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Conditional von Neumann entropy is an intriguing concept in quantum information theory. In the present work,
we examine the effect of global unitary operations on the conditional entropy of the system. We start with a set
containing states with a non-negative conditional entropy and find that some states preserve the non-negativity
under unitary operations on the composite system. We call this class of states the absolute conditional von
Neumann entropy non-negative (ACVENN) class. We characterize such states for 2 ⊗ 2–dimensional systems.
From a different perspective the characterization accentuates the detection of states whose conditional entropy
becomes negative after the global unitary action. Interestingly, we show that this ACVENN class of states forms
a set which is convex and compact. This feature enables the existence of Hermitian witness operators. With
these we can distinguish the unknown states which will have a negative conditional entropy after the global
unitary operation. We also show that this has immediate application to superdense coding and state merging,
as the negativity of the conditional entropy plays a key role in both these information processing tasks. Some
illustrations followed by analysis are also provided to probe the connection of such states with absolutely separable
states and absolutely local states.
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I. INTRODUCTION

Entanglement [1], which lies at the heart of quantum me-
chanics, is not only of deep philosophical interest [2] but also
established as the most pivotal resource in various information
processing tasks: teleportation [3], superdense coding [4],
key generation [5,6], secret sharing [7], remote entanglement
distribution [8], and many more [9–11]. However, not all entan-
gled states can be directly used for an information processing
task; pertinent mentions in this regard are the bound entangled
states [12]. However, these entangled states are available when
we go beyond 2 ⊗ 2 and 2 ⊗ 3 systems, where we do not
have necessary sufficient conditions like the Peres-Horodecki
criterion [13] for detection of entanglement. Some entangled
states have to be processed by local filtering [14] before they
can be used in a task. As a consequence, teleportation witnesses
and thermodynamical witnesses [13,16] have been devised
which can identify useful entangled states for various tasks.
In multiqubit systems concepts like “task-oriented entangled”
states [17] have been introduced.

The ubiquitous role of entanglement in information pro-
cessing tasks has motivated recent research in the generation
of entangled states from separable states. Global unitary
operations can play a significant role in this scenario, as local
unitaries cannot generate entanglement. However, there are
some separable states, termed absolutely separable (AS) [18],
from which no entanglement can be produced even with any
arbitrary global unitary operation. Characterization of such
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states has been an active line of research recently [19]. This
notion of “absoluteness” was extended to define absolutely
Bell-CHSH local states and absolute unsteerability [20,21].
The notion of absoluteness indicates that the state preserves
a certain characteristic trait under global unitary transforma-
tions. For absolutely separable states it is separability; for
absolutely Bell-CHSH local states it is their nature of being
Bell-CHSH local.

The conditional von Neumann entropy is another such
characteristic trait of quantum states. Unlike its classical
counterpart this quantity can be negative [22], providing
yet again a departure from classical information theory. An
operational interpretation of the quantum conditional entropy
was provided in [23], in terms of state merging. The negativity
of the conditional entropy also indicates the signature of
entanglement, although the converse of the statement is
not true, as there are entangled states with non-negative
conditional entropy. Conditional entropy also plays a key role
in dense coding [24], as a bipartite quantum state is useful for
dense coding in the sense that it will have a quantum advantage
if and only if it has a negative conditional entropy.

Negativity of the conditional entropy being such an
important yardstick, our present work probes whether it is
always possible to start with a state having a non-negative
conditional entropy and arrive at a state having a negative
conditional entropy via global unitaries. We find that there
is a class of states which preserve the non-negativity of the
conditional entropy under global unitary transformations. The
characterization also enables one to identify useful states
whose conditional entropy becomes negative with a global
unitary. It is interesting to find that this class of state,
the absolute conditional von Neumann entropy non-negative
(ACVENN) class, which preserves the non-negativity of the
conditional entropy, is a convex and compact set. This in
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principle guarantees that we can create a witness operator to
detect these states which can arrive at a negative conditional
entropy in spite of starting with a non-negative conditional
entropy using global unitary operations. Since separability and
nonlocality are also important distinctive features of quantum
mechanics, we also discuss the connections of these states
preserving the non-negativity of the conditional entropy under
a global unitary with the AS states and the recently introduced
absolutely Bell-CHSH local (AL) states [20].

