτ + bdw̄1
(5.14)

dβ1 = α2β3dτ + bdw̄2

dβ2 = α1β3dτ + bdw̄3

dβ3 = −β1β2dτ + bdw3 .

Here, the two independent third-order noise terms are
dw, dw̄ . From inspection of the KME, these noises have
effective dimension M = 3, with vector order n = (1,1,1), and
overall order n = 3. Accordingly, the noise components are
labeled according to the reduced effective dimension indices.
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Their nonvanishing third-order correlations are given by

〈dw1dw2dw3〉 = dτ/6 ,

〈dw̄1dw̄2dw̄3〉 = dτ/6 . (5.15)

The initial correlations for a vacuum state simply correspond to
half a virtual quantum per mode, as normal for a symmetrically
ordered quantum-mechanical Wigner representation, so that

〈αiβj 〉 = 1
2δij . (5.16)

It is common to drop the third-order derivative term, which is
equivalent to setting b = 0 in the above stochastic equations.
This truncated Wigner approximation is valid at large occupa-
tion numbers. In the figures, third-order noise and TW results
are compared using two noise generators, the Gaussian and
polar types. All except the last two figures have 106 samples, a
step-size of �t = 0.01, and the equations are integrated with
a fourth-order Runge-Kutta (RK4) method.

All results were repeated with a larger step size of �t =
0.02. There was virtually no change in the physical moments,
indicating convergence was reached as a function of step size.
However, as expected, the distribution radius is reduced, and
the issue is treated in Sec. V E.

In order to calculate sampling errors, the calculations are
carried out using 100 subensembles of 104 trajectories each.
The statistics of the trajectories are non-Gaussian, but after
the subensemble average over 104 terms, the results are nearly
Gaussian distributed according to the central-limit theorem.
Sampling errors are then obtained using standard Gaussian
estimators for the variance in the mean, which gives very
robust statistical estimates.

Coding was carried out with two independent programs and
algorithms using different languages to reduce the potential
for errors. One was hand coded in the Scilab language,
and was checked against xSPDE, a public domain stochastic
differential equation solver [68]. The xSPDE toolbox with
RK4 was used in the graphs given here, as they can give
fourth-order convergence in the deterministic terms. This is
not crucial, and overall convergence is not fourth order due to
the noise terms.

D. Physical moment predictions

The results of Table I give a lower variance, which implies
a lower sampling error, for polar noise. This is the preferred
method that is used below unless stated otherwise. The
situation treated is the coupled nonlinear parametric oscillator
in an initial vacuum state. With truncation, the TW equations
lead to unphysical predictions, including vacuum states with
negative occupations.

The predictions for the physical, analytic moments are
given in Figs. 1 and 2 for the symmetrized signal and pump
mode occupation numbers. These should both remain equal
to 1/2 in a vacuum state, giving occupation number zero,
in the exact quantum theory result. In the truncated equations,
equivalent to a stochastic electrodynamics theory, these change
in time, giving negative pump occupations.

With the high-order noise equations, all occupation num-
bers are approximately zero as physically required. The
residual errors of about ±0.001 are statistical and within the
computed sampling error obtained with 106 samples. They

0 0.1 0.2 0.3 0.4 0.5
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

<
1

1>

FIG. 1. Time evolution of symmetrized number operator of the
parametric amplifier signal mode from a vacuum state, with and
without third-order noise terms. The correct Wigner results are
〈α1β1〉 = 〈n̂1〉 + 0.5 = 0.5. Parallel lines indicate sampling error
at ±σ . Dashed line shows the unphysical increase in apparent
number above the vacuum state, without third-order noise. The
behavior of 〈α2β2〉 is identical. Solid line includes third-order polar
noise, showing correctly that the signal occupation number remains
approximately zero up to the sampling error (estimated as ±0.001).

can easily be reduced further. The graphs show that the TW
approximation has systematic errors of about 100 times the
sampling error, predicting an unphysical transfer of quanta
from pump to signal, even in the vacuum state.

