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We study the phase diagram of fermionic polar molecules in a bilayer system, with an imbalance of molecular
densities of the layers. For the imbalance exceeding a critical value, the system undergoes a transition from
the uniform interlayer superfluid to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with mostly a stripe
structure, and at sufficiently large imbalance a transition from the FFLO to normal phase. Compared to the
case of contact interactions, the FFLO regime is enhanced by the long-range character of the interlayer dipolar
interaction, which can combine the s-wave and p-wave pairing in the order parameter.
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Introduction. Exotic many-body quantum states in pop-
ulation imbalanced spin-1/2 Fermi systems attract a great
deal of interest, to a large extent due to expected non-
conventional transport properties. Among these states, the
most actively studied is the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase [1,2], in which Cooper pairs have finite
momenta and the order parameter shows a lattice structure
on top of a uniform background. Theoretical studies of the
FFLO phase in condensed matter and in particle physics
are lasting for decades [3–9]. The rapid developments in
the field of ultracold quantum gases stimulated the studies
of this phase in two-component imbalanced Fermi gases
[10–19]. However, experimental verification of the existence
of the FFLO state is still in progress [13,20–25]. In ultracold
gases the search for the FFLO phase is actively pursued for
strongly interacting fermions, where one has a crossover from
Bardeen-Cooper-Shrieffer (BCS) superfluid to Bose-Einstein
condensate of weakly bound molecules [22–24,26–28], and
the population imbalance is expected to lead to the FFLO state
[14–16].

Recent advances in creating ultracold polar molecules
[29,30] interacting with each other via long-range anisotropic
dipole-dipole forces open fascinating prospects for many-body
physics [31,32]. A variety of novel many-body states was pro-
posed for fermionic dipoles in two dimensions (2D) [33–48],
including interlayer superfluids with the BCS-BEC crossover
in a bilayer geometry [36,41,43]. Importantly, in 2D the decay
of polar molecules due to ultracold chemical reactions [49,50]
can be suppressed by orienting the dipoles perpendicularly
to the plane, which induces a strong intermolecular repulsion
[51–53]. Together with possible experiments with nonreactive
polar molecules [54,55], this forms a promising path toward
new many-body quantum states.

In this Rapid Communication we predict wide possibilities
for creating the FFLO phase of polar molecules in a bilayer
geometry, with a finite imbalance of molecular densities of
the layers. Cooper pairs are formed by molecules belonging to

different layers due to the interlayer dipole-dipole interaction,
and the most favored is the FFLO state with a stripe structure
of the order parameter. Remarkably, the FFLO regime of this
interlayer superfluid is enhanced by the long-range character
of the dipolar interaction, which in an imbalanced system
may lead to Cooper pairs representing superpositions of
contributions of various partial waves. Our work thus opens
another direction to investigate novel superfluids of fermionic
particles with population imbalance.

Interlayer interaction and order parameters. We consider
identical fermionic polar molecules in a bilayer geometry,
oriented perpendicularly to the layers by an electric field (see
Fig. 1). The interlayer dipole-dipole interaction is partially
attractive and it may lead to interlayer superfluid pairing
[36,37,41,43], whereas the inelastic decay is suppressed like in
a single layer [34]. The inlayer interaction is purely repulsive
and it only renormalizes the chemical potential in the regime
that we consider [36,43], so that below we omit this interaction.
We assume that molecular densities in the layers are different
from each other, but in each layer the Fermi energy greatly
exceeds the binding energy of interlayer dimers (bound states
of dipoles belonging to different layers [36,41,56]). Thus, the
only effect of the interlayer dipole-dipole interaction will be
the fermionic superfluid pairing, which we consider in the
weakly interacting BCS regime.

The interlayer dipole-dipole interaction potential and its
Fourier transform are given by

V (r) = d2(r2 − 2λ2)/(r2 + λ2)5/2, (1)

Vkk′ =
∫

drV (r)ei(k′−k)·r = −2πd2κe−κλ, (2)

where κ ≡ |k − k′|, d is the effective dipole moment of a
molecule, λ is the distance between the two layers, and r
is the in-plane separation between two dipoles. The pairing
potential can be expanded in a series in angular momenta
Vkk′ = ∑

l Vl(k,k′)ei(φ−φ′)l . The leading part of the scattering
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FIG. 1. (a) The bilayer system with population imbalance of polar
molecules (see text). (b) The interlayer dipolar interaction in the k

space in units of 2πd2/λ versus |k − k′|, as shown in Eq. (2).