Our work has immediate applications in information pro-
cessing tasks like superdense coding [4] and state merging
[23]. In superdense coding states with a negative conditional
entropy give us quantum advantages, while in state merging
the same states are useful as a potential future resource.
One starts with some seemingly useless states having a
non-negative conditional entropy; then, using global unitaries
as a resource, one can turn these states into states having
a negative conditional entropy. Since the ACVENN class is
convex and compact, it is in principle possible to create a
witness operator to detect these transformed states.

In Sec. II we give an introduction to all the related
concepts that are relevant to this article. In Sec. III we report
a general necessary and sufficient condition to characterize
the ACVENN class of states in the state space of two-qubit
systems. In Sec. IV, we show that this ACVENN class of
states is convex and compact, which in principle allows us to
construct a witness operator for identifying those states which
do not belong to this class. In Sec. V we connect this ACVENN
class of states with the absolutely separable and absolutely
local states. In Sec. VI we show the potential application of
characterizing such states in various information processing
tasks like superdense coding and state merging. Finally, we
conclude in Sec. VII.

II. USEFUL DEFINITIONS AND RELATED CONCEPTS

In this section, we briefly introduce various concepts which
will be useful and are related to the main theme of our paper.
We present these concepts in different subsections.

A. General two-qubit states

In this work we consider Bloch representations of general-
ized two-qubit states. A general two-qubit state is represented
in canonical form as

ρ = 1

4

[
I2 ⊗ I2 +

3∑
i=1

riσi ⊗ I2 +
3∑

i=1

siI2 ⊗ σi

+
3∑

i,j=1

tij σi ⊗ σj

⎤⎦, (1)

where ri = Tr[ρ(σi ⊗ I2)] and si = Tr[ρ(I2 ⊗ σi)] are local
Bloch vectors. The correlation matrix is given by T = [tij ],
where tij = Tr[ρ(σi ⊗ σj )] with [σi ; i = {1,2,3}] are 2 ⊗ 2
Pauli matrices and I2 denotes identity.

In this paper, we use the notation Q to denote the set of all
two-qubit states.

B. Separable and absolutely separable classes of states

When we go beyond the one-qubit system to the two-qubit
system, we come across the notion of entanglement, states
which cannot be written as a convex combination of the tensor
products of one-qubit systems. The exact complement of this
are states for which the composite system can be written as
a convex combination of the tensor products of subsystems.
However, the definition is not as straightforward when we go
beyond two-qubit pure states. For a mixed quantum system
consisting of two subsystems the general definition of being
separable is when the density matrix can be written as σsep =∑

λiσ
A ⊗ σB (

∑
λi = 1, λi � 0), where σA and σB are the

density matrices for the two subsystems A and B [13]. Set
S denotes the class of separable states. Lately people have
identified absolutely separable states [18,19], which are states
that remain separable under all global unitary operations, i.e.,
AS = {σas : UσasU

† is separable ∀ U}.

C. Local and absolutely local classes of states

We denote the set of all states which do not violate the Bell-
CHSH inequality L [15]. Recall that any density matrix for two
qubits can be written in the canonical form, where T denotes
the correlation matrix corresponding to ρ. The function M(ρ)
is defined as the sum of the maximum two eigenvalues of T tT .
Any state with M(ρ) � 1 is considered local with respect to
the Bell-CHSH inequality [25]. The set of states that do not
violate Bell-CHSH inequality is denoted L = {σL : M(σL) �
1}. Recently researchers were able to characterize the states
which do not violate Bell-CHSH inequality under any global
unitary. The set containing these states is denoted AL [20] and
is defined as AL = {σal : M(UσalU

†) � 1, ∀ U}.

D. Witness operator and geometric form of
the Hahn-Banach theorem

A geometric form of the Hahn-Banach theorem states that
given a set that is convex and compact, there exists a hyperplane
that can separate any point lying outside the set from the given
set [26]. A witness operator W pertaining to a convex and
compact set S will be a Hermitian operator that satisfies the
following conditions: (a) Tr(Wσ ) � 0, for all states σ ∈ S;
and (b) Tr(Wχ ) < 0, for any state χ /∈ S [13,16].