Figure 3 shows how the triple correlation evolves in
time. One can readily verify that the expected evolution
of the third-order correlations due to higher-order noise is
precisely d〈α1α2β3〉 = − 1

4dτ . In this figure the anomalous
triple correlation of the TW method, the dashed line, is
canceled exactly by the third-order noise so that the overall

0 0.1 0.2 0.3 0.4 0.5
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

<
3

3>

FIG. 2. Time evolution of symmetrized number operator of the
pump mode from a vacuum state, with (solid) and without (dashed)
third-order noise terms. The correct Wigner results are 〈α3β3〉 =
〈n̂3〉 + 0.5 = 0.5. Other parameters as in Fig. 1.
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FIG. 3. Time evolution of symmetrized triple correlation of
the three modes from a vacuum state, with (solid) and without
(dashed) third-order noise terms. Here 〈α1α2β3〉 = 〈â1â2â3〉. Dashed
line shows unphysical increase in the triple correlation, without
third-order noise. Solid line includes third-order polar noise, showing
correctly that the triple correlation is zero up to the sampling error,
which gradually increases with increasing distribution radius. Other
parameters as in Fig. 1.

triple correlation remains zero within the sampling error, as
expected for a vacuum state.

Analytic predictions are known for the exact and truncated
results for the triple correlations, as an expansion in τ , and
these agree with the numerical results reported here:

〈â1â2â3〉 = 0 [Exact],

〈α1α2α
∗
3〉 = 1

4τ + O(τ 2) [TW]. (5.17)

By τ = 1, the triple-correlation sampling error will start
to grow substantially, which is the limit of usefulness of
this result without a stabilizing term. This is caused by the
general growth in distribution radius. Similar issues occur with
the positive-P representation, which is a normally ordered,
stochastic representation [69]. Such behavior is inevitable
when mapping time-reversible evolution onto a stochastic
process with independent paths, since only an inward drift
can prevent a growth in radius in a diffusion process. Yet an
inward drift would break time-reversal invariance, and it is not
present. This issue may be overcome by the use of stochastic
gauge stabilizers, but this investigation is outside the scope of
the present paper.

This example involves six coupled complex nonlinear
stochastic equations in a twelve-dimensional real space, with
two independent sets of third-order noise terms. It is therefore
a strong test of these methods, and one that is useful in
that there is a rigorous, exact solution for all correlations.
For the parameters and time scales used here, third-order
noise reproduces the known physical results. The results
obtained here focus on the question of local noise correlation
properties. Optimizing the numerical algorithm for these
novel types of noise over longer time scales remains to be
investigated.
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FIG. 4. Time evolution of modulus squared of the signal plus idler
phase-space coordinate, with (solid) and without (dashed) third-order
polar noise terms. Upper line shows increased modulus with third-
order polar noise, lower line gives modulus without third-order noise.
The pump phase-space coordinate radius has a similar increase. This
shows that the distribution radius increases over time, even when the
observables are time invariant. Other parameters as in Fig. 1.

E. Radial variance

The radial growth of the distribution determines the overall
sampling error. The results given above show that the physical
moments are all obtained correctly, but it is interesting to
investigate the effects of different types of noise generation
and step sizes. Results for the growth of the radial variance are
given in this section, employing both the polar and Gaussian
noise strategies. As expected from the analysis of Table I, polar
noise has reduced variance.

Figure 4 uses compact polar noise to show the time
evolution of the squared modulus of the signal and idler
coordinates and the pump coordinate, with a step size of
�τ = 0.01. This is a measure of the distribution size, indicat-
ing how the distribution is spreading due to the higher-order
noise. This is not an analytic moment. Therefore, while it is
is significant in determining the sampling error, it does not
correspond to a physical observable of the Wigner function.