(interaction) amplitude can be obtained in the Born approxi-
mation. It is important that in contrast to contact interactions,
the dipolar (interlayer) interaction amplitude with l > 0, and
especially the p-wave amplitude, can be comparable with the
s-wave amplitude.

After omitting the inlayer interaction the system maps
onto spin-1/2 fermions with intercomponent dipolar inter-
action. The Hamiltonian reads H = H0 + HI , where H0 =∑

k,σ ξk,σ c
†
kσ ckσ is the kinetic energy, and

HI =
∑
kk′q

Vkk′c
†
−k′+q/2,↑c

†
k′+q/2,↓ck+q/2,↓c−k+q/2,↑ (3)

is the interaction energy. Here ckσ are fermionic field operators,
σ =↑ , ↓, stands for the layer index, ξkσ = k2/2m − μσ

(hereinafter we put h̄ = 1), and μσ = μ ± h are chemical
potentials of the layers. When the densities in the layers are not
equal to each other, there is a difference in the Fermi momenta
of the two (pseudo)spin states, δkF ≡ |kF,↑ − kF,↓| �= 0, and
the effective magnetic field h �= 0.

Relying on Eq. (3) we define the pairing gap function as
	kQ ≡ ∑

k′ Vkk′ 〈ck′+Q/2,↓c−k′+Q/2,↑〉, where k′ is the relative
momentum of two paired fermions, and Q is their center-of-
mass (CM) momentum. In the coordinate space, the order
parameter is then consisting of pairing wavefunctions for
several CM momenta:

	k(R) =
NQ∑
n=1

	kQn
eiQn·R, (4)

where R is the CM position of the Cooper pair, Qn is the
CM momentum involved in the order parameter, and NQ is
the total number of considered Qn. Below we consider several
symmetries of the order parameter: uniform superfluid (NQ =
1 and Q1 = 0), plane-wave FFLO (NQ = 1 and Q1 = qx̂,
where x̂ is a unit vector in the x direction), stripe FFLO (NQ =
2 and Q1,2 = ±qx̂), and triangular state (NQ = 3 and three Qn

vectors have the same amplitude, with 2π/3 difference in their
orientation). Close to the FFLO-normal phase boundary we
also consider square and hexagonal FFLO structures.

The finite-temperature normal and anomalous Green’s
functions Gσσ ′ and F

†
σσ ′ are found from the Gor’kov equations

[57,58] (see Supplemental Material for details [59]):

Gσσ ′(k1,k2; iωn)

= δσσ ′δk1,k2

⎛
⎝iωn − ξk1σ −

NQ∑
m=1

	k1,Qm
	

†
k2−Qm,Qm

iωn + ξk1−Qm,σ

⎞
⎠

−1

; (5)

F
†
σσ ′(k1,k2; iωn) = −∑NQ

m=1 	
†
k1,Qm

δk1+Qm,k2

iωn + ξ−k1σ

×Gσ ′σ ′(k2,k2; iωn)(1 − δσσ ′), (6)

where ωn = (2n + 1)πT are Matsubara frequencies, and T

is the temperature. The gap equation can then be obtained
self-consistently:

	∗
kQ = −T

∑
n,k′

Vkk′F
†
↑↓

(
k′ − Q

2
,k′ + Q

2
; ωn

)
. (7)

We thus identify the Gor’kov equations for the Green’s
functions and the gap equations for 	∗

kQ and 	kQ as self-
consistent Gor’kov equations.

The plane-wave, stripe, triangular, square, and hexagonal
phases break the rotational symmetry and have an anisotropic
gap in the momentum space. In principle, such gap function can
be measured using Bragg spectroscopy by exciting particles
with a finite momentum.