E. Dense coding capacity

Quantum superdense coding involves the sending of clas-
sical information from one sender to the receiver when they
share a quantum resource in the form of an entangled state.
More specifically, superdense coding is a technique used in
quantum information theory to transmit classical information
by sending quantum systems. It is quite well known that if
we have a maximally entangled state in Hd ⊗ Hd as our
resource, then we can send 2 log d bits of classical information.
In the asymptotic case, we know one can send log d + S(ρ)
number of bits. It has been shown that the number of classical
bits one can transmit using a non–maximally entangled state
in Hd ⊗ Hd as a resource is (1 + p0

d
d−1 ) log d, where p0 is

the smallest Schmidt coefficient. However, when the state is
maximally entangled in its subspace then one can send up to
2 log(d − 1) bits [4,24].
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F. State merging

Another important information processing task is state
merging. In the classical setting, the idea of state merging
is essentially the following: Consider two parties, Alice and
Bob, where Bob has some prior information B and Alice has
some missing information A (where A and B are random
variables). At this point one important question is, If Bob
wants to learn about A, how much additional information
does Alice need to send him? It has been shown that only
H (A|B) bits suffices. In the quantum setting, Alice and
Bob each possess a system in some unknown quantum
state with joint density operator ρAB . Assuming that Bob
is correlated with Alice, one asks how much additional
quantum information Alice needs to send him, so that he
has knowledge about the entire state. The amount of partial
quantum information [23] that Alice needs to send Bob
is given by the quantum conditional entropy, S(A|B) =
S(ρAB) − S(ρA). Ideally this conditional entropy can be
positive [S(A|B) > 0], negative [S(A|B) < 0], or
0 [S(A|B) = 0]. If it is positive, the sender needs to
communicate that number of quantum bits to the receiver;
if it is 0, there is no need for such communication.
However, if it is negative, the sender and receiver
gain the same amount of potential for future quantum
communication.

III. CHARACTERIZATION OF THE ABSOLUTE
CONDITIONAL VON NEUMANN ENTROPY

NON-NEGATIVE CLASS

In this section we introduce the class of states for which
the conditional von Neumann entropy remains non-negative
even after application of the global unitary operator. The char-
acterization of these states enables us to identify states which
can be made useful for some information processing task. The
von Neumann entropy of a system ρAB with two subsystems,
A and B, is denoted S(ρAB). The conditional von Neumann
entropy for ρAB entropy is defined as S(ρAB) − S(ρA), where
S(ρA) denotes the von Neumann entropy of subsystem A. We
note the class of states for which the conditional von Neumann
entropy is non-negative. We denote this class CVENN, defined
as CVENN = {σcv : S(σcv) − S((σcv)A) � 0}.

A. ACVENN

The set of states whose conditional von Neumann entropy
remains non-negative under any global unitary operations
is denoted ACVENN = {σac : S(UσacU

†) − S[(UσacU
†)A] �

0, ∀U}. The von Neumann entropy remains invariant under
global unitary transformations, however, the conditional en-
tropy can change. We are interested in characterizing the set
of states that preserves the non-negativity of the conditional
entropy under unitary action on the composite system.

Theorem 1. A state σac ∈ ACVENN iff S(σac) � 1.
Proof. Let σac ∈ ACVENN. Then S(UσacU

†) −
S[(UσacU

†)A] � 0, ∀U . This implies (σac) −
S[(UσacU

†)A] � 0, ∀U , as the von Neumann entropy
is invariant under changes in the basis of σac, i.e.,
S(σac) = S(UσacU

†), with U being any unitary transformation.
Hence, we have S(σac) � S[(UσacU

†)A], ∀U . The maximum

FIG. 1. von Neumann entropy of the Werner state σwer versus the
classical mixing parameter p.

value of [S(UσacU
†)A] is obtained at (UσacU

†)A = I
2 and

the maximum value is 1. There always exists a unitary that
converts the σac to a Bell diagonal σbell for a given spectrum.
And we know that for a Bell diagonal state the reduced
subsystem (σbell)A is I