The rate of radial growth decreases as the step size
increases. This is shown in Fig. 5, which uses larger time steps.
However, there is a tradeoff, since increased time steps can also
increase discretization errors proportional to �τ . For these
results shorter time steps were used to reduce discretization
error. There is good convergence in the ensemble sense despite
the growth in radial size.

Figures 6 uses Gaussian-generated third-order noise to
show the time evolution of the squared modulus of the signal
and idler coordinates, again with a step size of �τ = 0.01.
This gives a larger variance due to the less compact noise
distribution.

Radial growth is more rapid for Gaussian noise than for
polar noise. Such larger distribution widths cause an increased
sampling error, which is significant when calculating higher-
order correlation functions. Gaussian noise can be used, but
there is a drawback in that the distributions are less compact.
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FIG. 5. Time evolution of modulus squared of the signal plus idler
radial variance, with (solid) and without (dashed) polar higher-order
noise, and with larger time steps of �τ = 0.02. This shows that the
stochastic distribution radius increases more slowly with larger time
steps. Other parameters as in Fig. 1.

For this reason, the physical moment results were all obtained
with polar third-order noise.

VI. OUTLOOK

In summary, this paper has obtained methods for generating
stochastic higher-order noise of any vectorial order and in any
number of phase-space dimensions, using tensor decomposi-
tion theory. Gaussian and polar noise algorithms are derived
allowing the efficient generation of any vectorial order of
this type of random variate. Due to its greater symmetry,
polar noise results in lower variances in all cases treated
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FIG. 6. Time evolution of modulus squared of the signal plus
idler radial variance, with (solid) and without (dashed) third-order
Gaussian noise terms, and with a step size of �τ = 0.01. This shows
that the distribution radius increases over time more quickly for the
less compact Gaussian product noise generator. Other parameters as
in Fig. 1.

here. Unlike conventional second-order stochastic noise, the
sampling error increases as the step-size is reduced. Despite
this, numerical results are in excellent agreement with the
predicted moments, and the increases in variance are relatively
gradual.

As well as formal derivations of the equations, these results
have been calculated explicitly using Green’s functions and
path integrals, together with convergence properties, methods
for generating the stochastic terms, and physical applications
of these results. When there are nonlinear terms, such complex
equations need to be regularized through the use of weighted
trajectories [42], which use the fact that the equations are
nonunique.

To test how HSDE techniques can solve vacuum depletion
issues, they were applied to an exactly soluble case: the
Wigner function for three-mode quantum parametric am-
plification. This gives rise to six-dimensional higher-noise
complex stochastic equations, as each phase-space dimen-
sion is doubled. In this case, third-order noise removes
unphysical behavior, including negative occupation numbers,
found when higher-order terms are truncated from the Wigner
equations.

Probabilistic representations of this type are part of a larger
class of Gaussian phase-space representations [22,29,30].
These techniques can also involve higher-order derivatives,
depending on the exact Hamiltonian or master equation. These
terms are particularly an issue with nonlinear master equations,
used for representing nonlinear loss in BEC systems [31], as
well as in engineered dissipative systems.

HSDE techniques are therefore potentially applicable to a
wide variety of nonlinear physical problems. The results ob-
tained here are a preliminary step towards a full understanding
of these methods. The main focus of the paper is how to obtain
multidimensional HSDE equations from an arbitrary tensor
decomposition of a higher-order diffusion matrix. This can
give a guide as to when TW methods can fail and provide
appropriate correction terms.
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APPENDIX: GENERAL HIGHER-ORDER
STOCHASTIC NOISE

As explained in Sec. IV, the general noise increment can
be written in terms of a dimensionless random variate ζ (n) as

�w(n) = ζ (n)

[
�t

n!

]1/n

e(nmφm). (A1)

where φm is a scaling factor defined so that
∑

m φm = 0.
This higher-order noise variate ζ (n) must therefore have
nonvanishing moments of〈∏

m

[
ζ (n)
m

]pnm

〉
= 1

p!