In the following, we first solve the self-consistent Gor’kov
equations by assuming a certain gap function symmetry
(uniform, plane-wave, stripe, or triangular) and then determine
the phase diagram by comparing the obtained free energies of
these candidates. The derivation of Eqs. (5)–(9) and a detailed
presentation of the numerical procedure of obtaining the phase
diagrams at zero and finite temperatures are contained in the
Supplemental Material.

Near the phase transition line (superfluid–normal state),
where the order parameter is small, we may use the Ginzburg-
Landau free-energy functional F = F2 + F4 + · · · , with

F2 =
∑

	kq(V −1)kk′	∗
k′q − T

∑
|	kq|2G+

(
k + q

2
,ωn

)

×G−
(
−k + q

2
, − ωn

)
, (8)

F4 = T

2

∑
{qj },kn

	∗
kq1

	∗
kq2

	kq3	kq4G+(k + q1,ωn)

×G−(−k + q3 − q1, − ωn)G+(k + q4,ωn)

×G−(−k, − ωn)δq1+q2,q3+q4 , (9)

where the Green’s functions of the normal state are

G±(k,ωn) = 1

iωn − ξk ∓ h
, (10)

and V −1 is the inverse matrix of Vkk′ . The term F4 is
necessary to find the minimum energy configuration, whereas
F2 determines the tricritical point.

Zero temperature. At zero field (h = 0) the ground state
is a uniform superfluid with the order parameter on the
Fermi surface 	0(kF ) ≡ 	0, where kF = √

2mμ is the Fermi
momentum at h = 0. For a given interaction strength the FFLO
phase emerges at a critical value hc1, and our calculations
show that this is a stripe phase. For sufficiently large field
hc2 the ground state becomes normal. Note that the stripe
FFLO phase is clearly the ground state at h that is lower
than hc2 by a few percent (see Supplemental Material [59]).
The dependence of hc1,hc2 on the parameter kF λ displayed in
Fig. 2 shows that for kF λ > 1 the FFLO region is significantly
wider than in the case of contact interaction, where the
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FIG. 2. Critical fields hc1 and hc2 at T = 0 in units of 	0 versus
the parameter kF λ at kF r∗ = 0.7, where r∗ = md2 is the dipole-dipole
distance. The dashed lines show hc1 and hc2 for the case of contact
interaction.

FFLO phase emerges for 	0 > h > 	0/
√

2 ≈ 0.707	0. Here
we arrive at a very important point. For kF λ < 1.055 the
p-wave interaction on the Fermi surface is repulsive and
interlayer Cooper pairs only contain the contribution of an
attractive s-wave interaction. However, if kF λ > 1.055, then
the p-wave interaction V1(kF ,kF ) also becomes attractive and
Copper pairs are already composed of both s-wave and p-wave
contributions. This makes the modulus of the order parameter
larger and requires a higher field hc2 to destroy superfluidity
and get to the normal state (see Supplemental Material).

Finite-temperature phase diagram: At finite temperatures
the equilibrium phases are determined by comparing the free
energies of the uniform superfluid, FFLO, and the normal
state. In Fig. 3 the phase diagram is presented in terms of
T/T0,s and h/	0, where T0,s is the transition temperature at
h = 0 (provided by the s-wave pairing). Note that the two-
dimensional superfluid-to-normal transition is of Berezinskii-
Kosterlitz-Thouless (BKT) type, but for weakly interacting
fermions the superfluid transition temperature is very close to
that calculated in the BCS mean-field approach [60,61]. With
increasing temperature, the critical field hc1 for the transition
from the uniform superfluid to FFLO phase decreases. So does
the imbalance for the transition from the FFLO to the normal
state. The three phases (SF, FFLO, and normal) merge at the

tricritical point T ∗. For kF λ < 1 we have T ∗ ≈ 0.56T0,s like
in the case of contact interactions. However, for kF λ > 1 the
p-wave pairing contribution to the order parameter comes into
play and the ratio T ∗/T0,s increases. Already for kf λ = 2.2
we obtain T ∗  0.62T0,s and a somewhat wider FFLO region
than in the case of contact interactions (see Fig. 3).