2 . Therefore, S(σac) � S[(UσacU
†)A],

∀ U ⇒ S(σac) � S[(σbell)A] = S( I2 ) = 1.
Conversely, let S(σac) � 1; one can note that the maximum

achievable von Neumann entropy of a subsystem is 1 in the
case of a two-qubit system, as under a unitary transformation,
the entropy of the subsystem alone changes. Hence, for any
state σac whose von Neumann entropy is greater than or equal
to 1, we know that this state cannot have a negative conditional
entropy under any global unitary operations. Therefore, any
state σac whose S(σac) � 1 will ∈ ACVENN. �

One may quickly note the following observations.
(a) Any pure separable state has a non-negative conditional

entropy and can be brought by some unitary to a maximally
entangled state which now possesses a negative conditional
entropy, and thus pure separable states can never belong to
our desired class. Pure entangled states themselves have a
negative conditional entropy. Therefore, pure states are not
eligible members of ACVENN.

(b) The fact that some mixed states will be members of
ACVENN is exemplified by the maximally mixed state, which
remains invariant under any global unitary operation and
thus preserves the non-negativity of the conditional entropy.
However, the maximally mixed state only constitutes a trivial
example and we find that the class contains some very
nontrivial states.

B. Example A: The Werner state

As an example, we first consider the Werner state. The
density matrix representation of a Werner state is given by

σwer = (1 − p)(I/4) + p|ψ〉〈ψ |, (2)

where |ψ〉 = 1/
√

2(|00〉 + |11〉) is the Bell state, p is the
classical mixing parameter, and I denotes identity.

In the Fig. 1 we have plotted the von Neumann entropy
of the Werner state with respect to the mixing parameter p.
Interestingly, we find that for all values of p ∈ [0, ≈ 0.7476],
we have S(σwer) � 1. This clearly indicates that the Werner
state for values of p ∈ [0,≈0.7476] falls within the ACVENN
class.
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FIG. 2. von Neumann entropy of the Bell diagonal state σbell

versus the parameter ci .

C. Example B: Bell diagonal states

Bell diagonal states can be expressed as σbell = {
0,
0,T b},
where 
0 is the Bloch vector, which is a null vector, and
the correlation matrix is T b = (c1,c2,c3) with −1 � ci � 1.
The eigenvalues λ1, λ2, λ3, and λ4 of Bell diagonal states
are expressed as λ1 = 1

4 (χ − 2c1), λ2 = 1
4 (χ − 2c2), λ3 =

1
4 (χ − 2c3), and λ4 = 1

4 (2 − χ ), where χ = 1 + c1 + c2 + c3.
Therefore, the necessary and sufficient condition for a Bell
diagonal state to lie in ACVENN is given by S(σbell) � 1,
which, in terms of c1, c2, c3, and χ , becomes

log ((χ − 2c2)(χ − 2c3)(2 − χ )(χ − 2c1))

+ c1 log

(
(χ − 2c2)(χ − 2c3)

(2 − χ )(χ − 2c1)

)
+ c2 log

(
(χ − 2c3)(χ − 2c1)

(χ − 2c2)(2 − χ )

)
+ c3 log

(
(χ − 2c2)(χ − 2c1)

(χ − 2c3)(2 − χ )

)
� 4. (3)

In Fig. 2, we consider an exhaustive ensemble of 105 states
within which the dark-blue area at the center of the octahedron
determines the class of states for which S(σbell) � 1 and falls
into our ACVENN class. The light-blue areas at the corners are
areas whose conditional entropy can be made negative after the
application of some global unitary transformation. It is evident
from Fig. 2 that the non-negativity of the conditional entropy
for most of the Bell diagonal states remains invariant after the
application of a global unitary transformation.

FIG. 3. The set ACVENN is convex and compact, and using the
Hahn-Banach theorem [26] it follows that any state not belonging to
ACVENN can be separated from the states that belong to ACVENN
by a hyperplane, thus providing for the existence of a witness.