∏
m

(pnm)! . (A2)

After scaling, these moments depend only on the order vector
n. The main text in Sec. IV explains techniques for generating

062104-12



HIGHER-ORDER STOCHASTIC DIFFERENTIAL . . . PHYSICAL REVIEW A 96, 062104 (2017)

these noises for the special case where the vector order is
n = (1, . . . 1), and the scalar noise generation problem is
treated in earlier work [14]. This Appendix gives techniques
for generating arbitrary higher-order noises of any vector
order.

1. Additive higher-order noise generation

Higher-order noise with nm > 1 is readily obtained from
adding nm multicomponent first-order noise terms of the same
total order. Given an nth-order multicomponent first-order
noise ζ (n1) with n1 = [1, . . . 1] one can generate a random
vector ζ (n) of the same total order on introducing a partial
sum, sm = ∑m−1

m′=1 nm′ , and then defining

ζ (n)
m =

m1+nm−1∑
m′=sm

ζm′ . (A3)

This can be illustrated by constructing a scalar noise ζ (n) from
a first-order vector noise ζ (n1). In this case, the moments are

〈[ζ (n)]np〉 =
〈[∑

ζ (n1)
m

]np〉
= (np)!

(p!)n

〈[∏
ζ (n1)
m

]p〉
. (A4)

Here Eq. (4.3) was used, combined with the result that only
the most symmetric term in the multinomial expansion with
equal powers of ζm will be nonzero. Using Eq. (4.3) again for
the first-order noise, one can obtain the required result for the
nth-order moments, that

〈[ζ (n)]np〉 = (pn)!

(p!)
. (A5)

While this technique is simple, it is relatively inefficient, and
the remaining techniques of this Appendix are preferred.

2. Polar higher-order noise generation

A direct generation technique similar to that used for one-
dimensional higher-order noise is also possible and is more
efficient [14]. The noise term is transformed into a polar angle
θ (n)
m and a radial noise r (n)

m so that

ζ (n)
m = r (n)

m exp
(
iθ (n)

m

)
. (A6)

From the noise moment equation, the random angles must have
the property that for integer powers P = (P1 . . . Pm),〈

M∏
m=1

exp
(
iPmθ (n)

m

) 〉 =
∑

p

δP,pn , (A7)

where δP,pn is a Kronecker δ function. For noise with only a
single nonzero element, so that M = 1, the complex noise is
generated using the discrete angle technique, already known
for the one-dimensional case [14]. In this method, θ (n) =
2π�/n, where the angle has discrete random values, with
integer � = 0, . . . n − 1.

For M > 1, the angular variables θm can be generated from
at most M − 1 uniform random variates, 0 � um < 1:

θm = 2πum . (A8)

The last term with m = M is then given by

θM = − 1

nM

M−1∑
m=1

2πnmum . (A9)

With this construction, one has, as required,

M∏
m=1

[
exp

(
iθ (n)

m

)]pnm = 1 . (A10)

For any other moments with P 
= pn, the expectation value
gives a complex circular average over the random noise term,
so that 〈

M∏
j=1

[
exp

(
iθ (n)

m

)]Pm

〉
= 0 . (A11)

To obtain the radial distribution, the moment equations are
utilized. From these equations, the radial terms must satisfy〈

M∏
m=1

rpnm

m

〉
= 1

p!

M∏
m=1

(pnm)! . (A12)

To obtain the radial variate, one can define μα as a random
variable with a gamma distribution γ (μα; α,β), having equal
shape parameter (α) and rate parameter (β), so that α = β.
Alternatively, if να is a random variable with a gamma
distribution γ (να; α,1), then μα = να/α. Since the distribution
is not uniquely defined by the moment restrictions, it is
useful to employ additional constraints. This depends on
the requirements for sampling errors in each direction. It is
assumed here that it is desirable to have equal radial moments
of nmth order in all noise components, so the choice is made
that all terms of form rnm

m are made equal and have a distribution
derived from the γ distribution.