The FFLO phase is mostly the Larkin-Ovchinnikov stripe
state. In the temperature interval from 0.02T0,s to 0.3T0,s the
stripe phase has the lowest free energy for h lower than
hc2 by more than 5%. For h closer to hc2 our numerical
calculations based on the Ginzburg-Landau functional show
that the equilibrium state is a triangular FFLO (it is also
recovered from the self-consistent Gor’kov equations at h close
to 0.95hc2), which with decreasing temperature becomes a
square and then hexagonal FFLO (see Supplemental Material).
This sequence of FFLO states is similar to that observed for
contact interactions [8,12,62].

The structure of the phase diagram is similar to that in the
case of contact interactions [2,5,62]. However, in our case
the FFLO region significantly depends on the parameters,
so that T ∗/T0,s and h∗/	0 are not universal numbers as
they are for contact interactions where T ∗ ≈ 0.56T0,s and the
corresponding critical imbalance is h∗ ≈ 0.6	0 [5,62].

The tricritical temperature can be determined analytically
(see Supplemental Material for details):

− ln
T0,s

T0p

+ Re

[
�

(
1

2
+ i

h∗

2πT ∗

)
− �

(
1

2

)]
= 0; (11)

−Re

[
� ′′

(
1

2
+ i

h∗

2πT ∗

)]
= [Im� ′(1/2 + ih∗/2πT ∗)]2

ln(T0,s/T0,p)
,

(12)

where T0,p is the critical temperature of superfluid transition
for the p-wave pairing at h = 0, and � is the digamma
function. In the limit T0,p → 0, Eqs (11) and (12) give the
known result for the contact interaction, which is specified
in the previous paragraph. These equations also reproduce
the numerical results of Fig. 3. The maximum tricritical
temperature T ∗ → T0,s is reached in the limit kF λ � 1, where
T0,p is close to T0,s . However, the critical temperature T0,s

decreases with increasing kF λ. For kF λ  2, where one can
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FIG. 3. (a) Finite-temperature phase diagram in terms of T/T0,s and the imbalance h/	0. In (a) kF λ = 0.5 and r∗ = λ/2, and in (b)
kF λ = 2.2 and r∗ = λ. The dashed curves are the phase boundaries for the case of contact interaction.
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still hope to achieve T0,s on the level of nanokelvins (see
below), we obtain T ∗ ≈ 0.62T0,s .

The lattice wave vector |Qm| behaves as Q ∼ √
T ∗ − T

near the tricritical point and vanishes at T = T ∗ (see Supple-
mental Material).

As is already stated above, the equilibrium FFLO phase
in our case is the stripe state. Like in the case of contact
interactions [62,63], the transition from the uniform superfluid
to FFLO state is of the first order, whereas the transition
from the FFLO to normal phase is of the second order.
At 2D densities ∼109 cm−2 the Fermi energy for weakly
reactive NaLi molecules or nonreactive NaK molecules is
εF ∼ 1 μK, and for the interlayer spacing 200 nm we have
kF λ  2. Then, on approach to the strongly interacting regime
with kF r∗ slightly exceeding unity, the superfluid transition
temperature will be up to 10 nK. For magnetic atoms and
even for molecules with a large magnetic dipole moment, e.g.,
Dy2, in the same conditions, however, the superfluid transition
temperature is below 1 nK at densities approaching 109 cm−2.
Larger values of kF λ and, hence, higher ratios T ∗/T0,s would
require kF r∗ significantly larger than unity, so that the inlayer

interaction becomes very strong driving the system far away
from the dilute regime. This case is beyond the scope of the
present Rapid Communication.

Conclusions. We used both a theoretical field approach
based on the Gor’kov equations and the theory of phase transi-
tions based on the Ginzburg-Landau free-energy functional to
study possible FFLO phases in a bilayer system of fermionic
polar molecules with a finite imbalance of molecular densities
of the layers.

Our work demonstrates the importance of the long-range
character of the dipole-dipole interaction, which can combine
the s-wave and p-wave pairing in the order parameter and
enhance the FFLO regime. The observation of this FFLO state
is feasible for nonreactive NaK molecules or weakly reactive
NaLi molecules at temperatures ∼10 nK.
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