IV. CONVEXITY AND COMPACTNESS OF THE ACVENN
CLASS: EXISTENCE OF A WITNESS

In this section we show that the ACVENN class, which is
a subset of class Q, is a convex and compact set. This helps
us identify states whose conditional entropy remains negative
even after the application of a global unitary. We now present
the proof that the set ACVENN is convex and compact.

A. Existence of a witness

The theorems below support the existence of witness
operators to distinguish ACVENN states from states which
are not in ACVENN. See Fig. 3 for reference.

Theorem 2. ACVENN is convex.
Proof. Consider σ1,σ2 ∈ ACVENN. Therefore, S(σi) � 1,

i = 1,2. Now by the concavity of the von Neumann entropy
S(λσ1 + (1 − λ)σ2) � 1, where λ ∈ [0,1]. Hence, λσ1 + (1 −
λ)σ2 ∈ ACVENN, implying that ACVENN is convex. �

Theorem 3. ACVENN is a compact subset of Q.
Proof. Let us define a function f : Q → R as

f (ρ) = S(ρ); (4)

as ACVENN = {σac : S(σac) � 1}, and f will have a maxi-
mum value of 2, we can say that ACVENN = f −1[1,2]. f

is a continuous function, as S is a continuous function [27].
Therefore, ACVENN = f −1[1,2] is a closed set in Q defined
under the trace norm. The set ACVENN is bounded, as every
density matrix has a bounded spectrum, i.e., their eigenvalues
lie between 0 and 1. This proves that the ACVENN class is
compact. �

The theorem now guarantees the existence of Hermitian
operators to successfully identify states that do not belong to
ACVENN.

Next we estimate the size of the ACVENN class by
taking the maximum and minimum distance from the identity
( I2 ⊗ I

2 ). The distance measure we have used in this context

is the Frobenius norm, which is given by ‖X‖ =
√

Tr(X†X).
Having already proved that ACVENN is a convex set, we try to
determine the maximum and minimum distances from I

2 ⊗ I
2 .

For any general �̃, the distance from I
2 ⊗ I

2 is given by ‖̃� −
I
4‖ =

√
Tr((̃� − I

4 )†(̃� − I
4 )), which, upon solving, further

results in
√

Tr(̃�2) − 1
4 . To calculate the maximum distance we

needed to maximize |σ − I
4‖, over all σ ∈ ACVENN. Here we

solve this problem numerically. After going through 2 × 105

ACVENN states the maximum distance we have is 0.645 966,
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FIG. 4. Approximate size of the ACVENN class.

for the state whose eigenvalues were λ1 = 0.809 161, λ2 =
0.052 114 1, λ3 = 0.059 544 8, and λ4 = 0.079 180 5.

To calculate the minimum distance we needed to minimize
|ρ − I

4‖, over all ρ /∈ ACVENN. Going through 1 × 105

non-ACVENN states numerically, we attained the minimum
distance as 0.507 225. This is given by a state whose eigen-
values were λ1 = 0.000 143 47, λ2 = 0.000 551 157, λ3 =
0.436 523, and λ4 = 0.562 783.

In Fig. 4 we show a rough estimation of the size of the
ACVENN class.

V. RELATION BETWEEN THE AS, ACVENN,
AND AL CLASSES

In this section we present a comparative picture of three
classes of states. These classes remain invariant from the
context of separability (AS), nonviolation of Bell’s inequlity
(AL), and non-negative conditional entropy (ACVENN) under
global unitary transformation.

A. AS vs ACVENN

Figure 5 shows the relation between AS, ACVENN, and
separable states.

Lemma 4. AS ⊆ ACVENN.
Proof. Absolutely separable states preserve separability

under any global unitary action. The non-negativity of con-
ditional entropies is a necessary condition for separability
[28]. All separable states have a non-negative conditional
von Neumann entropy. AS states remain separable under
any unitary transformation. AS states will always have a
non-negative conditional von Neumann entropy. So they will
form a subset of the ACVENN class. �

FIG. 5. Relation between ACVENN, AS, and separable classes
of states.