The required distribution is obtained upon extending
Eq. (4.14), with the general definition of

rnm

m =
M∏

m=1

(
nm!

nm∏
j=1

μ
(m)
j/nm

)1/M

. (A13)

Here each variable μ
(m)
j/nm

is a random, gamma distributed

variable except for μ
(M)
1 ≡ 1. This includes as special cases:

(1) M = n vector noise, from Eq. (4.13): rn
m = ∏n−1

m=1 μ
(m)
1

(2) M = 1 scalar noise [14]: rn = n!
∏n−1

k=1 μj/n1

Hence, using the gamma distribution moment result of Eq.
(4.11), the radial moments generated with this method can be
shown to be〈[ M∏

j=1

r
nj

j

]p
〉

= 1

p!

M∏
m=1

(nm!)p
nm∏
k=1

�(k/nm + p)

(k/nm)p�(k/nm)
.

(A14)

Since the γ variates are all independent, we can directly apply
the product theorem for gamma functions [70]. From this
result, one can prove the identity [14]:

nm∏
k=1

�(k/nm + p) = (2π )(nm−1)/2n−1/2−nmp
m (nmp)! . (A15)
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Using this identity, one obtains

nm∏
k=1

�(k/nm + p)

(k/nm)p�(k/nm)
= (nmp)!

(nm!)p
. (A16)

Substituting this result into Eq. (A14), we obtain the required
moment equation:

〈[
M∏

m=1

rnm

m

]p〉
= 1

p!

M∏
m=1

(nmp)! . (A17)

Thus, the multimode γ variate product distribution reproduces
the required moments of Eq. (4.3). For example, in the
scalar M = 1, n = 2 case, rm = 2μ1. As a result, 〈|ζ (2)|2p〉 =
〈(2μ1)p〉 = 2pp!. The corresponding differential noise term
has 〈dw2〉 = dt .

3. General Gaussian product noise

To treat the general case, suppose the higher-order noise
is generated from adding Gaussian product variables in a
strategy similar to that of Plimak et al. [13,71]. This choice
is not optimal in terms of sampling error but may be faster
or simpler, depending on the relative speed of generating
Gaussian and γ random variates. With this approach, the ansatz
is

ζ (n)
m = η∗

m + χ∗
mχm+1 ηnm−1

m [m � M]. (A18)

As above, χ1 = 1 = χM+1, while ηi and χi are independent
complex Gaussian noise variates such that apart from the two

end-cases,

〈(ηiη
∗
j )p〉 = 〈(χiχ

∗
j )p〉 = δijp! . (A19)

The χ terms act as a link that chains all the noises
together, while the η term is used to generate the type of
internal interference that is necessary for higher derivative
noise when nm > 1. If nm = 1, one may set ηm = 0 to regain
the single-derivative result of Eq. (4.16).

The general noise moments are now given from the
binomial theorem by〈

M∏
m=1

[
ζ (n)
m

]Pm

〉
=

〈
M∏

m=1

nm∑
pm=0

[
χ∗

mχm+1η
nm−1
m

]pm

(pm)!(Pm − pm)!

× Pm!(η∗
m)Pm−pm

〉
. (A20)

The chainlike nature of the correlations of χ∗
j χj+1 mean that

the only terms that survive in the overall product of sums
have the same power p1 = · · · = pM = p. In addition, the
correlation properties of complex Gaussian noise ηi mean that
the nonzero terms must have Pm = pnm.

There is always a term of this order in each sum, since
Pm � p. This implies that only the required moments are
nonvanishing. Any moment Pm that is not an integer multiple
of nm will vanish, and the multiplying factor must be the same
for each m. Hence, using Gaussian moment properties and
recalling that χ1 = 1, one obtains the correct nonvanishing
moments as required, given by〈

M∏
m=1

[
ζ (n)
m

]pnm

〉
= 1

p!

M∏
m=1

(pnm)! . (A21)
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