1. Illustration A: Absolutely separable Werner states

Let us consider the Werner states σwer = p|ψ〉〈ψ | + 1−p

4 I,
where |ψ〉 is the Bell state 1√

2
(|00〉 + |11〉). The state σwer

belongs to ACVENN for values of p that satisfy the equation
3(1 − p) log(1 − p) + (1 + 3p) log(1 + 3p) � 4. Solving the
inequality we get p ∈ [0,≈0.7476] as obtained earlier. For
the states to be in AS, one must have a1 � a3 + 2

√
a2a4,

where a1 = (1+3p)
4 , a2 = (1−p)

4 , a3 = (1−p)
4 , and a4 = (1−p)

4 are
all the eigenvalues in descending order. σwer belongs to AS for
values of p ∈ [0, 1

3 ]. This provides an example of an absolutely
separable state which is contained in the ACVENN class.

2. Illustration B: States that are incoherent
in the computational basis

Next, we give an example of a class of states which are
incoherent in the computational basis:

σcomp = a1|00〉〈00 + a2|01〉〈01| + a3|10〉〈10| + a4|11〉〈11|.
(5)

Taking the example of a state with eigenvalues a1 = 5
10 ,

a2 = 3
10 , a3 = 2

10 , and a4 = 0, S(σcomp) = −∑
ai log2 ai ≈

1.485 � 1. Hence, this state ∈ ACVENN.
We see that a1 � a2 � a3 � a4. For the states to be in AS,

one must have a1 � a3 + 2
√

a2a4. In this specific case a1 =
0.5, a3 + 2

√
a2a4 = 0.2. Clearly, this shows that AS is a subset

of ACVENN.
Theorem 5. AS ⊂ ACVENN.
Proof. In Lemma 4 it has been shown that AS ⊆ ACVENN.

In fact, we can say more than that. In view of the example
of Werner states in Sec. V A 1, we have seen that there are
states that do not belong to AS but belong to ACVENN. This
shows that absolutely separable states form a proper subset of
ACVENN. �

After proving that AS ⊂ ACVENN we want to estimate
the minimum and maximum entropies recorded by the states
belonging to AS. We solve this problem numerically as well.
After going through 1 × 105 AS states the minimum entropy
that we obtain is 1.586 62. This is attained for a state with
eigenvalues λ1 = 0.341 023, λ2 = 0.331 417, λ3 = 0.327 411,
and λ4 = 0.000 148 614. We already know that the maximum
entropy for AS is 2. This gives us a rough estimate of the
number of AS states lying within ACVENN in terms of
entropy.

B. AL vs ACVENN

The Werner states are absolutely local for the visibility
factor p � 1/

√
2, and they belong to ACVENN for p �

0.7476. Therefore, the absolutely Bell-CHSH local Werner
states form a subset of the ACVENN class. This is an
interesting result, as this would mean that there are states
that violate Bell-CHSH inequality and still under any unitary
cannot be improved to a state with a negative conditional
entropy. However, it is difficult to comment in general on
the relation between the AL and the ACVENN classes.
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FIG. 6. Role of the witness in detecting states which are use-
ful for superdense coding and state merging after global unitary
transformation.

VI. APPLICATIONS: STATE MERGING
AND SUPERDENSE CODING

In this section we show how the characterization of this
ACVENN class of states helps to identify states which are not
useful for information processing tasks like superdense coding
and state merging but are made useful with the help of global
unitary transformations. In either of these tasks we are able to
detect a class of states which can be converted into superdense
coding and state merging resources by applying global unitary
transformations. In Fig. 6 we give a pictorial description of two
types of witness operators that can be created. WSD

and WSM

act as hyperplanes that distinguish states useful for superdense
coding and state merging, respectively, from states belonging
to the ACVENN class which can never be made useful for these
information theoretic tasks by using global unitary operations.

A. Superdense coding

In particular, the superdense coding capacity for a mixed
state ρAB in D(Hd ⊗ Hd ) is defined as

CAB = max{log2 d, log2 d + S(ρB) − S(ρAB)}, (6)

where ρB = TrA[ρAB] [4,24]. CAB is nothing but the amount
of classical information that can be sent from system A to
system B. Here we note that the expression S(ρB) − S(ρAB)
can be either positive or negative. If it is positive, then one can
use the shared state to transfer bits greater than the classical
limit of log2 d bits. This is known as the quantum advantage
where we can do more than the classical limit. For pure states,
S(ρAB) = 0; then the superdense coding capacity is given by

CAB = log2 d + S(ρB) = log2 d + E(ρAB), (7)

where the entanglement entropy E(ρAB) of a pure state ρAB

is nothing but the von Neumann entropy S(ρB) of the reduced
subsystem ρB . The capacity will be maximum for Bell states,
as S(ρB ) will be equal to 1. In a nutshell, a state ρAB for
which this expression S(ρB) − S(ρAB) is positive will give us
a quantum advantage for superdense coding. In other words, a
state with a negative conditional entropy S(A|B) will be useful.
It is obvious that not all states will have a negative conditional
entropy. The next important question is, If we apply a global
unitary operator, can we make a state which is not useful for
superdense coding into a useful resource? In other words, Can
we change the conditional entropy of the state from positive to
negative? The answer is yes; however, there will be some states
for which we cannot do this. These sets of invariant states are

nothing but the previously described ACVENN class of states
which can never be useful from the perspective of superdense
coding, even after the application of global unitary operators.
As we have seen previously that this class of state is convex
and compact, in principle it will be possible to create a witness
operator (WSD

as shown in Fig. 6) to detect states which are
initially not useful but are made useful for superdense coding.
It is important to mention here that this witness operator is
not a witness operator to detect states which are useful for
superdense coding as opposed to nonuseful states. The class
of states useful for superdense coding is not a convex and
compact set; neither is the class of states that are not useful for
superdense coding. This witness operator detects those states
which need not be useful initially but can be made useful after
global unitary transformation. Further, we provide examples
to show all these kinds of states.

Illustrations

For our first example let us consider a mixed separable state
in D(H2 ⊗ H2) given by [13,16]

ρ =

∣∣∣∣∣∣∣∣∣
a 0 b 0

0 0 0 0

b 0 1 − a 0

0 0 0 0

∣∣∣∣∣∣∣∣∣. (8)

The eigenvalues for this state are 1−q

2 , 1+q

2 , 0, and 0 and
the eigenvalues of subsystem A are 1−q

2 and 1+q

2 , where q =√
1 − 4a + 4a2 + 4b2. The state ρ ∈ ACVENN iff S(ρ) � 1.

In the current scenario this occurs only when q = 0. However,
for no real values of a and b is q = 0. Therefore we know that
for no real values of a and b does this state belong to ACVENN.
Thus S(ρA|B) = 0 for all real values of a and b, which clearly
does not have a negative conditional entropy and, therefore,
provides no quantum advantage. But upon application of the
unitary operator,

U1 = 1√
2

∣∣∣∣∣∣∣∣∣
1 0 0 1

0
√

2 0 0

0 0
√

2 0

−1 0 0 1

∣∣∣∣∣∣∣∣∣ (9)

becomes

ρ ′ =

∣∣∣∣∣∣∣∣∣∣

a
2 0 b√

2
−a
2

0 0 0 0
b√
2

0 1 − a −b√
2

−a
2 0 −b√

2
a
2

∣∣∣∣∣∣∣∣∣∣
. (10)

While the eigenvalues of ρ ′ remain unchanged, the eigen-
values of subsystem ρ ′

A become 1−q ′
2 and 1+q ′

2 , where q ′ =√
1 − 2a + a2 + 2b2. For all values of a and b, where q > q ′

the state can be made useful for superdense coding. One such
example is when a = 0.5 and b = 0.4. Thus, we provide an
example of a state which was not useful for superdense coding
initially but, after a unitary transformation, was made useful
for superdense coding.
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B. State merging and partial quantum information

In information processing scenarios, it is important to ask
this question: If an unknown quantum state is distributed over
two systems, say A and B, how much quantum communication
is needed to transfer the full state to one system? This
communication measures the partial information one system
needs conditioned on its prior information. Remarkably, this
is given by the conditional entropy S(A|B) (if it is from A to
B) of the system. It is interesting to note that in principle this
entropy can be positive [S(A|B) > 0], negative [S(A|B) < 0],
or 0 [S(A|B) = 0], where each has a different meaning in
the context of state merging. If the partial information is
positive, its sender needs to communicate this number of
quantum bits to the receiver; if it is 0, there is no need for
such communication; and if it is negative, the sender and
receiver instead gain the corresponding potential for future
quantum communication. So given a quantum state ρAB ,
shared between A and B, three possible cases arise, and we
characterize the state based on these cases; namely, for states
with S(A|B) > 0 we denote them ρS(A|B)>0, and similarly,
other states as ρS(A|B)<0, ρS(A|B)=0. It is always useful from
the information-theoretic point of view to look out for states
ρS(A|B)<0, as they have the potential for future communication.
Of course, not all states will be of this type. So the next question
that becomes important in this context of a global unitary is
detecting states which are initially of type ρS(A|B)>0 but can
be converted to type ρS(A|B)<0 after global unitary operations.
These states for which the conditional entropy remains positive
even after all possible global unitary operations are nothing but
the previously defined ACVENN class. Since we have already
proved that the ACVENN class is always convex and compact,
this means that we can detect states whose partial information
can be made negative after the global unitary operation with
the help of a witness operator (WSM

as shown in Fig. 6). As
in the case of superdense coding it is important to mention
here, also, that we are showing not that the set ρS(A|B)>0 is
convex and compact, but that the set for which the partial
information remains positive after the global unitary operation
[say UρS(A|B)U

† > 0] is convex and compact. As a result, we
are not detecting the state for which the partial information is
negative instead of those states whose partial information can
be made negative [say UρS(A|B)U

† < 0] after the application
of a global unitary. We give examples to identify all these
classes.

Illustrations

Let us take a mixed two-qubit state,

ρAB = 3
4 |00〉〈00| + 1

4 |11〉〈11|; (11)

we see that S(ρB|A) = 0. After the application of a unitary
transformation U2 = U−1

1 , where U1 is defined in Eq. (9). The

state ρAB transforms to

ρ
′
AB = 1

2 |00〉〈00| + 1
4 |00〉〈11| + 1

4 |11〉〈00| + 1
2 |11〉〈11|.

(12)

S(ρ ′
B|A) is −0.1887. Thus we give an example of how a state

which has a non-negative conditional entropy initially can be
made negative with the help of a unitary transformation and
also, in principle, one can construct a witness operator to detect
this kind of state.

In this subsection we also ask this question: For a given
spectrum of density matrix, for which states will the minimum
state-merging cost be achieved?

Theorem 6. For a given spectrum of density matrix the
minimum state-merging cost will be achieved for the Bell
diagonal states.

Proof. We know that the conditional entropy for the
quantum state ρAB is given by the difference, S(B|A) =
S(ρAB) − S(ρA). Let us assume that the spectrum ρAB is fixed
with eigenvalues ai , i = 1,2,3,4. Since the spectrum is fixed
we have the freedom to apply a global unitary operator. Now
the problem is to minimize S(B|A), by using only global
unitary operations. Since the global unitary operations will
not change S(ρAB), we need to maximize S(ρA). Now S(ρA)
is maximized if ρA = I/2. The reduced density matrices for
the Bell diagonal state is I/2. Therefore if one reaches the Bell
diagonal state by some global unitary, no further maximization
of S(ρA) is possible. Thus for a given spectrum of density
matrices the minimal merging cost is attained for the Bell
diagonal state. �

VII. CONCLUSION

In this work, for a general two-qubit system we are able to
characterize a class of states, ACVENN, whose von Neumann
entropy will remain positive even after the application of a
global unitary operator. More specifically, we are able to show
that states with a von Neumann entropy greater than 1 are the
same ACVENN class of states.

We also find that this class of states is convex and compact,
which guarantees the existence of a witness for detecting states
which could have a positive conditional entropy initially but
have a negative conditional entropy after the application of a
unitary operator. This in turn provides the power to identify
states which are not initially useful but can be made useful for
information processing tasks like superdense coding and state
merging.
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